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Abstract

Acute lung injury is characterized by a severe disruption of alveolo-
capillary structures and includes a variety of changes in lung cell
populations. Evidence suggests the occurrence of rupture of the
basement membranes and interstitial matrix remodeling during acute
lung injury. The dynamic equilibrium of the extracellular matrix
(ECM) under physiological conditions is a consequence of the balance
between the regulation of synthesis and degradation of ECM compo-
nents. Matrix metalloproteinases (MMPs) represent a group of en-
zymes involved in the degradation of most of the components of the
ECM and therefore participate in tissue remodeling associated with
pathological situations such as acute lung injury. MMP activity is
regulated by proteolytic activation of the latent secreted proenzyme
and by interaction with specific tissue inhibitors of metalloprotein-
ases. This review details our knowledge of the involvement of MMPs,
namely MMP-2 and MMP-9, in acute lung injury and acute respiratory
distress syndrome.
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Acute lung injury is characterized by le-
sions of both lung endothelial and alveolar
epithelial cells leading in more severe cases
to complete denudation of epithelial base-
ment membranes. The most severe form of
acute lung injury is the acute respiratory
distress syndrome (ARDS). Despite substan-
tial improvements in supportive care for pa-
tients with acute lung injury, the current
mortality rate of ARDS appears to be in the
35 to 40% range (1). During the acute in-

flammatory phase, basement membranes are
also damaged with deposition of a provi-
sional extracellular matrix (ECM) made of
fibrinogen, fibronectin, and fibrillar colla-
gens. Reconstitution of the alveolo-capillary
barrier depends on a combination of events
including proliferation of alveolar epithelial
type II cells and their differentiation into
type I pneumocytes. Re-epithelialization not
only involves cellular proliferation and dif-
ferentiation, but cellular locomotion as well.
These processes are necessarily accompa-
nied by digestion of the provisional matrix
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allowing its replacement by normal base-
ment membranes, made of type IV collagen,
laminin, and nidogen. All of these events
would lead in the most favorable case to
restoration of the normal alveolo-capillary
barrier.

The ECM is a complex network com-
posed of protein constituents including col-
lagens and elastin, glycoproteins such as
laminin, fibronectin, and nidogen, as well as
various proteoglycans and glycosaminogly-
cans, which together build up the architec-
ture of basement membranes and interstiti-
um. The integrity of the ECM is controlled
by a dynamic equilibrium between synthesis
and local degradation of its different compo-
nents. The matrix metalloproteinases
(MMPs) are believed to be the main physi-
ological mediators of ECM degradation.
MMPs are expressed during physiological
processes such as embryonic development
and postnatal growth (2,3) as well as in
pathological conditions. In adult tissue, low
level MMP expression mediates normal ma-
trix remodeling, while during inflammation
and injury, large amounts of MMPs are
produced presumably to repair damaged
ECM.
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Matrix metalloproteinases

MMPs, also called matrixins (4), are zinc-
dependent endopeptidases known for their
ability to cleave one or several ECM con-
stituents. They comprise a large family of
nearly 20 members identified thus far that
share common structural and functional ele-
ments and are products of different genes.
These enzymes are primarily distinguished
from other classes of proteinases by their
dependence on metal ions and neutral pH for
activity. Depending on substrate specificity,
amino acid similarity and identifiable se-
quence modules, the family of MMPs can be
classified into the following distinct sub-
classes (Table 1): collagenases (MMP-1,
MMP-8, MMP-13), gelatinases (MMP-2,
MMP-9), stromelysins (MMP-3, MMP-10,
MMP-11), matrilysin (MMP-7), membrane-
type (MT)-MMPs (MT1-MMP, MT2-MMP,
MT3-MMP, MT4-MMP), and elastase
(MMP-12).

MMPs are secreted as proenzymes (la-
tent form) and need activation to be fully
functional. They have a propeptide domain
(80 amino acids) which contains a conserved
unique PRCGVPDV sequence. A cysteine

Table 1 - Classification of matrix metalloproteinases (MMPSs).

Subgroup MMP Nomenclature Mass (kDa) Matrix substrates
Interstitial MMP-1 Fibroblast 52 Fibrillar collagen (111>1)
collagenases MMP-8 Neutrophil 75 Fibrillar collagen (1>111)
MMP-13 Collagenase-3 54 Fibrillar collagen
Gelatinases MMP-2 Gelatinase A 72 Collagen I, IV, V, gelatin
MMP-9 Gelatinase B 92 Collagen IV, V, gelatin
Stromelysins MMP-3 Stromelysin-1 57 Laminin, fibronectin
Non-helical collagen
MMP-10 Stromelysin-2 53 Same as above
MMP-11 Stromelysin-3 65 Collagen IV, gelatin, laminin
MMP-7 Matrilysin 28 Similar to MMP-3
MT-MMPs MMP-14 MT1-MMP 66 Collagen I, 11, 11, gelatin
Activate MMP-2
MMP-15 MT2-MMP 76 ?
MMP-16 MT3-MMP 70 Activate MMP-2
MMP-17 MT4-MMP ? ?
Elastase MMP-12 Metalloelastase 54 Elastin, fibronectin
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residue in this sequence maintains the la-
tency of the zymogen by direct coordination
with the active site zinc atom of the catalytic
domain, blocking the access of the catalytic
site to the substrate (5). Interruption of this
interaction by aminophenylmercuric acetate,
HgCl,, HOCI, oxidized glutathione, by heat
treatment, or by other proteases, including
MMPs, initiates a cascade of events that
alters the conformation of the protein. Fol-
lowing opening of the cysteine-Zn bond, a
series of autocatalytic cleavages result in
excision of the remainder of the propeptide
to yield a proteolytically truncated and cata-
lytically competent enzyme.

Inhibition of matrix
metalloproteinases

The major physiologic inhibitors of the
MMPs in vivo are o-2 macroglobulin, which
is restricted in its sites of activity due to its
large size, and the family of specific “tissue
inhibitor of MMPs” (TIMPs), naturally oc-
curring proteins specifically inhibiting these
proteases and produced by many cell types
(6). The TIMP family at present comprises
four structurally related members, TIMP-1, -2,
and -3, and the recently discovered TIMP-4.
They have a relative molecular mass ranging
from 22 kDa to 30 kDa, with 40-50% se-
quence identity (7). Of these, TIMP-1 and -2
are secreted in soluble form, whereas TIMP-
3 is associated with the ECM. The TIMPs
bind with high affinity ina 1:1 molar ratio to
the catalytic site of active MMPs resulting in
loss of proteolytic activity. Moreover, TIMP-
1 and TIMP-2 can form a specific complex
with the zymogens of MMP-9 and MMP-2,
respectively (8.,9). This interaction has been
suggested to provide an extra level of regula-
tion by potentially preventing activation.
However, it has recently been shown that
TIMP-2 forms a trimolecular complex on the
surface of the cell with MT1-MMP and the
zymogen form of MMP-2, and regulates the
formation and levels of concentration of ac-

tive MMP-2 (10).
Acute lung injury and MMPs
Sources of MMPs during acute lung injury

By cleaving ECM components, MMPs
could play a role in the repair of the alveolar
epithelium during acute lung injury. Gelati-
nases, MMP-2 and MMP-9, are known to
degrade almost all basement membrane con-
stituents, including type IV collagen, nido-
gen and laminin, and gelatins. The ability of
lung epithelial cells to produce MMP-9 has
been previously demonstrated in sheets of
airway lining (11), epithelial cells cultured
from human lung explants (12), and by in
situ hybridization of normal and neoplastic
human lung tissue (13). A study by Buisson
and colleagues (14) showed that MMP-9
produced by human surface respiratory epi-
thelial cells from nasal polyps and cultured
on type I collagen actively contributed to
wound repair in the respiratory epithelium.
Moreover, a recent study (15) suggested that
MMP-9 controls the migration of repairing
human bronchial epithelial cells by remodel-
ing the provisional ECM.

During acute inflammation, polymorpho-
nuclear neutrophils, eosinophils and mono-
cytes and lymphocytes are recruited from
the circulation to specific sites within tissue.
These recruited cells ingest and kill microor-
ganisms, remove foreign and cellular debris,
and assist in tissue repair by modulating the
activity of surrounding mesenchymal and
endothelial cells. Inflammatory cells per-
form some of their functions by releasing
MMPs into the pericellular space. MMPs are
secreted to facilitate clearance of foreign
and noxious agents, but, when present in
excess, can also destroy the ECM environ-
ment, disrupt resident cells, and stimulate
further inflammation (16). MMP-2 is syn-
thesized by a wide variety of cells, including
fibroblasts, endothelial cells (17) and alveo-
lar epithelial cells (6,18). MMP-9 is pro-
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duced mainly by inflammatory cells such as
polymorphonuclear neutrophils, monocytes,
macrophages, eosinophils and lymphocytes
(19-21), but also, under certain conditions,
by cells that synthesize MMP-2, such as
endothelial (22) or alveolar epithelial cells

(14).
MMPs and LPS-induced acute lung injury

Lipopolysaccharide (LPS) of Escherichia
coli is well known to induce acute pulmo-
nary inflammation associated with polymor-
phonuclear neutrophil infiltration, and is ha-
bitually used in models of inflammation in
vivo or in vitro. Numerous studies have fo-
cused on the role of MMPs in various mod-
els using LPS as a potent inducer of acute
lung inflammation. Moreover, the LPS-in-
duced acute inflammation model is well a-
dapted to the study of the pathogenesis of
ARDS (23).

LPS exposure leads to an increase of
MMP-2 and MMP-9 in bronchoalveolar lav-
age (BAL) from various animals (19,24,25).
Similar results were obtained in rats after
subacute hyperoxia (26) or after exposure to
ozone (27). Recently, an increase in MMP-9
release has been observed in plasma of nor-
mal human subjects given LPS intravenously
and the polymorphonuclear neutrophils were
identified as the cells responsible for this
secretion (28). These observations strongly
suggest an involvement of MMP-2 and MMP-
9 in acute inflammatory processes. More-
over, we have shown in mice that LPS-
induced acute inflammation could be re-
duced by corticosteroid treatment, as ob-
served by inhibition of inflammatory cell
infiltration (mainly neutrophils) and reduc-
tion of MMP-2 and MMP-9 activity (25).
This study demonstrated that corticosteroid
may act both on inflammation and tissue
remodeling associated with acute lung in-
jury. In vitro studies have shown that stimu-
lation with LPS is responsible for an in-
crease in the release of MMPs, MMP-2 and
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mainly MMP-9, and TIMPs by human alveo-
lar macrophages (29). After their differen-
tiation towards the macrophage phenotype
by phorbol myristate acetate, the human pro-
monocytic U937 cell line can release MMP-
9 (30).

LPS increases release of MMP-9 and
MMP-2 by human bronchial epithelial cells
obtained from biopsies, but does not modify
TIMP-1 release, suggesting an imbalance in
favor of MMPs leading to degradation of
ECM components (12,18). Similar results
were obtained with rat type Il pneumocytes
(31). A previous study suggesting a role for
MMP-9 in human polymorphonuclear neu-
trophil migration was done in vitro (32).
However, recent findings in mice, both in
vitro and in vivo, indicated that MMP-9 is
not required for polymorphonuclear neutro-
phil migration (33). Moreover, we have re-
cently shown that batimastat, a synthetic
MMP inhibitor, did not prevent inflamma-
tory cell infiltration induced in mice by LPS
aerosol (Corbel M, Caulet-Maugendre S,
Germain N, Lagente V and Boichot E, un-
published results). Such controversial re-
sults need to be further investigated in order
to determine the exact role of neutrophil
MMP-9.

MMPs and acute respiratory distress
syndrome

ARDS is a form of acute lung injury
characterized by high microvascular perme-
ability, low pressure pulmonary edema, re-
fractory hypoxemia, respiratory failure, and
a massive influx of neutrophils. In many
patients, fibrotic lesions with collagen depo-
sition develop rapidly after the initial lung
injury. Degradation products of type IV col-
lagen have been found in alveolar spaces
(34), as well as type Il procollagen peptides,
markers of collagen synthesis (35), suggest-
ing an increased turnover of ECM during the
course of ARDS. In human acute lung in-
jury, mainly in ARDS, an increase in MMPs,
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MMP-2 and MMP-9, as well as TIMP-1 in
BAL has been suggested to play a role in
basement membrane disruption (36-38). The
higher concentration of MMPs might be in-
duced by the increased number of neutro-
phils in BAL from ARDS patients because
MMP-9 is the only type IV collagenase found
inneutrophils (39) and because MMP-9 con-
centrations were significantly correlated with
the increase in the number of neutrophils in
BAL (36,37). Although macrophages are
known to produce MMP-2 and MMP-9, the
increase in the number of macrophages was
not correlated with the increase in MMP-9.
Delclaux and colleagues (38) obtained re-
sults which were consistent with those of
previous studies and provided data support-
ingalarge imbalance in favor of antiproteases
in alveolar spaces. A recent study from our
laboratory showed the importance of the
MMP-9/TIMP-1 ratio in the dramatic evolu-
tion of ARDS. An MMP-9/TIMP-1 ratio >1
would prevent evolution to fibrosis by deg-
radation of ECM components. Indeed, when
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