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Abstract

The LISP-I human colorectal adenocarcinoma cell line was isolated
from a hepatic metastasis at the Ludwig Institute, Sdo Paulo, SP,
Brazil. The objective of the present study was to isolate morphologi-
cally different subpopulations within the LISP-I cell line, and charac-
terize some of their behavioral aspects such as adhesion to and
migration towards extracellular matrix components, expression of
intercellular adhesion molecules and tumorigenicity in vitro. Once
isolated, the subpopulations were submitted to adhesion and migra-
tion assays on laminin and fibronectin (crucial proteins to invasion
and metastasis), as well as to anchorage-independent growth. Two
morphologically different subpopulations were isolated: LISP-A10
and LISP-E11. LISP-A10 presents a differentiated epithelial pattern,
and LISP-E11 is fibroblastoid, suggesting a poorly differentiated
pattern. LISP-A 10 expressed the two intercellular adhesion molecules
tested, carcinoembryonic antigen (CEA) and desmoglein, while LISP-
E11 expressed only low amounts of CEA. On the other hand, adhesion
to laminin and fibronectin as well as migration towards these extracel-
lular matrix proteins were higher in LISP-E11, as expected from its
poorly differentiated phenotype. Both subpopulations showed an-
chorage-independent growth on a semi-solid substrate. These results
raise the possibility that the heterogeneity found in the LISP-I cell line,
which might have contributed to its ability to metastasize, was due to
at least two different subpopulations herein identified.
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Colorectal neoplasia is the second main
cause of death by cancer in developed coun-
tries (1). In Brazil, it occupies fifth place
among the most common forms of cancer,
being responsible for an estimated death rate
of 5.05% of all cancer patients for 1999 (2).
Most of the knowledge about the genetic

basis of the tumor and its drug sensitivity
came from in vitro studies in which cancer
cell lines were used. Although there are nu-
merous colorectal cancer cell lines (3-5),
they differ in many aspects due to the diver-
sity of human tumors.

Heterogeneity is also found within the
same tumor cell mass (6), this being the
major barrier to the successful treatment of
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metastases (7). Cells from individual tumors
exhibit differences with respect to cell sur-
face constituents, immunogenicity, growth
rates, karyotype, sensitivity to cytotoxic
drugs, as well as their ability to invade and
metastasize. Heterogeneity is not restricted
to cells in primary tumors, being also promi-
nent among metastatic cells (8).

Metastasis is the result of a complex se-
ries of events, such as loss of intercellular
adhesion, entry of tumor cells into lymphatic
and blood vessels, survival in the circulation
and arrest at the target organ. Several mechan-
isms are implicated in the process, including
changes in adhesion properties that allow
tumor cell detachment and migration (9,10).
Adhesion of metastatic cells to the underly-
ing extracellular matrix is very important
(11), and the acquisition of metastatic com-
petence by clones of cells with growth ad-
vantages is thought to be associated with an
ability to coordinate the adhesive properties
in every step of metastasis.

Lopes and colleagues (unpublished data)
isolated a human colorectal cell line from a
hepatic metastasis at the Ludwig Institute,
Sédo Paulo, SP, Brazil. This cell line (LISP-I)
has been studied and compared to other es-
tablished human colorectal cell lines (4,12-
14) and has been shown to be resistant to
growth stimulation by interleukins-1 and -6
(4) as well as by insulin-like growth factors-
I and -II or transforming growth factor-o
(12). In parallel, this lineage was shown to
be susceptible to natural killer cell-mediated
lysis (14), which is considered to be the most
important immune mechanism for the de-
struction of metastatic cells. Taken together,
these data indicated that a better understand-
ing of LISP-I biology would be a new option
for studying the metastatic phenotype. The
purpose of the present study was to investi-
gate some behavioral aspects of LISP-I based
on its heterogeneous morphology. In vitro
growth rate, expression of two cell adhesion
molecules, interaction with two extracellu-
lar matrix proteins and in vitro tumorigenic-
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ity were the parameters chosen for compari-
son between two morphologically distinct
isolated cell populations within the LISP-I
cell line.

Material and Methods
Cell culture condition and cloning

The LISP-I cell line was kindly provided
by Dr. R. Brentani, Ludwig Institute for
Cancer Research, Sdo Paulo, SP, Brazil. Cells
were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco BRL, Grand Is-
land, NY, USA) supplemented with 10%
FCS (Cultilab, Campinas, SP, Brazil), 10
mM HEPES (Inlab, Sdo Paulo, SP, Brazil)
and 40 pg/ml gentamicin (Schering, S&o
Paulo, SP, Brazil) at 37°C in a 5% humidi-
fied CO, incubator until 80% confluence.
Adherent cells were washed with PBS and
detached by trypsinization (0.2% trypsin-
0.02% EDTA, Instituto Adolfo Lutz, So
Paulo, SP, Brazil). To obtain single cell-
derived clones, cell suspensions were sub-
mitted to limiting dilution in 96-well culture
plates (Costar, Cambridge, MA, USA).

Growth rate determination

Growth rate studies were carried out on
single-cell suspensions derived from log
phase cultures. LISP-A10 or LISP-E11 cells
were plated in duplicate (10* and 3 x 10%) in
24-well tissue culture plates. After 24 h,
attached cells were washed, removed by tryp-
sinization and counted by vital die exclusion
with 0.4% Trypan blue (Sigma Chemical
Co., St. Louis, MO, USA). Counts were
performed every 24 h until day 6 and popu-
lation doubling rates were calculated from
exponential growth curves.

Flow cytometry

LISP-A10 and LISP-E11 were analyzed
for cell surface expression of desmoglein
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and carcinoembryonic antigen (CEA) as fol-
lows. Cells were harvested by trypsinization
as described, fixed with 1% paraformalde-
hyde in PBS, washed and incubated for 1 hin
the presence of 10 pg/ml anti-desmoglein
mADb (Boehringer-Mannheim Corp., Mann-
heim, Germany), 60 pg/ml anti-CEA mAb
(15) or 60 pg/ml unrelated antibody (pre-
immune mouse IgG) at room temperature.
After washing with 1% BSA (Inlab) in PBS,
cells were resuspended in 200 pl of 1:50 (v/
v) FITC-goat anti-mouse [gG (Sigma) in PBS
and incubated for 45 min at room tempera-
ture. Cells were washed twice with 1% BSA
(w/v) in PBS, resuspended in 500 pl PBS
and analyzed with a FACScan apparatus
(Becton Dickinson, San Jose, CA, USA).
Dead cells were excluded based on forward
and side scatter.

Adhesion assays

The laminin 1-nidogen complex from
mouse Engelbreth-Holm-Swarm tumor was
a gift from Dr. V.R. Martins, Ludwig Insti-
tute for Cancer Research. Fibronectin was
affinity-purified from fresh human plasma
as described elsewhere (16). Adhesion as-
says were performed in triplicate according
to a classical protocol, with modifications
(17). Briefly, 96-well culture plates (Costar)
were coated with laminin or fibronectin at
different concentrations, but in the same mo-
lar ratio, for 2 h at 37°C. Wells were blocked
with 1% BSA in PBS for 1 h at 37°C and
washed with PBS. Cells (5 x 10%) were sus-
pended in serum-free medium (DMEM) and
added to each coated well. After the end of
the incubation period (3 h at 37°C),
nonadherent cells were washed off by flush-
ing with PBS three times. Remaining ad-
hered cells were fixed with 100% methanol
for 5 min, washed three times with PBS and
stained with 0.2% crystal violet in 2% etha-
nol for 5 min. Wells were exhaustively
washed with PBS and the absorbed stain was
dissolved in 50% ethanol in a 0.1-M sodium

citrate solution. Absorbance was measured
at 550 nm.

Migration assays

Migration assays were performed accord-
ing to Jasiulionis et al. (18), with minor
modifications. The outer membrane of Trans-
well® chambers (Costar) with 8-um diam-
eter pores was coated with 10 pg/ml of lami-
nin or fibronectin for 2 h at 37°C, washed
with PBS, quenched with 1% BSA in PBS
for 1 h at 37°C and washed again. Cells (2 x
10%) were suspended in serum-free medium
and added to each of the inner wells of the
chamber. Cells were allowed to migrate for
16 hat 37°C in a 5% humidified CO, incuba-
tor. Chambers were then gently washed three
times with PBS and cells were fixed with
100% methanol for 5 min. After washing
with water, chambers were stained with 1%
toluidine blue (Merck, Sdo Paulo, SP, Bra-
zil) in 1% sodium tetraborate (Sigma) and
the remaining cells in the inner compartment
were removed by scraping with a cotton
swab. The absorbed stain present on mem-
branes was suspended in 1% SDS by incu-
bation for 30 min at 37°C, and optical den-
sity was read at 570 nm. All experiments
were performed in duplicate. Results were
submitted to statistical analysis by compar-
ing migration towards each protein with mi-
gration towards the negative control by the
Student #-test.

Anchorage-independent growth

Anchorage-independent growth was as-
sayed by suspending 5 x 10° cells of both cell
clones in 0.6% agarose (Gibco BRL, Gaithers-
burg, MD, USA) over a 1% agarose base in 6-
well culture plates (Costar). Agarose was made
up with DMEM supplemented with 10% FBS.
Following gellification, additional medium was
overlaid on the agarose and the plates were
refed every 7 days (19). Colonies were grown
until multicell spheroids could be observed.
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Figure 1. Phase contrast images
of monolayer cultures of the
LISP-I cell line and its cell clones:
LISP-I (A); LISP-A10 (B), and
LISP-E11 (C). Bars: 50 um.
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Results
LISP-1 subcloning and growth rate curves

The highly heterogeneous cell line LISP-
I was cloned and two morphologically dis-
tinct subpopulations were obtained, as shown
in Figure 1. The cell clone named LISP-A10
displays an epithelial-like intrapopulational
organization, whereas LISP-E11 is a fibro-
blastoid, with sparse intercellular contacts.
After several passages in culture, subpopu-
lations were compared for in vitro growth
rates. Figure 2 shows that LISP-A10 dupli-
cated within 38.3 h while LISP-E11 dupli-
cated within 30.4 h.

Expression of cell adhesion molecules

Once the subpopulations displayed dis-
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tinct cellular organization in monolayer cul-
tures, the expression of two cell adhesion
molecules, CEA and desmoglein, was inves-
tigated by indirect immunofluorescence with
specific monoclonal antibodies, and analyzed
by flow cytometry. Figure 3 demonstrates
thatboth LISP-A10 and LISP-E11 expressed
CEA on their cell surfaces, while desmo-
glein was present only on LISP-A10.

Interactions with extracellular matrix
proteins

Colorimetric adhesion assays were em-
ployed to evaluate the ability of LISP-A10
and LISP-E11 cells to adhere to laminin and
fibronectin. Figure 4 shows that both sub-
populations adhered to the two proteins in a
dose-dependent manner with a tendency to
saturation.

When LISP-A10 and LISP-E11 subpopu-
lations were tested for their specific migra-
tion towards the two extracellular matrix
components, both lineages were found to be
able to migrate. Statistical analysis confirmed
the specificity of migration of the two cell
populations. Figure 5 shows that larger num-
bers of fibroblastoid cells LISP-E11 migrated
more rapidly than LISP-A 10 towards immo-
bilized laminin or fibronectin.

Anchorage-independent growth

To investigate in vitro tumorigenicity,
LISP-A10 and LISP-E11 were grown in soft
agar cultures and Figure 6 shows that LISP-
A10 cells formed spheroid-like structures,
while LISP-E11 did not, despite their an-
chorage-free survival.

Discussion

The colorectal carcinoma cell line LISP-
I is highly heterogeneous, presenting cell
populations with different morphologies.
Considering that this diversity may have con-
tributed to the metastatic event, the aim of
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the present study was to isolate different
LISP-I subpopulations and to investigate
some of their behavioral patterns. After cell
cloning, the sublineages chosen for compar-
ison displayed distinct morphology patterns,
as shown in Figure 1. The epithelial-like
population LISP-A10 indicates a more dif-
ferentiated phenotype when compared to the
fibroblastoid clone LISP-E11.

One of the first noticeable different char-
acteristics of the cell clones was their growth
in culture, with the fibroblastoid cell clone
LISP-E11 duplicating its cell number within
a shorter period of time than the LISP-A10
clone (Figure 2). The proliferation rates of
cell populations are usually an indication of
differentiation status, since poorly differen-
tiated cell lines often proliferate faster than
differentiated ones.

Biological heterogeneity is a common
feature found among different tumors and,
despite the monoclonal origin of most neo-
plasias, represents the major barrier to the
treatment of cancer metastasis (7). The tu-
mor mass contains several cell clones differ-
ing in morphology, growth rate and meta-
static potential. Genetic and epigenetic
mechanisms underlie this heterogeneity (6).

Fewer than one in ten thousand cells
from the primary tumor are able to survive in
the circulation, which makes metastasization
arelatively rare event (20). It is thus consid-
ered a result of a selective process, in which
heterogeneity could confer adaptive advan-
tages to the tumor mass that escaped from its
original organ (21,22).

Multiple sequential steps are required to
enable a malignant cell to establish metasta-
ses at a distant site (23). As the first step, a
tumor cell must be released from the primary
tumor by loss of cell-cell adhesion. Intercel-
lular contact is mediated mainly by adhesion
molecules that include members of the im-
munoglobulin, cadherin, integrin, selectin
and proteoglycan superfamilies (24). Cell-
cell adhesion can also play a major role in
the transduction of transmembrane signals,

regulating cell differentiation, motility and
fate. Thus, interactions among cells result in
structural and regulatory functions (25).
CEA belongs to the immunoglobulin su-
perfamily and is a widely known tumor
marker that has been shown to play a role as
a homotypic intercellular adhesion molecule
(26,27). Also, CEA has been implicated in
the development of hepatic metastases from
colorectal cancers (23,28). It has been shown
that poorly metastatic human colon cancer
cell lines become highly metastatic when
transfected with the cDNA coding for CEA
by a mechanism not yet fully understood
(29). To verify whether the epithelial mor-
photype of LISP-A10 was associated with
higher CEA expression, immunodetection
by flow cytometry was performed. Indeed,
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Figure 2. Growth curves of LISP-A10 (A) and LISP-E11
(B) clones. Cells (1 x 104 or 3 x 10%) were plated on day
0 and growth curves were generated by counting vi-
able cells every 24 h in 24-well culture plates. Popula-
tion growth rates were calculated from these curves.
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Figure 3. Carcinoembryonic antigen (A and B) and desmoglein (C and D) expression on the
cell surface of the two clones, analyzed by flow cytometry using specific antibodies (solid
lines). LISP-A10 (A and C), LISP-E11 (B and D). Dashed lines represent the negative control
(normal mouse purified IgG). FL1-H: fluorescence intensity.

Figure 4. Adhesion of 5 x 104
cells from LISP-A10 (A) and
LISP-E11 (B) cell clones in re-
sponse to increasing concentra-
tions of laminin, fibronectin or
1% BSA (control) adsorbed to
the solid phase. The graphs
show a representative result
from four experiments. Error
bars indicate the standard devia-
tion.
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LISP-A10 expresses higher amounts of CEA
on its cell surface than LISP-E11 (Figure 3A
and B).

The other intercellular adhesion mole-
cule studied was desmoglein, an important
cadherin superfamily member, which is es-
sential for cell-cell adhesion since it is one of
the main components of desmosomes (30,
31). Again, it was observed that the epitheli-
al morphotype LISP-A10 produces desmo-
glein, while LISP-E11 does not (Figure 3C
and D). It has been proposed that the mor-
phological characteristics of tumors (32) as
well as CEA expression (14,29) are directly
related to their degree of differentiation.
Based on the present observations concern-
ing in vitro morphology and expression of
intercellular adhesion molecules, it may be
suggested that LISP-A10 displays a more
differentiated phenotype than LISP-E11.

Another important step in the metastatic
process is the interaction of tumor cells with
the surrounding extracellular matrix. In this
study, the adhesive properties of LISP-A10
and LISP-E11 to laminin and fibronectin
were analyzed by colorimetric adhesion as-
says (Figure 4). Both cell populations ad-
hered to these extracellular matrix compo-
nents, although LISP-A10 adhered to a lesser
extent. This finding could be explained by
the formation of aggregates by cells from
this population, thus reducing cell surface
availability to interact with proteins in the
solid phase. Correlating the adhesion behav-
ior to the degree of differentiation, Daneker
Jr. and colleagues (32) found similar differ-
ences, with poorly differentiated colorectal
carcinoma cell clones adhering better to lam-
inin and fibronectin than a well-differenti-
ated one. Interestingly, LISP-E11, which is
poorly differentiated, readily spread on fi-
bronectin, but not on laminin, after contact
with these proteins (data not shown). This
finding is in accordance with another report
that showed spreading of poorly differenti-
ated tumor cells on extracellular matrix com-
ponents (32). A possible explanation for this
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observation is that the LISP-E11 cell clone
has been adaptively selected for its ability to
rapidly recognize, adhere to and spread on
fibronectin, which is present in the space of
Disse in the liver. The space of Disse con-
tains a discontinuous extracellular matrix
composed of collagen types I and IV and
fibronectin, but not laminin (23). However,
laminin is present in the basement mem-
branes of the endothelium of central and
portal veins. One may speculate that the
tumor cell mass that reached the liver ad-
hered to laminin on the basement membrane,
degraded it and migrated on the digested
matrix to the space of Disse. Then, there
would be a switch of the enzyme specificity
resulting in the activation of fibronectin-
specific enzymes. This hypothetical switch
would have been the result of a selective
pressure on cells that conquered the new
environment of the secondary metastatic site.
If so, all these phenomena would have facili-
tated the metastatic event that originated the
LISP-I cell line.

Even if they can attach to and degrade
extracellular matrix, tumor cells will still fail
to complete the invasion process if they are
unable to migrate. Laminin and fibronectin
can serve as substrata for cell attachment and
spreading as well as a signal for cell migra-
tion. Active migration towards extracellular
matrix components is one of the most impor-
tant requirements for the success of metasta-
sization (33) and can be analyzed by simple
in vitro systems. However, depending on
their concentration, extracellular matrix mol-
ecules may have opposite effects on cell
migration (34). In the present report, colori-
metric assays of migration were performed
with an optimal protein concentration, based
on previous results of adhesion assays. Thus,
LISP-A10 and LISP-E11 subpopulations
were compared for their locomotion ability.
The fibroblastoid cell morphotype LISP-E11
was shown to migrate towards immobilized
laminin or fibronectin, which is in accor-
dance with its poorly differentiated pheno-

type. On the other hand, LISP-A10 presented
a discrete migration towards these proteins,
as shown in Figure 5. This behavior could be
explained by the strong aggregates formed
by LISP-A10 cells due to the expression of
intercellular adhesion molecules, which pre-
vent cell migration.

To investigate the anchorage-independ-
ent growth ability of both lineages, cells
were grown in soft agar cultures. This assay
is considered to be an in vitro method that
correlates with in vivo tumorigenicity (35).
Figure 6 demonstrates that LISP-A10 was
able to form spheroid-like structures, while
LISP-E11 was not, despite its survival. These
observations indicate that both cell subpopu-
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Figure 5. Migration of LISP-A10
and LISP-E11 cell clones towards
laminin (LN) and fibronectin (FN)
in comparison to 1% BSA (con-
trol) immobilized on the outer
surface of a modified Boyden
chamber. Migration was ob-
served after 16-h incubation at
37°C. Experiments were per-
formed in duplicate and analyzed
by the Student t-test (*P = 0.03;
**P = 0.007 and *P<0.001). The
graph shows one representative
experiment. Error bars indicate
the standard deviation.

Figure 6. Anchorage-independ-
ent growth of LISP-A10 (A) and
LISP-E11 (B). Known numbers
of log-phase cells in single-cell
suspensions were plated onto
0.6% agarose. Colonies were
grown for 14 days and spheroid
formation was noticed after 7
days, only for LISP-A10. Bars: 50
pm.
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lations present a malignant phenotype. Inter-
estingly, recent data have shown that the two
clones maintain their proliferation after nearly
one month in this condition with no medium
replacement (Carneiro CRW and Guariniello
LD, unpublished results), suggesting the se-
cretion of an autocrine growth factor. This
finding is under investigation in our labora-
tory.

In the present study we identified two
morphologically distinct subpopulations
within the LISP-I cell line. Morphological
differences were shown to correlate with
diverse functional properties that probably
contributed to the metastasis from which the
LISP-I cell line was isolated. Thus, the het-

A.C.C. Solimene et al.

erogeneity displayed by the LISP-I cell line
may have been a positive selected feature,
with LISP-A10 contributing to the mainte-
nance of cell aggregates in the circulation,
and LISP-E11, with its migration ability,
contributing to the invasive steps of metasta-
sization. The cell sublineages herein reported
represent new models that may be used to
address biological questions concerning tu-
morigenesis and metastasization.
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