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Abstract

The objective of the present study was to explore the regulatory
mechanisms of free radicals during streptozotocin (STZ)-induced
pancreatic damage, which may involve nitric oxide (NO) production
as amodulator of cellular oxidative stress. Removal of oxygen species
by incubating pancreatic tissues in the presence of polyethylene
glycol-conjugated superoxide dismutase (PEG-SOD) (1 U/ml) pro-
duced a decrease in nitrite levels (42%) and NO synthase (NOS)
activity (50%) in diabetic but not in control samples. When NO
production was blocked by NS-monomethyl-L-arginine (L-NMMA)
(600 uM), SOD activity increased (15.21 + 1.23 vs 24.40+2.01 U/mg
dry weight). The increase was abolished when the NO donor, spermine
nonoate, was added to the incubating medium (13.2 + 1.32). Lipid
peroxidation was lower in diabetic tissues when PEG-SOD was added
(0.40 £ 0.02 vs 0.20 = 0.03 nmol/mg protein), and when L-NMMA
blocked NOS activity in the incubating medium (0.28 + 0.05); sper-
mine nonoate (100 uM) abolished the decrease in lipoperoxide level
(0.70 £ 0.02). We conclude that removal of oxygen species produces
a decrease in pancreatic NO and NOS levels in STZ-treated rats.
Moreover, inhibition of NOS activity produces an increase in SOD
activity and a decrease in lipoperoxidation in diabetic pancreatic
tissues. Oxidative stress and NO pathway are related and seem to
modulate each other in acute STZ-induced diabetic pancreas in the rat.
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Introduction

Streptozotocin (STZ) is an agent widely
employed to induce experimental diabetes
due to its ability to selectively target and
destroy insulin-producing pancreatic islet 3-
cells (1). Its diabetogenic action has been
ascribed to the enhancement of intracellular

methylation reactions (2) and to production
of nitric oxide (NO) (3.4) and free radicals (5).

NO has been demonstrated to be the ef-
fector molecule responsible for pancreatic
islet destruction (6). We have recently shown
that the NO synthase (NOS) inhibitors N¢-
monomethyl-L-arginine (L-NMMA ) and N¢-
nitro-L-arginine methyl ester (L-NAME) can
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prevent metabolic disorders in tissues and
plasma of STZ-induced diabetic rats (7,8).

With respect to oxidative stress, an in-
creased free radical generation was reported
in diabetic plasma and tissues. Vitamin C
levels are lower (9) and altered levels of the
antioxidant defense systems are present in
diabetic human plasma compared to control
(10). Elevated plasma lipid leads to changes
in lipid oxidation (11). Lipid peroxides are
higher (12), an early sign of oxygen activa-
tion (13). Superoxide dismutase (SOD) cata-
lyzes the removal of the superoxide radical,
and the addition of exogenous SOD in vitro
also protects cellular membranes from chem-
ical damage attributable to superoxide pro-
duction (14). The use of a covalent conju-
gated form of SOD, such as polyethylene
glycol-SOD (PEG-SOD), increases the half-
life of the enzyme in the circulation and the
efficacy of its protective effect (15,16).

The fact that B-cells contain much more
SOD than a-cells (17) suggests that this
enzyme may play an important role in B-cell
homeostasis.

As stated, NO is significantly involved in
pancreatic destruction, and seems to be
closely related to the events leading to oxida-
tive stress. The interaction between NO and
0, may be biologically significant. NO is
able to combine with reactive oxygen spe-
cies (ROS) (18) and to modulate oxidative
damage (19). This study aims at exploring
the regulatory mechanisms of free radicals
during STZ-induced pancreatic damage,
which may involve NO production as a modu-
lator of cellular oxidative stress.

Material and Methods
Chemicals

Citrate buffer, STZ, nitroblue tetrazo-
lium, xanthine, xanthine-oxidase, polyethyl-
ene glycol-superoxide dismutase, sodium
thiobarbiturate, malondialdehyde (1,1,3,3
tetraethoxypropane), L-NMMA, L-NAME,
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NADPH, L-valine and HEPES were obtained
from Sigma Chemical Co., St. Louis, MO, USA.

Glucostix reagent strips were obtained
from Bayer Diagnostics, Buenos Aires, Ar-
gentina.

The nitrate/nitrite assay kit and spermine
nonoate (SN) were purchased from Cayman
Chemical Co., Ann Arbor, MI, USA. Dowex
AG50W-X8 columns (Na* form) were pur-
chased from BioRad Laboratories, Rich-
mond, CA, USA. [“C]-L-Arginine was from
New England Nuclear, Boston, MA, USA.

Animal preparations

Female albino Wistar rats bred in the
laboratory, weighing 200-230 g were used.
The animals were kept in a temperature- (20-
23°C) and illumination- (12-h light/12-h dark)
controlled room, and were made diabetic by
a single injection of STZ (55 mg/kg body
weight, ip) dissolved in 0.1 M citrate buffer,
pH 4.5 (day 1). Blood glucose from the tail
vein was assayed 5 days later (day 5) using
glucostix reagent strips and a refractance
meter. Control animals showed glucose lev-
els between 80 and 110 mg/dl, and STZ-
injected animals between 300 and 500 mg/
dl. Animals were killed by cervical disloca-
tion on day 5 after STZ injection, and their
pancreas was removed and placed on Petri
dishes containing Krebs-Ringer bicarbonate
solution for subsequent assays. The ionic
composition of this medium was described
previously (20). The guidelines for the care
and use of animals approved by the local
institution were followed and they conformed
to the standards for use of laboratory animals
established by the Institute of Laboratory
Animals Resources, U.S. National Academy
of Sciences.

Nitrate/nitrite assay
Control tissues and tissues previously

incubated in a metabolic shaking bath under
an atmosphere of 95% O, and 5% CO, for 60
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min, with the addition of L-NMMA (600
uM) or PEG-SOD (1 U/ml), were homog-
enized and deproteinized. Nitrates in the
supernatant were reduced to nitrites using
nitrate reductase, and total nitrites were meas-
ured by the Griess method (21), employing
an assay kit for nitrate/nitrite determination.
Absorbance was measured at 540 nm in a
microliter plate using NaNO; and NaNO, as
standard. Results are reported as nmol/mg
protein.

Assay of NOS activity

NOS enzyme activity was quantified in
pancreatic tissues from control and diabetic
rats previously incubated in a metabolic shak-
ing bath under an atmosphere of 95% O, and
5% CO, for 60 min with the addition of the
NOS blocker L-NMMA (600 uM) or the
ROS scavenger PEG-SOD (1 U/ml), by the
[4C]-arginine to ['*C]-citrulline conversion
assay as described by Bredt et al. (22), modi-
fied by Salter etal. (23). Briefly, tissues were
homogenized in 1.5 ml 20 mM HEPES buf-
fer, pH 7.4. The homogenates of each sample
were fractionated in 3 tubes, with 0.45 mM
Ca?" (control tube), and 1 mM EGTA + 2
mM L-NAME (nonspecific tube) added, re-
spectively. Each fraction was incubated at
37°C with 0.1 pCi of [*C]-arginine and 0.5
mM NADPH. L-Valine (50 mM) was added
to the reaction buffer to minimize any inter-
ference from arginase. After 15 min of incu-
bation, samples were centrifuged for a pe-
riod of 10 min at 10,000 g and the superna-
tant was applied to a 1-ml Dowex AG50W-
X8 column (Na* form) balanced with 20 nM
HEPES, pH 7.4, and ['"“C]-citrulline was
eluted with 3 ml of water. Radioactivity was
measured by liquid scintillation counting.
Total NOS activity was calculated as the
difference between the [*C]-citrulline pro-
duced by samples with Ca?* and by samples
containing both EGTA + L-NAME (nonspe-
cific). Ca?*-independent enzyme activity was
calculated from the difference between

samples containing EGTA and samples con-
taining both EGTA + L-NAME (nonspe-
cific). Ca**-dependent activity was calcu-
lated by subtracting Ca?*-independent activ-
ity from total activity. As formation of L-
citrulline from L-arginine is stoichiometric
with respect to the formation of NO, we
could assume that an equal amount of NO
was formed. Enzymatic activity is expressed
as pmol NO min'! 100 mg of wet tissue!.
Intra- and interassay variations were less
than 10%.

Superoxide dismutase activity

To perform SOD determination, tissue
samples were previously incubated in a meta-
bolic shaking bath under an atmosphere of
95% 0O, and 5% CO, for 60 min with the
addition of the NO donor SN (100 uM) or
the NOS blocker L-NMMA (600 uM). Tis-
sues were homogenized in 100 mM Tris
(hydroxymethyl) aminomethane (Tris-HCI)
buffer. SOD activity was assayed according
to the method of Yamanaka et al. (24) modi-
fied by Sun et al. (25). The method consists
of determining the ability of the enzyme to
inhibit the superoxide anion-mediated re-
duction of nitroblue tetrazolium (25 uM) to
formazan. The latter was determined spec-
trophotometrically at 560 nm. The superox-
ide anion necessary for this reaction is gen-
erated by xanthine (100 pM) and xanthine
oxidase (200 U/I). Enzymatic activity is ex-
pressed as units (U) per mg of dry tissue.

Lipid peroxidation

Lipid peroxidation, which gives origin to
malondialdehyde, was carried out by the
thiobarbituric acid reaction (11) as follows:
tissue samples were incubated in a meta-
bolic shaking bath under an atmosphere of
95% 0O, and 5% CO, for 60 min with the
addition of the NO donor SN (100 uM), the
ROS scavenger PEG-SOD (1 U/ml) or the
NOS blocker L-NMMA (600 pM). Tissues
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Figure 1 - Influence of PEG-SOD

on pancreatic nitrate/nitrite lev- :"E:
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Table 1 - Nitric oxide synthase (NOS) activity: influence of ROS removal. NOS activity in
pmol NO min'l 100 mg wet weight in isolated control and diabetic rat pancreas
incubated alone or in the presence of 600 uM L-NMMA or 1 U/ml PEG-SOD.

Results are reported as means = SEM. The number of animals is given in parentheses.
*P<0.05 vs control (no additions). *P<0.05 vs diabetic (no additions) (ANOVA and
Tukey-Kramer multiple comparisons test).

No additions L-NMMA PEG-SOD
Control 0.25 + 0.02 (10) 0.09 + 0.01* (10) 0.30 + 0.02* (14)
Diabetic 0.40 + 0.05* (12) 0.15 + 0.03* (10) 0.20 + 0.06* (11)
T 0.4 4
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Figure 2 - Influence of PEG-SOD on pancreatic nitric oxide synthase (NOS) activity. NOS
activity (Ca2* dependent and Ca2* independent) in pmol nitric oxide (NO) min-1 100 mg wet
tissue'l, from isolated control (N = 6) and diabetic (N = 8) rat pancreas incubated alone or in
the presence of 600 uM L-NMMA or 1 U/ml PEG-SOD. Conditions and details as in legend
to Figure 1. *P<0.05 vs basal levels from tissues incubated alone (ANOVA and Tukey-
Kramer multiple comparisons test).
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were homogenized in 100 mM Tris (hy-
droxymethyl) aminomethane (Tris-HCI) buf-
fer, the chemical reaction was performed
and peroxidation was quantified spectropho-
tometrically at 530 nm (26). Lipoperoxides
are expressed as nmol per mg of protein.

Statistical analysis

Results are reported as mean = SEM, and
were analyzed by ANOVA and the Tukey-
Kramer multiple comparisons test. Differ-
ences between means were considered sig-
nificant if P<0.05.

Results

Influence of SOD on pancreatic nitrate/nitrite
levels

Nitrate/nitrite levels were evaluated after
incubation of pancreatic tissues in the pres-
ence of the NOS blocker L-NMMA (600
uM) and the ROS scavenger PEG-SOD (1
U/ml). Figure 1 shows that the blockade of
NO synthesis is reflected by a decrease in
tissue nitrate/nitrite levels in control (P<0.05)
and diabetic rats (P<0.05). Nitrate/nitrite
values were higher in diabetic than in control
pancreas (P<0.05). When PEG-SOD was
added to the incubating bath, no effects could
be detected in non-diabetic tissues, but the
ROS scavenger decreased the nitrate/nitrite
increase due to a diabetic state (P<0.05).

Pancreatic NOS activity: influence of SOD

NOS activity from pancreatic tissues was
evaluated in the presence of L-NMMA (600
uM) and PEG-SOD (1 U/ml) added to the
incubating bath (Table 1 and Figure 2). The
Ca**-dependent isoform was predominant in
control tissues, while the Ca?*-independent
isoform was increased in diabetic tissues
compared to control. L-NMMA inhibited
NOS activity (300 uM and up to 1 mM); the
maximum effect was demonstrable from 600
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uM on (data not shown). The influence of
the inactive stereoisomer D-NMMA was also
tested, but NOS activity was unaffected,
showing a specific inhibitory action of L-
NMMA (data not shown). The presence of
600 uM L-NMMA significantly reduced the
enzymatic activity in control and diabetic
tissues (P<0.05). The addition of PEG-SOD
improved NOS activity in control animals
(P<0.05). It seems that the increase occurred
due to a Ca?*-dependent isoform. Decreased
Ca?*-independent NOS levels were observed
when PEG-SOD was added to the incubat-
ing medium in pancreas from diabetic rats
(P<0.05), showing a different modulatory
profile compared to that of control animals.

SOD activity in pancreatic tissues from
control and STZ-diabetic rats: influence of
L-NMMA and SN

Figure 3 shows that SOD activity was
lower in diabetic than in control rats (P<0.05).
We can observe that the NOS blocker L-
NMMA (600 uM) or L-NMMA plus the NO
donor SN (100 uM) could not modify pan-
creatic SOD activity in control animals.

When L-NMMA was added to the incubat-
ing bath of diabetic tissues, an increase in SOD
level was detected (P<0.01). The addition of
L-NMMA and SN abolished the increase of
SOD activity due to the presence of L-NMMA
in the incubating medium (P<0.05). Similar
experiments were carried out with the addition
of L-NAME (1 mM), showing an increase in
SOD levels, and were also carried out with L-
NAME plus SN (600 uM), showing a de-
crease of enzyme activity (data not shown).
When NO production was blocked, the anti-
oxidative defense seemed to improve in pan-
creatic tissue from diabetic rats.

Lipoperoxide levels in pancreatic tissues
from control and STZ-diabetic rats: influence

of NOS blockade and NO donors

Lipoperoxidation was higher in diabetic

than in control tissues (P<0.05), as shown in
Figure 4.

Lipoperoxide levels were evaluated in
the presence of the NOS blocker L-NMMA
(600 uM), L-NMMA plus the NO donor SN
(100 pM) or the ROS scavenger PEG-SOD
(1 U/ml). L-NMMA, SN or PEG-SOD could
not modify pancreatic lipoperoxidation lev-
els of control animals. The addition of PEG-
SOD in the incubating medium of diabetic
tissues caused a decrease of lipoperoxides
(P<0.05). In diabetic pancreas, NOS inhibi-
tion decreased lipoperoxidation (P<0.05),
and NO generation abolished L-NMMA ef-
fects and increased pancreatic lipoperoxide
levels (P<0.05). Similar experiments were
carried out with the addition of the NOS
blocker L-NAME, which decreased lipoper-
oxide levels, and L-NAME plus SN (100
uM), which increased lipid peroxidation (data
not shown). The presence of NO increased
lipid peroxidation in pancreatic tissues from
STZ-treated animals.
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Figure 3 - Pancreatic superoxide
dismutase (SOD) activity: influ-
ence of nitridergic pathway.
SOD activity in U/mg dry weight
in isolated control and diabetic
rat pancreas incubated alone or
in the presence of 600 pM L-
NMMA, 100 pM spermine
nonoate (SN) or L-NMMA plus
SN. Conditions and details as in
Figure 1. *P<0.05 vs control (N
= 6); *P<0.05 vs diabetic (N = 7)
(ANOVA and Tukey-Kramer mul-
tiple comparisons test).

Figure 4 - Influence of NO on
pancreatic lipoperoxide levels.
Lipid peroxidation (nmol/mg pro-
tein) from isolated control and
diabetic rat pancreas incubated
alone or in the presence of 600
UM L-NMMA, 100 pM spermine
nonoate (SN), L-NMMA plus SN
or PEG-SOD (1 U/ml). Condi-
tions and details as in Figure 1.
*P<0.05 vs control (N = 6);
*P<0.05 vs diabetic (N = 8)
(ANOVA and Tukey-Kramer mul-
tiple comparisons test).
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Discussion

STZ is widely used in studies of experi-
mental diabetes because it selectively de-
stroys the pancreatic -cell. A considerable
body of evidence indicates that the genera-
tion of superoxide radicals may mediate the
cytotoxic effect. NO overproduction has also
been pointed out as a main instrument of
destruction in STZ-damaged pancreatic is-
lets. Our hypothesis is that both mechanisms
are interconnected, since NO acts as a modu-
lator of pancreatic oxidative damage in STZ
diabetes mellitus.

We performed our experiments 5 days
after STZ treatment, considering that this is
an adequate interval to address the time point
of cell necrosis when STZ is used. In this
sense, Doi (27) has determined that 48 h
after injection, rats were completely diabetic
and microscopic examinations showed pyk-
nosis, degranulation and marked degenera-
tion of B-cells. Buchanan and Mawhinney
(28) observed similar degeneration and ne-
crosis, indicating that only a small number of
o~cells were affected. Metabolic alterations
were usually found in animals which re-
ceived STZ injected 3 to 5 days earlier
(29,30). Our own studies indicate that pan-
creatic endothelin and prostanoid levels are
altered at day 5 after STZ treatment (31).
Over longer periods of time, the extent of
damage is higher. Gruber et al. (32) have
pointed out that islets of rats that were sacri-
ficed 10 days after STZ injection were smaller
and much less frequent than those of control
animals, and endocrine functions were highly
affected, but some islet cells retained fea-
tures of B-cells.

Pancreatic nitrate/nitrite levels from dia-
betic animals were higher than in control
rats. NO has been proposed as a mechanism
mediating the diabetogenic effects of STZ
(3), and our previous studies have indicated
that there is an overproduction of NO when
animals are injected with STZ and diabetes
mellitus develops (7,8).
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The metabolic process leading to pancre-
atic NO generation in STZ-diabetic rats is
not fully explained in the literature, and may
involve the metabolism or decay of STZ
(33).

The decrease in pancreatic nitrite pro-
duction in diabetic animals when the tissues
were incubated with PEG-SOD is unclear.
We suggest that SOD might be blocking NO
oxidation to nitrites/nitrates and peroxyni-
trites (34), scavenging STZ-generated su-
peroxides. Our observations agree with re-
ports about the protective role of SOD against
diabetogenic drugs in vitro (35) and in vivo
(5).

Our data confirm that the excess of NO
production in STZ pancreatic damage in-
volves an increased activity of NOS, whose
level is higher in diabetic than in control
tissues. The increase in NOS activity in dia-
betic tissues is the result of the induction of
the Ca’>*-independent isoform. This agrees
with McDaniel et al. (36), who stated that 3-
cells, selectively destroyed in diabetes, seem
to express the inducible isoform of NOS and
to overproduce NO, which exerts deleteri-
ous effects on their function.

Previous studies from our laboratory (8)
have shown that NOS inhibition ameliorates
diabetic signals in STZ-diabetic rats. The
presence of the ROS scavenger PEG-SOD
increases Ca?*-dependent NOS activity in
control tissues, while it seems to decrease
Ca?*-independent NOS in diabetic pancreas,
showing a different modulatory profile for
the two enzymatic isoforms, and resulting in
an inhibition of total NOS activity in STZ-
induced diabetic pancreas.

A compensatory increase of superoxide
dismutase activity has been reported in sev-
eral systems when an increase of superoxide
anions is produced (37). In our experimental
model the imbalance between oxygenated
species and cellular defense mechanisms
seems to be critical in influencing tissue
injury. The diminished levels of SOD from
STZ-induced diabetic pancreas may contri-



Oxygen free radicals and streptozotocin-induced diabetic pancreas

bute to B-cell injury. On the other hand,
when diabetic tissues are assayed, inhibition
of NO synthesis and the presence of NO
donors increase and decrease SOD activity,
respectively. In this sense, the antioxidant
capacity of the diabetic pancreas seems to be
related to NO levels in the tissue.

NO exerts a deleterious effect on B-cells
through the inactivation of enzymes that are
specifically protective against oxidative stress
damage. ROS has toxic effects on membrane
phospholipids, resulting in the formation of
malondialdehyde. Membrane peroxidation
alters membrane fluidity and permeability,
and leads to a loss of membrane integrity
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