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Abstract

Gap junctions are intercellular channels which connect adjacent cells
and allow direct exchange of molecules of low molecular weight
between them. Such a communication has been described as funda-
mental in many systems due to its importance in coordination, prolif-
eration and differentiation. Recently, it has been shown that gap
junctional intercellular communication (GJIC) can be modulated by
several extracellular soluble factors such as classical hormones, neu-
rotransmitters, interleukins, growth factors and some paracrine sub-
stances. Herein, we discuss some aspects of the general modulation of
GJIC by extracellular messenger molecules and more particularly the
regulation of such communication in the thymus gland. Additionally,
we discuss recent data concerning the study of different neuropeptides
and hormones in the modulation of GJIC in thymic epithelial cells. We
also suggest that the thymus may be viewed as a model to study the
modulation of gap junction communication by different extracellular
messengers involved in non-classical circuits, since this organ is under
bidirectional neuroimmunoendocrine control.
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Introduction

The establishment of cellular communi-
cation was a milestone for the origin and
evolution of multicellular organisms. Such a
communication can be mediated by 1) soluble
factors, i.e., hormones, cytokines, growth
factors and neurotransmitters, 2) membrane
surface molecules, i.e., members of immu-
noglobulin gene superfamily, integrins, cad-
herins and other classes of recognition mol-
ecules, and 3) ion channels.

Ion channels have been recognized as a
fundamental component involved in the
mechanisms that most animals use to per-

ceive the external world and the internal
milieu (mechanoception, nociception, vision,
taste, motion and hearing). Gap junction is a
particular kind of ion channel that mediates
direct transfer of molecules between adja-
cent cells by a diffusion process.

In vertebrates, the gap junction is an in-
tercellular channel consisting of a dodeca-
meric structure formed by hemichannels (or
connexons) of six monomers in each adja-
cent cell (1). These monomers are proteins
named connexins (Cx) that belong to a mul-
tigenic family, with at least 14 members
already cloned in mammals (1). The most
commonly used nomenclature defines a con-
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nexin according to its predicted molecular
weight deduced from cDNA sequences and
species of origin (1).

These channels permit direct cell-cell
exchange of small molecules such as ions,
sugars and second messengers between ad-
jacent cells (1,2). It was thought that these
channels are permeable to molecules of up
to 1 kDa in mammals. However, several
studies have demonstrated that many con-
nexins present selectivity for both charge
and size. For instance, connexin 43 allows
the passage of lucifer yellow while Cx45
does not (3). In addition, the functionality of
heterologous gap junctions has been shown
to depend on selective compatibility among
different connexins (3,4). In agreement with
this, Cx43 can form functional gap junctions
with Cx37, 43, 45 and 46, but not with 26,
31, 32, 33, 40 or 50 (5).

Gap junction channels can be gated, i.e.,
“opened” or “closed”, by several agents in-
cluding Ca2+, H+, lipophilic substances, volt-
age gradients, and hormones (1), the latter
generally acting via activation of protein
kinases that phosphorylate the cytoplasmic
regions of several connexins (6,7), or in
some cases by phosphatases (6,7). The pres-
ence of connexins has been demonstrated in
distinct lympho-hematopoietic organs where
their function is not clear (reviewed in Ref.
8). In these organs cell-to-cell communica-
tion is a key event to tune performance.

In this review, we will focus on the modu-
lation of gap junctions by extracellular mes-
sengers in a primary lymphoid organ, the
thymus gland. In this organ, bone marrow-
derived lymphoid precursors undergo a pro-
cess of differentiation and maturation, cul-
minating with the migration of mature T
cells to the periphery. In this process more
than 90% of thymocytes die intrathymically,
whereas some are rescued from programmed
cell death and are positively selected to ulti-
mately generate the vast majority of the T
cell repertoire (9).

Such a differentiation and maturation pro-

cess is quite complex, involving a dynamic
molecular cross-talk between T cells and the
thymic microenvironment, a tridimensional
network composed of distinct cell types in-
cluding epithelial cells, macrophages and
dendritic cells, as well as extracellular ma-
trix (ECM) elements (10).

The thymic epithelium is the major com-
ponent of the thymic microenvironment and
determines thymocyte maturation through
cell-cell contacts and secretion of a variety
of polypeptides including thymic hormones
and cytokines (11). Thymic epithelial cells
(TEC) can bind to and interact with thy-
mocytes by means of ECM ligands and re-
spective receptors as well as by classical
adhesion molecules (12) and, most impor-
tantly, by major histocompatibility complex
gene products, which present endogenous
peptides to the T cell receptors expressed on
the cell membrane of differentiating thy-
mocytes. Recently, we demonstrated the ex-
istence of a novel form of cell-to-cell com-
munication in TEC which is mediated by gap
junction channels (13).

It is also noteworthy that the thymus is an
important component of neuroimmunoen-
docrine circuits, synthesizing several classi-
cal hormones (for example, growth hormone,
prolactin and glucocorticoids) which act
pleiotropically upon the thymic epithelium
(11). Furthermore, the intrathymic produc-
tion of various neuropeptides, including the
neurohypophyseal hormones, oxytocin and
vasopressin (11), and vasoactive intestinal
peptide (VIP) has been demonstrated (11).
In this intriguing network, the data concern-
ing influence of extracellular messenger
molecules on gap junction mediated com-
munication begin to be analyzed.

General aspects of gap junction
modulation by extracellular signaling
molecules

In vertebrates, gap junctions have been
reported in virtually all cell types, with the
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possibility of multiple connexin isoform ex-
pression (1). All members of the connexin
family have the same putative structure: cy-
tosolic amino and carboxyl termini, four
transmembrane domains, and extracellular
(two) and cytoplasmic (one) loops. In the
primary sequence of these proteins there are
several consensus sites for phosphorylation
and dephosphorylation, which represent one
of the most frequent mechanisms for hor-
monal modulation of gap junctions and other
ion channels.

The first evidence of gap junction modu-
lation by hormones can be credited to Hax et
al. (14), who demonstrated the regulation of
electrical coupling by cAMP in insect cell
cultures, a finding that was confirmed by
Loewenstein and co-workers (15). As ex-
pected, several extracellular signaling mol-
ecules that raised cAMP levels could modu-
late gap junction communication in different
cell types.

Since then, regulation of these channels
by hormones and other extracellular signal-
ing molecules such as neurotransmitters,
growth factors and cytokines has been dem-
onstrated at the level of transcription, mRNA
stability, translation, cytoplasmic traffic and
gating (1,6,7). So far, the best studied mech-
anism operating during these regulatory pro-
cesses is the phosphorylation/dephosphory-
lation (6) of connexins, transcription factors
and other regulatory proteins. Except for
Cx26, all connexins cloned so far can be
regulated by phosphorylation/dephosphory-
lation. Table 1 illustrates some hormones
and other extracellular messengers that modu-
late gap junctions in several cell types. Most
of these effects are mediated by protein ki-
nases A and C, mitogen-activated protein
kinase and tyrosine kinase. These kinases
can increase or decrease junctional commu-
nication depending on the cell type studied.
It is not clear why this occurs but perhaps
different mixes of connexin isoforms and/or
selective activation of other intracellular
messenger systems that act on gap junctions

might explain the diversity of biological re-
sponses. Most of the effects studied thus far
are on Cx43 but several other connexins can
be modulated by such substances.

In endocrine glands, a rise in gap junc-
tion communication increases the cell re-
sponse to a given stimulus, increasing hor-
monal secretion. In Beta cells in Langerhan’s
islets, the overexpression of Cx43 leads to
an augmented secretion of insulin (16),
whereas in adrenal cells an inhibitor of gap
junction communication diminishes cortisol
secretion (17).

Conversely, in exocrine glands, a rise of
gap junction communication in general leads
to a decrease in secretion as seen in salivary
glands and in the exocrine pancreas (18).

Regulation of thymic gap junctions
by extracellular messengers

We demonstrated that mouse and human
TEC are coupled by gap junctions (13), a
concept that had been previously postulated
by Kendall in the 1980’s (19). We also pro-
vided evidence for the possible existence of
heterologous gap junctions between TEC
and thymocytes as well as for the modula-
tion of TEC hormonal secretion by gap junc-
tions.

As shown in Table 1, the majority of the
soluble messengers and the respective target
cell/organs involved in gap junction modu-
lation studies are those associated with clas-
sical endocrine, immunological and nervous
circuits such as TSH:thyroid, epinephrine:
heart, T3,T4:liver, oxytocin:uterus, FSH:testis,
neurotransmitters:neuronal electric coupling,
IL-1:liver, and so on. Looking for a more
integrative view, the thymus gland could be
an interesting model to study gap junction
modulation by nonclassical circuits since it
is under bidirectional neuroimmunoendo-
crine control.

Consistent with this idea, it has been
demonstrated in rat primary TEC cultures
that progesterone, estrogen, testosterone,
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Table 1 - Gap junction modulation by neuroimmunoendocrine soluble products.

ACh, Acetylcholine; BR, bone remodeling; CA, contractile activity; Cx, connexin; DI, differentiation; DTA, dye transfer assay; EF, electrophysiology;
EM, electron microscopy; FFEM, freeze-fracture electron microscopy; FRAP, fluorescence recovery after photobleaching method; FSH,
follicle-stimulating hormone; GnRHa, gonadotropin-releasing hormone analogue; hCG, human chorionic gonadotropin; HMC, human
myoendothelial co-culture; HUVEC, human umbilical vein endothelial cells; ICC, immunocytochemistry; IHC, immunohistochemistry; IF, immuno-
fluorescence; LH, luteinizing hormone; LH-RH, luteinizing hormone-releasing hormone; MAPK, mitogen-activated protein kinase; NB, Northern
blotting; ND: not determined; PKA, protein kinase-A; PKC, protein kinase-C; PR, proliferation; PTH, parathyroid hormone; T3, 3,3',
5-triiodo-L-thyronine; SLT, scrape-loading technique; T4, L-thyronine; TGF-ß1, tumor growth factor ß1; TNFa, necrosis factor a; TSH, thyrotropin
stimulating hormone; WB, Western blotting. *All these parameters depended on the cell type analyzed; **based on cell lines; ***the modulation
of the junctional conductance (Gj) was also described (in some cases it involved exclusively Gj); ****based on goldfish Mauthner cells (M cells);
#modulation of dye coupling and protein expression was represented by the following arrows:   (positive modulation),   (negative modulation)
and     (both effects were described, depending on experimental conditions, cell type or concentration tested, or even the connexin isoform
analyzed).

Modulators Analyzed cell/ Techniques* Connexin Dye Protein Protein/kinase* Associated References
organ isoform* coupling# level# function*

Cytokines
Interleukin 1 Bone, HMC, DTA, FRAP, Cx32, Cx43 ND DI 36, 43, 55, 56

HUVEC, liver** WB
Interleukin 2 Liver IHC ND ND ND ND 33
Interleukin 6 Liver** DTA, WB Cx32 ND ND 36
TGF-ß1 Bone**, EF, ICC, SLT Cx43 *** ND ND 29, 54

Schwann cells
TNFa HMC, Liver** DTA, WB Cx32 ND DI 36, 56

Hormones
Estradiol Bone, uterus DTA, FFEM, Cx26, Cx32, PKC CA, BR, PR, DI 24, 28, 40, 44,

IF, IHC, WB  Cx43 45
FSH Testis DTA, FRAP ND ND ND ND 69
GnRHa Ovary WB Cx43 ND PKC ND 46
Glucagon Liver ICC, SLT Cx26, Cx32 ND ND ND 51
Glucocorticoid Liver** DTA, SLT, WB Cx26, Cx32 ND ND 51
hCG Ovary, uterus FRAP, IF, WB Cx43 PKA CA, DI 24, 25, 31
LH Ovary, uterus FRAP, WB Cx43 PKC and probably CA 24, 46

 PKA
Insulin Xenopus oocytes EF Cx43 *** ND Probably MAPK ND 35
Melatonin Liver IHC, SLT, WB Cx32 ND Antiproliferative 26
Oxytocin Ovary, uterus IF, WB Cx43 ND ND ND 24, 31
Progesterone Uterus FFEM, IF,IHC, Cx26, Cx32, ND ND CA, PR, DI 24, 28, 39, 45

 WB Cx43
Prolactin Pancreas DTA ND ND ND ND 50
PTH Bone DTA, WB Cx43 ND ND 27, 70
T3 Liver** DTA, WB Cx43 ND ND 52
T4 Liver** DTA, WB Cx43 ND ND 52
Testosterone Epididymis, EM, IHC, Cx43 ND ND 23, 38

pituitary gland WB
TSH Thyroid DTA Cx32, Cx43 Probably PKA DI 22, 41

Neurotransmitters
ACh Eye, hippocampus DTA, EF ND *** ND ND ND 30, 42, 72
Dopamine Hippocampus, DTA, EF ND *** ND ND ND 34, 42, 53

retina
Epinephrine Heart EF ND *** ND ND ND 71
Glutamate Cerebellum, DTA, EF ND *** ND ND ND 37, 47

M cell****
Norepinephrine Cortex, pineal DTA, EF, WB Cx26 *** ND PKA ND 32, 48, 49, 71

gland
Serotonin Cortex DTA, EF ND ND PKC ND 32
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corticotropin, growth hormone, interleukin-
1a, interleukin-1ß, g-aminobutyric acid
(GABA), neuropeptide Y, vasoactive intes-
tinal peptide, substance P, and histamine
reduce dye coupling whereas acetylcholine
and the ß-adrenergic agonist isoproterenol
have no effect (20,21; see Table 2).

Yet, in contrast to some of these data, we
found that VIP and vasopressin increase dye
coupling in one mouse TEC line and primary
cultures of thymic nurse cells. Supporting
this idea, 8Br-cAMP, a permeable analog of
cAMP (secondary messenger of VIP and
vasopressin), can also increase the degree of
inter-TEC dye coupling (Alves LA, Figueira
G, Savino W and Campos-de-Carvalho AC,
unpublished results). Additionally, we found
an increase in dye coupling in a rat cell line
(clone IT45-R1, provided by Dr. Tsumeroshi
Itoh, Tohoku University, Sendai, Japan) when

cells were treated with dexamethasone (Fig-
ure 1). Much work is still necessary in order
to obtain a clear view of the possible role of
gap junctions in thymus tissue. Furthermore,
it is essential to understand the multiple
levels of regulation of intercellular commu-
nication by way of gap junctions in the thy-
mus gland. Presently, the mechanisms by
which dye coupling increases or decreases
in thymic epithelial cells when these cells
are treated with extracellular messenger
molecules are not known. Table 2 summa-
rizes the effects of several extracellular mol-
ecules on inter-TEC dye coupling, as well as
the expression of the respective receptors.
One can see that receptors for some putative
modulators have not yet been formally char-
acterized in TEC, and that several hormones
for which receptors are expressed have not
been studied for their potential effects on

Table 2 - Neuroendocrine modulators of inter-TEC gap junctions.

ACh, Acetylcholine; ACTH, adrenocorticotropin hormone; AR, auto-radiography; CGRP, calcitonin
gene-related peptide; EF, electrophysiology; GABA, g-aminobutyric acid; GH, growth hormone; 5-HT, 5-
hydroxytryptamine; IHC, immunohistochemistry; IL1-a, interleukin-1a; IL1-ß, interleukin-1ß; LM, light micros-
copy; NB, Northern blotting; NE, no effect; NPY, neuropeptide Y; PA, pharmacological analysis; RT-PCR,
reverse transcription-polymerase chain reaction; RTM, reticuloepithelial cells of thymus medulla;
SPA, Scatchard plot analysis; SP, substance P; TEC, thymic epithelial cells; VIP, vasoactive intestinal
peptide; WB, Western blotting. *Summarized from Refs. 20 and 21; **the receptor expression is repre-
sented by the following signals: + (positive expression), - (not found) or ND (not determined); ***related to
receptor characterization studies; #modulation of dye coupling is represented by the arrows:  (negative
modulation).

Modulators* Dye coupling*# Cell type*** Receptor** Approach References***

ACh NE Thymic extract + NB, RT-PCR 59
ACTH ND
CGRP TEC + RT-PCR, IHC 62
GABA - EF 68
GH (rat) Type-1 TEC + NB, WB, RT-PCR, IHC 61
Histamine ND
5-HT NE ND
IL1-a ND
IL1-ß ND
Isoproterenol NE Thymic extract, TEC + PA, NB, RT-PCR 66, 67
NPY - LM, IHC 63
Oestrogen RTM + IHC 58
Progesterone RTM + SPA, IHC 57, 58
SP - AR 60
Testosterone Thymic extract + SPA 64, 65
Thymulin NE ND
VIP Cortical/medullar TEC + RT-PCR, IHC, AR 60, 62
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TEC gap junctions. For instance, in human
TEC the GABA receptor was not found. Yet,
when this neurotransmitter is applied to rat

Figure 1 - Increase in gap junc-
tional communication induced
by dexamethasone in a rat epi-
thelial cell line. TEC were treated
with 10-6 M dexamethasone for
48 h, and intercellular communi-
cation was evaluated by dye
transfer assay using the fluoro-
chrome lucifer yellow (LY). A,
Microscopy fields (phase con-
trast and fluorescence, respec-
tively, in the left and right pan-
els) depicting the injected cell
(*) and those that were coupled
when LY was injected (magnifi-
cation 320X). B, Histograms
showing the pattern of coupling
degree of control and dexameth-
asone-treated cells. The analysis
comprises 100 microinjections
per group.

TEC, a decrease in dye coupling is observed,
indicating a possible species-specific modu-
lation or even an epiphenomenon.
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