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Abstract

A system is said to be “instantaneous” when for a given constant input
an equilibrium output is obtained after a while. In the meantime, the
output is changing from its initial value towards the equilibrium one.
This is the transient period of the system and transients are important
features of open-respirometry systems. During transients, one cannot
compute the input amplitude directly from the output. The existing
models (e.g., first or second order dynamics) cannot account for many
of the features observed in real open-respirometry systems, such as
time lag. Also, these models do not explain what should be expected
when a system is speeded up or slowed down. The purpose of the
present study was to develop a mechanistic approach to the dynamics
of open-respirometry systems, employing basic thermodynamic con-
cepts. It is demonstrated that all the main relevant features of the
output dynamics are due to and can be adequately explained by a
distribution of apparent velocities within the set of molecules travel-
ling along the system. The importance of the rate at which the
molecules leave the sensor is explored for the first time. The study
approaches the difference in calibrating a system with a continuous
input and with a “unit impulse”: the former truly reveals the dynamics
of the system while the latter represents the first derivative (in time) of
the former and, thus, cannot adequately be employed in the apparent
time-constant determination. Also, we demonstrate why the apparent
order of the output changes with volume or flow.
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Introduction

The dynamics of a respirometry system is
an essential feature of such a system and
investigators must be fully familiarized with
it before experiments begin. This is due to
the fact that respirometry systems have tran-
sients, i.e., periods of time during which the
output amplitude (the signal) of the system is
below the amplitude of the input. Therefore,
during transients, one cannot compute the

amplitude of the input (e.g., oxygen con-
sumption, carbon dioxide production, etc.)
directly from the output. Two general solu-
tions are possible. The first is to work with
very fast systems which behave as zero-
order systems (in which transients are not
detected). However, in most cases this is not
usually a feasible task for the well-known
limits of open-respirometry systems (i.e.,
flow, volume, the biological system under
investigation, etc.). The second solution is to
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transform the output into instantaneous read-
ings by some mathematical procedure (1),
i.e., to obtain output amplitudes linearly re-
lated to the input amplitudes. Three branches
of such solutions are found in the literature:
a) single-chamber first-order models (2-10),
b) two-chamber second-order models (11),
and c) unknown number of chambers free-
of-order models (12,13). The first-order
models analyze the output as coming from a
single volume of dilution, and the Z-trans-
formation of the output is the mathematical
procedure used to obtain instantaneous read-
ings (4) even though adding the output to its
first derivative in relation to time is another
possibility (7-9). Free-of-order models em-
ploy deconvolution of the output by a trans-
fer function obtained during calibration pro-
cedures. The putative number of volumes
diluting the input is irrelevant to this trans-
formation, and the procedure is simply in-
strumental in this respect.

Frappell et al. (11) proposed a two-cham-
ber model that resulted in a second-order
solution. They stated the superiority of their
model in relation to first-order ones based on
the fact that the second-order function pro-
file is much more similar to empirical output
profiles than are first-order function pro-
files. Several flaws can be detected in their
model, and we list them in Appendix A (see
page 979). One of these flaws (perhaps the
most relevant one) is the statement that the
profile of the output will approach a first-
order dynamics if the first chamber is large
in relation to the second one (or vice-versa).
Empirically, one can demonstrate that the
larger the volume of a chamber the less the
output is close to a first-order model (see
Figure 5A). This phenomenon is not related
to an a priori predetermined number of cham-
bers counted from an anthropocentric point
of view.

Let us state the problem in another way.
Consider a given system1 Syst1 with an out-
put that apparently obeys a given order (e.g.,
N order). Then, increasing the volume of
such a system or decreasing the convective
flow through it (i.e., slowing down the sys-
tem) would result in a) a system (Syst2) that
is of the same N order as Syst1 but with
different values for the time constants that
describe it, or b) a change in the order of
Syst2 in relation to the apparent N order
describing Syst1. Mutatis mutandis, the ques-
tion holds true for the opposite, i.e., when a
system is speeded up. Empirically, we al-
ready know that a change in the order of the
apparent function describing the output will
occur. However, none of the present models
explains why and how this happens to be so.
These models also cannot account for the so-
called “time lag” (i.e., a finite amount of
time between the input taking place and
some alteration occurring in the sensor cell)2.
All these problems are present in such mod-
els because the latter are not truly describing
the mechanics of the systems. Instead, they
are fitting a pre-set of differential equations
to the observed output.

In the present study we developed an
approach to open-respirometry system dy-
namics employing basic concepts of thermo-
dynamics and statistical mechanics. This
approach allows an unequivocal understand-
ing of the principles underlying the relation-
ship between volume and flow in open-res-
pirometry systems, thereby clearly explain-
ing why and how there is a change in the
apparent order of the output when a system
is speeded up or slowed down. We also
explore the role of the sensor cell itself in the
system and the difference between calibrat-
ing an open-respirometry system (i.e., how
to obtain its dynamics) by a continuous input
and by a unit impulse.

1This means all the chambers and sub-chambers, tubing, sensor cells, the convective flow, the absorbents, etc.
2Authors simply take for granted the existence of the time lag, without any further consideration.
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Methods and Results

The basic experimental set-up

Appendix B (see pages 979 and 980)
contains a list of symbols and definitions.
We describe here the main features of open-
respirometry systems. These systems consist
of tubes connected to each other in series.
The system is said to initiate at the L0 point,
i.e., the point where the system starts physi-
cally (before L0 is the outside environment).
The series of connected tubes reaches the
entrance of the sensor cell, S, at LS. The
sensor cell has a given volume and ends at a
point called LS+Ds. Finally, the system ends at
a point called Lf: beyond Lf there is, again,
the outside environment. There is a convec-
tive flow, V

.
, of ambient gas through the

system from L0 to Lf. V
.
 determines a sense of

convective flow within the system, defined
as the x+ (x positive) sense. The input into
the system occurs at a point called L0IN. For
practical reasons we will simply state that
L0IN>L0, i.e., the input occurs beyond the
entrance to the system, in the x+ sense. The
connected tubes consist of a volume which,
from the “output point of view”, extends
from L0IN to LS+Ds (not just to LS) as we will
demonstrate below. The gas molecules of
the input flow through the system from L0IN.
Figure 1 illustrates the main features of open-
respirometry systems. For the sake of sim-
plicity, but without loss of generality, the
following constraints are part of this ap-
proach: a) temperature is constant; b) the
cross-section of the connected tubes is con-
stant; c) the sensor cell has the same cross-
section as the other tubes; d) the external
environment acts as an infinite pool and
sink; e) all gas molecules have the same
mass and diameter, and collisions are elas-
tic; f) the system is in a steady-state of pres-
sure, i.e., the transients of the convective
flow have finished, and g) there is no input
loss (this is why L0IN>L0) and turbulence
will not be accounted for in the approach.

If all molecules had the same velocity in
the x+ sense of the system the output of any
given input would look like a square pulse.
However, in real systems, this is not the case,
because the input molecules do not have all
the same velocity, as will be demonstrated
below.

Real velocities of the particles - total and the
X component

At any given temperature (greater than 0
K) the distribution of velocities in a popula-
tion of gas molecules follows a Maxwell
distribution (14):

2M v2 2RT
(v)

M
f 4 v e

2 RT

� �� �� � � �� ��
             (1)

where M is the molar mass of the molecules,
R is the gas constant, T is temperature and v
is the specified velocity of a population f of
molecules (Figure 2A). At any Lj point along
the system (L0<Lj<L f) the profile of veloci-
ties described by equation 1 is expected to be
found. Consider now a step change in the
input that occurs at t0 (t0 is the exact moment
when a transition in the amplitude of a former
constant input occurs). This new input is
composed of a set of molecules whose ve-
locity profile is described by equation 1 as
well, and this set of molecules shows this
profile at any observation time (given that
we are considering a conservative system,
item (a) above). However, this does not mean
that each molecule in the set is locked in a
fixed velocity. On the contrary, each time a
molecule collides its velocity changes. Thus,

Sensor
V
.

L0 L0IN LS
LS+Ds

Lf

Figure 1 - Schematic view of an
open-respirometry system. The
input takes place at L0IN, and the
gas particles (represented by as-
terisks) travel from this point to
the end of the system, Lf, under a
convective flow V

.
. During the

travel, the gas particles pass
through a sensor that begins at
LS and ends at LS+Ds. The entry of
the system is identified at L0, a
point before L0IN.
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each molecule tends to reach a mean ve-
locity due to collisions. Over time, the set of
these molecules can be described as having a
mean velocity c-(t) (the mean velocity of the
Maxwell distribution: c-(t) = 8RT M�  al-
though the profile of the set (given by equa-
tion 1) is the same at any particular time.
This mean velocity has a standard deviation,

(t)c mxwsd sd collisions� , where sdmxw

is the standard deviation of the original (Max-
well) distribution divided by the square root
of the number of collisions of the particle
from t0 to t (the result for sdc-(t) is simply the
Law of Large Numbers or central limit theo-
rem (15)). Due to the huge number of colli-
sions a particle suffers within short periods
of time (see below) we will simply use sdc-

and c- instead of sdc-(t) and c
-

(t), respectively.
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Figure 2 - Gas particles tend to
reach a mean velocity as colli-
sions occur. A, Maxwell distri-
bution of velocities in a gas
sample at 300 K. B, 10,000 par-
ticles were fitted within the
Maxwell distribution shown in
A. C, Change in velocity of a
simulated particle as collisions
take place. The dashed line rep-
resents the mean velocity the
set will tend to reach. D, The
10,000 particles of B were al-
lowed to change velocity at ran-
dom (under the constraint of
constant temperature, i.e., the
velocities found in B were
shuffled among the particles)
during episodes of putative colli-
sions. The mean velocity of each
of the 10,000 particles was re-
corded and the result of these
means after the 100th collision
episode is shown. Note the clear
tendency towards a normal dis-
tribution of the velocities (from
B to D; also note the different
scales). Velocity is in m/s.

Therefore, a gaussian curve adequately de-
scribes the velocity profile of the particles in
a given initial set:

� �

2

c

1 v-c
-
2 sd

v
c

1
G e

sd 2

� �
� �� �

�

�

                       (2)

We insist in the difference between equa-
tions 1 and 2: the profile of velocities is the
one described by equation 1 at any given
moment of observation of the set, and the
gaussian curve of equation 2 is the net result
of the changes in velocity of the particles
along time. Given that each molecule in a gas
phase under ordinary conditions collides
about 109 times per second, the mean ve-
locity of each particle tends to be determined
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in the very first second after the input takes
place. Figure 2 illustrates these points.

Thus, it was shown that the total velocity,
v, tends to reach a mean value for each
particle as time goes by. This total velocity is
the vector composed by the three orthogonal
components of velocity:

2 2 2 2
x y zv v v v� � �                                         (3)

These orthogonal components are inde-
pendent of each other, i.e., changes in one of
them do not imply changes in the other ones
(as long as the temperature is constant and,
therefore, the total kinetic energy of the ini-
tial set is constant (14)). We are concerned
with the travelling rate in the x direction, i.e.,
with the speed of the particles going from
L0IN to LS+Ds. The distribution of velocities
on a given axis (e.g., x) is:

2
x

x

M v
2RT

(v )

M
f e

2 RT

� �

�

�

                     

(4)

With time, each molecule in the initial set
attains a mean velocity on such an axis, and,
as seen before, the set can be described as
having a mean velocity on the axis ( c

-
x) and

a standard deviation of this mean (sdc-x):

� �

2

x x

cx

x

x

v -c1
-
2 sd

v
c

1
G e

sd 2

� �
� �
� �

�

�

                  (5)

It should be noted that equation 5 describes
the mean velocity in the x direction (or any
other orthogonal axis), but is blind to the
sense of the motion (i.e., it represents both
the positive and the negative components in
the given direction). We will now consider
what happens when convective flow is pre-
sent.

Apparent velocities of the particles

Gas particles are in a constant rocking
motion, coming and going all the time. They

collide with each other and, at such colli-
sions, they can change the sense of their
motion (e.g., from a positive x sense to a
negative one). When convective flow is im-
posed on the system, there is nothing that
really pushes or pulls each particle. Instead,
there is a higher probability that a particle
once moving in the positive sense of the flow
(as defined above) will continue in such a
sense longer than when it is moving in the
opposite one. Given that changing in the
sense of the motion only occurs when par-
ticles having opposite senses collide, we can
write the difference in probability that a
particle would change sense at a given point
Lj of the system as:

(Lj)

(Lj)

(Lj)

z
1

z
�

�

� � �                                       (6)

where z stands for the collision frequency
that a particle experiences at Lj when travel-
ling in the positive (z+) and in the negative
(z-) sense of the x axis. Thus, when collision
frequency is the same in both senses (no
convective flow is present) L = 0, i.e., only
the probability of diffusion affects the move-
ment of particles from one point to another.
A good approximation for L (as we justify in
Appendix C (see pages 980 and 981)) is:

X

w

c

�
� �                                                   (7)

where Dw is the absolute value of the ve-
locity of the moving piston causing convec-
tive flow and c-x is the mean velocity of the
particles in the x direction. Notice that L is
independent of the Lj point of the system.
The apparent velocity (in the x direction) of
a particle will be the product of its mean
velocity and L. Therefore, the whole set has
a mean apparent velocity indicated by the
following equation:

appx Xv c� ��                                           (8)
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A note on variance: many factors were
not taken into account in this study. Some of
them are turbulence, inhomogeneities of the
gas medium, changes in the geometry of the
tubing, and the variance in L. Analysis of
such factors is beyond the scope of the pres-
ent study. However, it is very important to
note that these added variances make a con-
siderable contribution to the final spreading
of velocities around the mean value.

We will not propagate error and the
standard deviation of the above apparent
mean velocity will be simply described as
sdapp

+ = sdc-x
.L, where the superscript + indi-

cates that added components of variance
should be included. Normality is preserved3

and the set of particles can be adequately
described by a gaussian function as:

Equation 9 is the foundation of this study. It
tells us that any given initial set of particles
will attain a mean apparent velocity on the
axis of the convective flow imposed on the
system, and that particles of such a set will
have apparent velocities normally distrib-
uted around the mean velocity of the set.
This obviously explains, unequivocally, the
existence of the time lag between an input
and the beginning of the corresponding out-
put: it is the length of time that the faster
particles of the input take to travel from L0IN

to LS (even though a gaussian function ranges
from -¥ to +¥, for practical purposes the
entire population can be considered to lie
between -3sd and +3sd around the mean, so
there will exist a minimum time required for
the faster particles to travel). In the next
section we will explore the output dynamics
that results from equation 9.

Output dynamics of open-respirometry
systems

The input. Most of the arguments of the
functions will be omitted for the sake of
simplicity (e.g., G instead of G(vxapp)). Let us
consider a set A of gas molecules as an
unitary amplitude input into the system.
Therefore, such a set has particles which
have velocities distributed according to func-
tion G (equation 9). Obviously, set A has a
total number of molecules corresponding to
the integral H of G (because the velocities in
this case are equal to or greater than zero, the
integral will be evaluated only in the positive
range):

total particles of A = H = 2 

The total amount of molecules in a con-
tinuous input into the system at time t is
the integral of A in relation to time, from t0 =
0 to t:

t

0

H t H� �� dt                                         (11)

The output. Let us define a function E(t)

representing the state of the sensor at time t.
The state of a sensor is a function (linear,
in general) of the occupancy level of the
sensor by the subject of measurement of
that sensor. The entry rate into the sensor is
the amount of molecules (subject of meas-
urement) that cross the entrance to the sen-
sor cell at LS. The exit rate is the amount
of molecules leaving the sensor cell at
LS+Ds:

s+ s

s s+ s s

L

t

(t)
L L L

t t t

E G G G

�

�

� �

� � �� � �� dv dv dv

3And this is true because these errors are normally distributed as well.

� �

2
x xapp app

app

xapp

v -v1
-
2 sd

v
app

1
G e

sd 2

�

� �
� �� �� �

��

� �

 (9)

(10)

 (12)
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Therefore, the output dynamics of an open-
respirometry system, equivalent to the state
E(t) of the sensor, is only a function of the
velocities of the particles of the input travel-
ling a linear distance to reach the entrance
and then the exit of the sensor. The apparent
mixing or dilutional features of these sys-
tems are just the result from the difference in
the time of arrival, at the sensor, of the
particles of a given input set (see below).
This was never taken into account before. By
examining equation 12 we can see that when

sL

t

G
�

� dv  = 

s+ s
L

t

G
�

�

� dv

i.e., roughly speaking, when the exit rate
equals the entry rate, E

.
(t) = 0 and so, E(t) =

constant. At that time, the output stabilizes at
a level, and such a level is the same as the
amount of molecules coming from a corre-
sponding time interval at the input (see equa-
tion 10). In other words, the output becomes
linearly related to the input.

Another point that was also never appre-
ciated before is that the leaving rate of the
gas molecules from the sensor is crucial to
the output dynamics. To stress such a point,
consider a very long sensor (in the x direc-
tion), in a way that

sL

t

G
�

� dv  = H

at a time t when

s+ s
L

t

G
�

�

� dv= 0

i.e., the entry rate attains a stable value at a

time when the exit rate still equals zero.
Roughly speaking again, the slowest subset
of molecules enters the sensor while the
fastest subset has not reached the exit of the
measuring device. Under these conditions,
the output becomes a linear function of time
(from equation 11, E(t) = t.H)4! This would
be impossible to understand using other cur-
rent models interpreting the output of open-
respirometry systems. Even when the sensor
is not that long some linear component can
be present, arising from the slower subset(s)
of molecules.

Particular solution for a small measur-
ing device. Let us consider a very short
sensor (in relation to the convective flow
employed), where LS @ LS+Ds, and let us state
without proof that this happens to be the most
usual finding in open-respirometry systems.
Thereby, the integral of equation 12 be-
comes (see Appendix D, pages 981 and 982):

s

(t) (t)
L

t

E G H
�

� �� dv                             (13)

Equations 12 and 13 are useful to ap-
proximate the real output. Thus, the deriva-
tive of the output of the system is the distri-
bution function of the apparent velocities of
the particles (equation 9), and the output
itself is the integral of that gaussian function.
Figure 3 illustrates numerical solutions of
equation 12 and equation 13 for constant
input in systems with different volumes (no-
tice that volume is the linear distance from
L0IN to LS) under the same convective flow
(apparent velocity of the particles). Notice
how the profiles of the output suggest the
existence of dilutional spaces (volumes) dic-
tating the dynamics of the systems. Increas-

4Until molecules reach the outlet boundary and thus begin to leave the sensor. Note that this linearity is completely
different from a linear relationship between the input and the output, as discussed above. This is a linear increase
of the output in relation to time.
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ing the volume of the system (i.e., increasing
the linear distance from L0IN to LS) appears
to increase the number of “volumes” diluting
the output, and this will be discussed below.
However, before approaching this subject we
will examine another common calibration pro-
cedure, the “unit impulse”. In this technique, a
set of particles A makes up a unique input
which occurs within an interval of “zero” units
of time. Therefore, as in equation 10,

0

total particles of H 2 G
��

� � � dv �

Thus, the output, when integrated over time,

results in H, and as a consequence5:

s+ s

s

L

t
ui
(t)

L

t

E G

�

� � dv

             

                         (14)

where the superscript ui stands for “unit
impulse”. Notice that the output of a unit
impulse (equation 14) corresponds to the
first derivative in relation to time of a con-
tinuous input (equation 12). When the time
constants of a given system are determined
using an exponential decay model (as the
current models) there would be little distor-
tion in such constants, because the expo-
nents in those decays are the same in both the
integral and its derivative. However, authors
overlook the ascending portion of E(t)

ui  6 (see
Figure 3A and next section) and look only at
the descending (“exponential decay”) part
of the curve. Time constants are then ad-
justed to this descending portion of the curve.
This can lead to serious distortions in the
reconstituted experimental inputs.

Change in output “order” with the
slowing down or the speeding up of
open-respirometry systems

This section is devoted to the problem
stated in the Introduction of this study: in-
creasing the volume of a Syst1 system or
decreasing the convective flow through it
(i.e., slowing down the system) would result
in a Syst2 system that is of the same order as
Syst1 but with different values of the time
constants describing it, or would there be a
change in the order of Syst2 in relation to the
apparent order describing Syst1? We will
demonstrate that the latter alternative is the
case. Firstly, we will approach the causes
leading to a change in the apparent order of

5We are still working with the constraint of a very short sensor.
6Do they consider that the peak of the curve corresponds to the total amplitude of the unit impulse input itself?
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(t) and E(t) (equations 12 and
13, respectively). Parameters
were (in arbitrary units): mean
velocity = 200, standard devia-
tion = 50. The solutions were
computed for 4 different puta-
tive volumes of the system, i.e.,
4 different distances from L0IN
to LS. (a = 100, b = 250, c = 500,
d = 1000). The sensor volume
was fixed as 5 arbitrary linear
units (i.e., LS+Ds - LS = 5). A,
Solutions of E

.
(t). As the volume

is increased,E
.

(t) attains progres-
sively lower values. The profile
of E

.
(t) for a continuous calibrat-

ing input turns into the profile of
E(t) for a unit impulse calibrating
input (see text). There is an as-
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cannot be slight when “time
constants” are computed for
unit impulses (see text). B, Solu-
tions of E(t). The outputs of the
different volumes (a, b, c, and d)
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scale of data acquisition, an in-
crease in the order of the sys-
tem will appear to occur from a
to d and, thus, more time con-
stants should be added (see
text).
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the output dynamics occurring in a system
that is being described by a single time con-
stant, i.e., a putative first-order output. Then,
we will extend the conclusion to any given
apparent order of open-respirometry systems.
Throughout the analysis it is necessary to
bear in mind that we are considering func-
tions which tend to an asymptotic value as
time goes by. Thus, any pair of vectors repre-
senting such functions will tend to have
norm®0 as t®¥ simply because they both
tend to stabilize at a certain value. Therefore,
in the following reasoning, we are concerned
only with the period of time within which
transients are present. In a general form: 0 =
t0£t£T, where t0 = 0 is the time when the
output begins to be detected and T is a later
time when the total amplitude of the output
is attained, on practical grounds. Note that t0

in this section has a different meaning from
that used in the preceding ones, because it is
not the initial time at which the input takes
place.

Consider a Syst1 system where ||Y1(t)
.

H1(t)|| = e1 (where ||w1.w2|| is the norm be-
tween two vectors w1 and w2), and one tends
to accept function Y as a good approxima-
tion to H within an e1 error. The Y function
has the general form shown below (equation
15).

Proposition: given a system with output
H1(t) (H(t) is found in equation 13) for which
an approximation Y1(t) @ H1(t) (within an
error e1) is considered valid, the progressive
increase of LS7 or decrease of V

.
  will always

result in ||Y2(t).H2(t)||>e1 with H2(t)<<Y2(t)

for all t<tcross (to be defined below). That is,
at the beginning of the output, the approxi-
mating (new) function Y(t) has values pro-
gressively greater than those of the real
H(t) function as a given system is slowed
down.

Demonstration. Let functions f1 and f2 be:

(t)

s

(t)

1 (t)
L

t (t)

t
2 (t)

f H G

f Y 1 e

��

���

� �
� �

� � � �
� �� �

� � �

� dv

                      (15)

where l is the inverse of a time constant.
One intends to minimize

� �(t) (t)

T 2

1 2
0

f f��

(let this function be f3) by varying l. The
traditional method to do so is to find the
value of l for which

.

Resolving the square and taking the first
derivative of f3 in relation to l, one obtains
the following result:

� �
T T T

- t
(t) (t)

0 0 0

1-e G Y - H 0��� �� � �� �� � �� dv   (16)

Therefore, because there are no squares in
either term of equation 16, it becomes im-
plicit that part of the values of Y(t) must be
higher than the corresponding H(t) and an-
other part must be lower for the sum to result
in zero (unless Y(t) º H(t), see below). If Y(t) º
H(t), it follows that

Y H

t t

� �
�

� �
, but:

s

v

L
v1 t

2 sd
- t

(t)

v

1
e e G

sd 2

� ��� �
� � �

� �
� ��	

� � � � �
�

 (17)

7The linear distance from the input to the entrance of a very short sensor (see above) directly related to the volume
of the system.
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invalidating the putative Y(t) º H(t).
The crossing time of G(t) and l.e-l.t , tcross¶,

is:

� �� �3 22
cross v v

2
2 s s

cross cross2 2
v v

t ln sd 2 v sd

2 v L L
t t 0

sd sd

�

� �

�� � � � � � �

� �
� � � �

The initial conditions are:

Y0 = H0 = 0                                           (19)

So:

G
(t)

 < l.e-l.t ,  � " t < t
cross¶   

                    (20)

Let us define tcross (tcross>0) as the time
when Y(t) and H(t) cross each other after their
initial crossing at t0 = 0 (equation 19). It
follows that Y(t)>H(t) for all t<tcross , that is,
the solution of the minimization (equation

16) implies that the initial part of the ap-
proximating function Y(t) has higher values
than the real function H(t). Because tcross¶ is
directly proportional to LS (equation 18) and
equation 16 is a minimization, then Y2(t) (for
all t<tcross) is progressively higher than H2(t)

as LS is progressively increased (and the
same is valid for decreasing V

.
 ), irrespective

of wether the computed value l2
8 satisfies

equation 16 or any other metric minimiza-
tion procedure. In other words, as an initial
system 1 in which it is accepted that Y1(t) @

H1(t) is slowed down and becomes system 2,
the approximating function Y2(t) has greater
values than the real function H2(t) from t = t0
until their crossing at a later time (tcross). The
vectors representing the functions fall pro-
gressively apart. At the beginning of the
output, the error e2 is greater than the for-
merly accepted e1 for the same period. This
phenomenon, under compartmental analy-
sis, emerges as the necessity of adding more
“dilutional volumes” to a sum of exponentials
(i.e., more time constants in order to “slow
down” the initial part of the approximate
function).

Consider any output H(t) being described
(by approximation) by a function Y(t) in the
general form

i

n
t

( t )
1

Y e .�� �
��

Any li represents a relationship between a
putative “dilutional volume” and flow. Thus,
the above reasoning extends to any number
of time constants employed to describe the
output of a given system. This reasoning
demonstrates the obligatory change in the
apparent order of the system output, and,
therefore, the impossibility of a given order
be the same as open-respirometry systems
are speeded up or slowed down. Note that
the definition of volume (LS) is not anthro-

8The time constant of Syst2, a slowed down system in relation to Syst1.

F
G

DRY
C S

Figure 4 - Schematic view of the system employed to
collect empirical data. The convective flow (F) of ambi-
ent gas passes through a pre-chamber (G), through a
drying chamber (DRY), and through the chamber (C),
and then reaches the sensor (S, oxygen sensor
AMETEK S-3A/I; Pittsburg, PA, USA). After stable out-
put was obtained, a constant input was added to the
pre-chamber, thus generating a deflection in output.
The volume of chamber C could be changed in the
parallel axis of the flow, which in turn could be changed
as well. The volume of the drying chamber and con-
necting tubing corresponds to less than 5% of the
minimum volume of C. Chambers were made using
connected PVC tubes (commercially available), silica
(Sigma Chemical Co., St. Louis, MO, USA) was used to
fill the drying chamber and air was continuously
pumped through the chamber at different flow rates,
depending on the testing procedure (outlet measure-
ments of flow, FL-1495-G flow meter, Omega Engi-
neering, Inc.; Stamford, CT, USA).

(18)
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pocentric, i.e., we are not “counting cham-
bers”. Instead, LS is a continuum measure,
blind to “chamber” definitions.

Some experiments were done in order to
illustrate the points demonstrated above: a)
the change in the apparent order of output as
volume and flow are changed, and b) that
this is not linked to the number of “cham-
bers” from an anthropocentric viewpoint.
Figure 4 shows the system employed. Note
that there is a single chamber whose volume
can be increased or decreased on the parallel
axis to the convective flow, which in turn
can be increased or decreased as well. Figure
5 presents the empirical results obtained by
changing volume or flow in the system de-
scribed above. Also, numerical evaluations
of integrals of the general form of equation
13 are shown. Notice the fine adjustment
between empirical data and the predicted
functions (see legend).

Discussion

Transients are important features of open-
respirometry systems. Whether they are de-
tected or not in real data acquisition proce-
dures is a question that has to be known
beforehand by the researcher. In cases where
transients are detected, and the input is to be
evaluated during such transients, the dynam-
ics of the output is a major problem. In this
study we employed basic concepts of ther-
modynamics and statistical mechanics to de-
velop an approach to the problem of the
output dynamics of open-respirometry sys-
tems.

The main result of this mechanistic ap-
proach is that molecules of the input travel a
linear distance from the place where such an
input takes place to the sensor, with an ap-
parent velocity normally distributed around
a mean value (function G in equation 9). All
the important features of the output dynam-
ics are determined by this travelling rate of
the molecules which end up reaching and
leaving the sensor cell at different times.

This is the observed dynamics. Once this is
recognized and quantified, time lag (the time
between the beginning of input and the time
where something begins to be detected at the
sensor) becomes easily and unequivocally
explained. Other current models cannot ac-
count for such an explanation. This study
also revealed that the rate at which the mol-
ecules leave the sensor cell is an important
part of the observed dynamics, a fact never
considered before. This leads to a particular
solution to the output for “very short sen-
sors” (equation 13). Unless such a particular
solution can be applied to a real experimen-
tal set-up, the presence of linear components
in the output should be expected, and the
current exponential approaches would be
inherently inappropriate.

Figure 5 - Empirical data ob-
tained in the system shown in
Figure 4. A, Output from 3 dif-
ferent combinations of system
volume and convective flow: a
= (V

.
 = 2.2 ml/s, volume = 200

ml), b = (V
.
 = 0.8 ml/s, volume =

100 ml), c = (V
.
 = 0.8 ml/s, vol-

ume = 200 ml). Plots were time
lag corrected. B, The same data
as shown in A plus numerical
solutions of E(t) º H(t). E(t) for the
different combinations was
computed as follows: a = (mean
velocity = 263.2, standard de-
viation = 65.9, LS = 22200), b =
(mean velocity = 120.5, stan-
dard deviation = 30, LS =
16200), c = (mean velocity =
120.5, standard deviation = 30,
LS = 22200). Note that the ratio
between the mean a:b veloci-
ties is less than the ratio be-
tween the a:b flows, probably
due to measurement errors and
non-linearity in flow (e.g., turbu-
lence). Also, the ratio between
LS from b and c is greater than
the volume ratio (100/200) due
to the subsets of particles that
have greater velocities and are
therefore detected by the sen-
sor sooner than expected by the
volume ratio (compare to the
curves shown in Figure 3B). The
agreement between real and
computed data is extremely evi-
dent, with r2>0.95 for all the
three data sets.
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By applying the concepts developed, it
was demonstrated that exponential decays
are only functions approximating the real
output one. The difference between calibrat-
ing the system with a continuous input and a
“unit impulse” is stressed when one recog-
nizes that the latter is the first derivative of
the former. The resulting output is, there-
fore, the velocity distribution function G
instead of its integral H. The distribution
function G is composed of an ascending
portion that cannot be simply ignored when
computing the time constants of the approxi-
mating function to the output.

Finally, why and how the putative order
of a system will change as the system is
slowed down or speeded up is also pre-
sented. The main point is that at the begin-
ning of the detected signal the approximate
exponential function tends to have values
progressively greater than the real output
function as a system is slowed down. There-
fore, more time constants need to be in-
cluded in the approximate function for an

adequate description of the output. This last
result implies that neither a first-order model
nor a second-order one can be taken for
granted based on a system formerly evalu-
ated or on the number of chambers counted
from an anthropocentric point of view.

A very important point to be noted is that
the present study was not intended to de-
velop a new kind of signal reconstitution
procedure for transients in open-respirome-
try systems. Therefore, under clinical condi-
tions or in any other situations, this model
should not be directly applied in order to
obtain the input. However, this model opens
the way to new approaches to the recovery of
the input based on this mechanistic view of
the process.
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Appendix A

Paradoxes and problems found in the two-chamber model (11)

The authors performed their analysis by defining two time constants, t1 and t2, which
represent the relationship between volume and flow in two consecutive chambers (the animal
chamber and the drying chamber, respectively). Therefore, it was assumed, a priori, that
each individual chamber obeys a first-order dynamics, regardless of the actual volume of the
chamber or the flow rate employed. The authors suggest that in order to have a better signal
analysis t1 should be greater than t2 (or vice-versa). The following problems and paradoxes
thus arise:

1. The a priori assumption of first-order dynamics creates the problem the authors
themselves criticized: the model is insensitive to volume or flow changes because one simply
needs to recompute t1 and t2 after a change. However, real chambers do not seem to obey
first-order dynamics regardless of their actual volumes.

2. Increasing the second chamber volume (i.e., enlarging t2) would progressively worsen
input reconstitution from the output, until t2 = t1. Then, further enlargement of t2 would
improve signal reconstitution (in a clear incongruity).

3. Their two-chamber model turns into a single-chamber one if t1 = t2, as can be seen in
their equation 9.

4. The first derivative in relation to time of the output (coming from the putative second
chamber) can be negative at t0 depending on the relationship between the values of the time
constants (i.e., the output would begin by a negative deflection, see their equation 8).

Appendix B

Main symbols and definitions

c-: mean velocity of the Maxwell distribution
c-x: mean velocity of the particles in the x direction
c-rel: mean relative velocity (total)
c-relx: mean relative velocity of the particles on the x axis
v-xapp: mean apparent velocity of a set of molecules in the positive sense of the x direction
vxapp: mean apparent velocity of a particle on the positive sense of the x direction
sdc-: standard deviation of the mean velocity
sdc-x: standard deviation of the mean velocity in the x direction
sdapp

+: standard deviation of the mean apparent velocity in the positive sense of the x direction
(with added components of variance also taken into account)

Dw: the velocity of a piston wall causing convective flow
E(t): the state of a sensor at time t
G: the gaussian function of velocity distribution
H: the integral of G
l: a time constant
L: difference in probability that a particle would change sense in the sense of the convective

flow
L0: the entry of an open-respirometry system
L0IN: the place where input takes place in an open-respirometry system
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Lf: the exit of an open-respirometry system
Lj: any point between L0IN and LS

LS: the entry of the sensor
LS+Ds: the exit of the sensor
t0: time when a new input begins (or the beginning of the output corrected for the time lag,

as in section “Change in output “order” with the slowing down or the speeding up
of open-respirometry systems”

Y(t): an exponential function approximating the output of an open-respirometry system
z: collision frequency

Appendix C

The proportion of time that a particle spends travelling in the positive sense of the flow

The frequency of collisions (z) of a particle is (14):

   z = s.c-rel.N        (C1)

where s is the collision cross-section of the molecules, N is the density of particles in a given
volume and c-rel is the mean relative velocity of the molecules. We are interested only in
collisions that change the sense of the motion on the axis parallel to convective flow, thus:

zx = 1

2
 s.c-relx

.N       (C2)

where c-relx is the mean relative velocity of the particles on the x axis. The 1/2 appears because,
on average, half of the particles are travelling in a positive sense and half in
a negative sense. However, given that we are considering motion just on one axis,
c-relx = 2.c-x, and at a point Lj of the system:

z(Lj)
 = s.c-x.N(Lj)          (C3)

as stated above, a particle will change its sense of motion when it collides with a particle
coming from the opposite sense. Thus, let us define a function L that measures (or estimates)
the proportion of displacement that a particle makes in a specified sense in relation to the
opposite displacement. Therefore, L ends up estimating the amount of time a particle spends
travelling in a given sense in relation to the amount of time travelling in the opposite sense.

Convective flow is generated either by compression or by suction. When compression is
the causal factor there is an increase in the collision frequency in the negative sense of the
flow (i.e., upstream). On the other hand, when suction is the causal factor, there is a decrease
in the collision frequency in the positive sense of the flow (i.e., downstream). Both the
increase and decrease just cited are related to the velocity of the moving wall of a piston, Dw.
Consider, for example, a particle moving towards the wall of the piston (in a suction set-up)
with velocity vx and at a distance d from the wall. If the wall is not moving, after a time of d/
vx the particle is expected to be found colliding with the wall. If the wall is moving with a
speed of Dw (Dw<<vx), after a time of d/vx the particle would not have reached the wall,
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which is Dw.d/vx units of length ahead. Therefore, a second particle expected to collide with
the first one (when the latter would be returning after an elastic shock with the still wall)
experiences a decrease in the collision frequency, proportional to the difference vx - Dw when
the wall is moving. Therefore, we will write the L function for suction and compression as,
respectively:

             
� �

� � � �

� �

X Lj

Lj
X XLj

c w w
1

c c

�� � � � �
� � � �

� � �

�

�

    (C4a)

� �

� �
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X Lj
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X XLj

c w
1

c w c w

� � � �
� � � �
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�

�

        (C4b)

Notice that L is independent of the Lj position in the system where it is being evaluated. Also,
notice that  c-x is not altered, and this is due to the isothermal constraint that we are imposing

on this analysis. Finally, considering that Dw<<c-x within the conditions of ordinary open-
respirometry settings, the right-hand term in equation C4b is reduced to approximately Dw/
c-x. Thus:

X

w

c

�
� �         (C5)

gives a good estimate of the proportion of time that particles spend travelling in the positive
sense of convective flow.

Appendix D

Justification of the use of equation 13 to describe the output of a “very short sensor”

The integration of equation 12 over time has no analytic solution. However, the problem
of the length of the sensor can be demonstrated in another way. Let us define a as a subset of
A composed of a class of molecules that has the same apparent velocity in the x direction, say
va. Thus, in A, a contains G(va) particles. The constant input constituted by a begins at t0. Thus,
a time lag tm1a until the initial a molecules reach the entrance to the sensor will exist:

The same molecules will reach the outlet boundary of the sensor at a time tm2a:

tm2a
 =

LS+Ds - L0IN
va  

(D2)

tm1a
 =

LS - L0IN
va

(D1)
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Therefore, for the homogeneous input a:

� �

� �

(t)

v
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m2v

0, t < t
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G , t t
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��
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��
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a
a

a

a

a

a

                                (D3)

where en(t) and ex(t) stand for the entry and exit rates, respectively. By integrating both rates
of equation D3 in relation to time we obtain the state of the sensor:

   � � � �

� � � �
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m1 m1 m2v

m2 m1 m2v

0, t<t

E G t - t , t t t

G t - t , t > t
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a

a

a a a

a a a

       (D4)

Notice that for tm1a£t£tm2a a linear increase with time occurs in the occupancy level of
the sensor by molecules of the specified class. For t>tm2a the occupancy level of the
sensor by the a class attains a plateau. Such a plateau value is of the general form Ti

.G(vi)

where Ti = tm2i - tm1i . As can be seen, each class of molecules will have a different T  due to
the different time each class takes to cross the sensor cell. The important point to be noted is
that linearity with time should be expected in the output while t<tm2i.

Let us define a very short sensor as one for which Tslowest®0, i.e., the time the slowest
subset of A takes to cross the sensor can be neglected on practical grounds. Note that this is
not a limit, because LS+Ds - LS is measurable. Obviously, Ti for all the other classes can be
neglected as well. Therefore, we may consider that each class of velocity of A is represented
at the sensor proportionally to the other classes, and such a proportionality is given only by
each G(vi)

 (because the different Tis are overlooked). Thus, under the assumption of a very
short sensor, to obtain E(t) integrating equation 12 requires integrating G(vi)

, and this is H, as
found in equation 13.


