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Abstract

Methyl mercury (MeHg) is highly neurotoxic, affecting visual func-
tion in addition to other central nervous system functions. The effect
of mercury intoxication on the amplitude of horizontal cell responses
to light was studied in the retina of the fish Hoplias malabaricus.
Intracellular responses were recorded from horizontal cells of fish
previously intoxicated with MeHg by intraperitoneal injection (IP
group) or by trophic exposure (T group). Only one retina per fish was
used. The doses of MeHg chloride administered to the IP group were
0.01, 0.05, 0.1, 1.0, 2.0, and 6.0 mg/kg. The amplitudes of the
horizontal cell responses were lower than control in individuals
exposed to 0.01 (N = 4 retinas), 0.05 (N = 2 retinas) and 0.1 mg/kg (N
= 1 retina), whereas no responses were recorded in the 1.0, 2.0, and 6.0
mg/kg groups. T group individuals were fed young specimens of
Astyanax sp previously injected with MeHg corresponding to 0.75 (N
= 1 retina), 0.075 (N = 8 retinas) or 0.0075 (N = 4 retinas) mg/kg fish
body weight. After 14 doses, one every 5 days, the amplitude of the
horizontal cell response was higher than control in individuals ex-
posed to 0.075 and 0.0075 mg/kg, and lower in individuals exposed to
0.75 mg/kg. We conclude that intoxication with MeHg affects the
electrophysiological response of the horizontal cells in the retina,
either reducing or increasing its amplitude compared to control, and
that these effects are related to the dose and/or to the mode of
administration.
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Introduction

Mercury intoxication in humans and ani-
mals is caused in part by atmospheric pollu-
tion and in part by natural causes such as
corrosion of the earth’s crust, volcanic activ-
ity, or evaporation of large masses of water

(2700-6000 ton/year), as well as by direct
human activities (3000 ton/year) (1). Many
aquatic environments in the Amazon region
have been exposed by gold mining activities
(2-5).

Due to their position in the feeding chain,
aquatic animals such as fish become intoxi-
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cated with methyl mercury (MeHg) mainly
through the gills and the trophic pathway.
Trophic intoxication occurs at higher levels
in carnivorous than in herbivorous or om-
nivorous species (4). Pinheiro et al. (6) found
high concentrations of MeHg in carnivorous
species of fish, and other investigators have
reported elevated concentrations of MeHg
in Brazilian fish (2,4,5).

MeHg affects synaptic transmission both
in the peripheral and the central nervous
systems, and this action is mediated by sev-
eral mechanisms (7). The visual system is an
important target of mercury intoxication (8-
12). Investigation of the neuro-ophthalmo-
logical aspects of the mercury intoxication
that caused Minamata disease started with
the measurement of the visual field per-
formed by Iwata and Abe (8).

The effects of mercury intoxication on
the retinae of vertebrates are still little known.
In studies on the squirrel monkey, mercury
vapor inhaled by the mother accumulated in
several tissues of the neonate’s retina - the
optic nerve, the inner plexiform layer and
the ganglion cells, - and was also concen-
trated in the pigment epithelium and in blood
vessel walls (13,14). It has also been ob-
served that mercury accumulates in the rod
photoreceptor cells of the monkey retina
(15,16). Cats intoxicated with mercury ex-
hibited an increase in the amplitude of the b-
wave of the electroretinogram, and also a
decrease in the response latency compared
to untreated cats (17). In a pioneering study
describing changes due to mercury exposure
in the functioning of the retina, Fox and
Sillman (18) showed that rods, but not cones,
were affected in the electroretinogram of the
frog. Their study, however, used mass ac-
tion potentials in the two-flash technique to
extract the rod responses by subtracting the
mixed rod and cone response obtained with
a flash from the pure cone response obtained
with a second flash.

In fish there is little evidence of the ef-
fects of mercury exposure on vision. Hawry-

shyn et al. (19) demonstrated a reduction of
the behaviorally determined visual spectral
sensitivity function in the rainbow trout in-
jected intraperitoneally (ip) with MeHg. The
reduction of sensitivity involved both pho-
topic and scotopic mechanisms, in contrast
to the previous results obtained by Fox and
Sillman (18).

The present study investigated the activ-
ity of single retinal neurons in mercury-
exposed Hoplias malabaricus fish. We stud-
ied the responses of monophasic horizontal
cells of the fish retina, which correspond to
morphological type H1 (20), with the pur-
pose of evaluating cone impairment due to
the effects of MeHg intoxication. Monopha-
sic horizontal cells reflect the activity of
cones, mainly of the L-type cones, and are
also called luminosity horizontal cells, as
opposed to chromaticity horizontal cells,
since they are thought to process luminance
information (21,22). Due to the relative ease
of recording from H1 horizontal cells com-
pared to other retinal cells in the fish retina,
these cells offer a good model for investigat-
ing impairment of the functions of the outer
retina.

Material and Methods

Experimental animals

Specimens of thraira (Hoplias malabari-
cus), obtained from Toledo Station (a lake
in the northwest of Paraná State, Brazil),
approximately 30 cm in length, were main-
tained in glass aquaria (40 L) under constant
aeration. An untreated control group (N = 6
retinas) and nine mercury-exposed groups
were used. The IP groups were acclimated
to the experimental conditions for 10 days
and then received an intraperitoneal (ip) in-
jection of MeHg (IP group) at one of the
following doses: 0.01 (N = 4), 0.05 (N = 2),
0.1 (N = 1), 1.0 (N = 2), 2.0 (N = 4), 6.0
(N = 4) mg/kg MeHg, under anesthesia with
0.02% 3-aminobenzoic acid ethyl ester. The
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retinas were analyzed 15 days after ip injec-
tion. Fish from the other treated group, ex-
posed to mercury through feeding (trophic
or T group), were acclimated to the experi-
mental conditions for 30 days (1 fish per 30-
L aquarium containing dechlorinated tap
water, at a temperature of 21 ± 2ºC and under
a 12:12-h photoperiod). The fish were fed
young live specimens of Astyanax sp previ-
ously injected ip with 0.1 mL of an aqueous
solution of MeHg. The mg/kg doses were
calculated for each thraira based on its weight.
Since each thraira was kept in one aquarium,
it was possible to determine with precision
the number of Astyanax specimens ingested
by each fish. The final dose was based on
the total amount of MeHg ingested by the
fish. This total amount was the sum of the
mercury content that had been injected into
14 Astyanax fish eaten by the thraira. Three
dose groups of 7 individuals each were ex-
posed to MeHg (H3C-Hg+). Doses of 0.75,
0.075, and 0.0075 mg H3C-Hg+/kg wet thraira
weight, corresponding to each of the three
groups, were administered every 5 days (cor-
responding approximately to a daily dose
exposure of 0.015 mg MeHg/kg). After 14
doses of MeHg, retinas exposed to 0.75 (N =
1), 0.075 (N = 8), and 0.0075 mg/kg (N = 4),
were used for electrophysiology.

Preparation

Intracellular recordings were obtained
from isolated retinae. After enucleation,
the anterior part of the eye was removed
by hemisection and the retina was flattened
on Millipore paper, with the photoreceptors
facing up, after removal of the sclera and
choroid. The preparation was placed inside
a Faraday cage and the retina was main-
tained alive by a constant flow of Ringer’s
solution containing sodium HEPES for
fish of the following composition: 1.5 mM
CaCl2, 72 mM NaCl, 1.56 mM KCl, 0.6 mM
MgCl2, 7.2 mM HEPES, and 7.2 mM glu-
cose.

Recording equipment

The electrophysiological responses of the
retinal cells were recorded through glass
microelectrodes (Boron-silicate, WPI, New
Haven, CT, USA) filled with a conductive
solution of 3 M KCl, with high tip resis-
tances (200 to 400 MOhms). The microelec-
trodes were prepared immediately before
the experiments with a Sutter model P-2000
laser puller. A David-Kopf (Tujunga, CA,
USA) hydraulic micropositioner was used to
advance the electrode in constant steps (2.5
µm) to penetrate cells.

Recordings were made with a WPI mo-
del 767 intracellular amplifier monitored on
a Tektronix D13 oscilloscope (Alta Loma,
CA, USA), and recorded on magnetic tape
initially with an HP model 3968A analogue
recorder and later with a Cygnus CDAT4
(Delaware Water Gap, PA, USA) digital
recorder. Recorded responses were trans-
ferred off-line to paper using a Gould model
3000 (Cleveland, OH, USA) chart recorder,
and response parameters were measured us-
ing an in-house computer program for data
acquisition (Data Acquisition Devices, mo-
del: PCI-MIO-16E-1), with a National In-
struments card (Austin, TX, USA).

Optical stimulation

The system consisted of a 75-W xenon
light source, a monochromator and an all-
quartz optical system that projected a disk of
light onto the preparation (for details, see
Ref. 23). The intensities, wavelengths and
diameters of the light stimulus were con-
trolled electromechanically by a computer.
The optical stimulation was programmed to
emit appropriate sequences of stimuli for the
identification and measurement of the char-
acteristics of the cells penetrated.

The xenon lamp coupled to the mono-
chromator generated the light stimulus. The
light was transmitted through a fiber optic
bundle, an electromagnetic shutter, a neutral
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density filter to reduce the luminous inten-
sity (Starna, Atascadero, CA, USA, model
522, 0-4 log), a diaphragm of variable diam-
eter that projects a circular spot of light from
20 to 1700 µm onto the retina and an optical
system composed of two lenses that focus
the image of the diaphragm onto the retina.
Calibration of the luminous source is made
periodically, with an International Light ra-
diometer model IL 1700 and a SED 033
photodetector (both from Peabody, MA,
USA). Calibration was performed for each
of the 205 positions of the neutral filter at
each of the 101 wavelengths of the mono-
chromator, in 4-nm steps from 300-700 nm.

Stimulation procedure

The preparation was kept in a light-
shielded cage in which background light
was very low. To find cells, we used a con-
tinuously flashing light of medium intensity,
thus adapting the stimulated region of the
retina (a spot of about 1.5 mm in diameter,
centered on the electrode tip).

After penetrating a cell, we immediately
turned off the probing light and presented a
series of stimuli of increasing diameters, at a
fixed wavelength, for the determination of
the type of cell penetrated. Next, a stimula-
tion program generated four 400-ms pulses
at 370, 450, 540, and 640 nm, with intervals
of 500 ms between each pulse. This series of
four pulses was presented at three different
intensities (-1, -2, and -3 log) relative to the
maximum intensity (3 x 1013 q s-1 (cm2)-1).
The maximum diameter of the light spot
(1500 µm) was used. If the cell’s responses
and baseline were stable, a spectral sequence
was presented at a larger number of wave-
lengths, extending up to 700 nm. With this
more detailed series, the peak frequency
could be determined more precisely.

Statistical analysis

One-way ANOVA using the Kruskal-
Wallis and Duncan post hoc tests from the
Statistica 6.0 (Stat Soft, Inc., Tulsa, OK,
USA) statistical analysis program was used
for data analysis. In this analysis the aver-
ages of the amplitudes and latencies ob-
tained for each retina of the treated and
control groups were compared, with the level
of significance set at P < 0.05.

Results

No electrophysiological responses were
observed in the retinas of fish injected with
1.0, 2.0, or 6.0 mg MeHg/kg. Examples of
intracellular recordings of monophasic hori-
zontal cell responses from the groups in-

10 mV

Intraperitoneal MeHg MeHg by feeding

ControlControl

0.0075 mg/kg

0.01 mg/kg

0.075 mg/kg
0.05 mg/kg

0.75 mg/kg

0.1 mg/kg

PulsePulse 600 ms600 ms

Figure 1. Intracellular recordings obtained in monophasic horizontal cells in response to
640-nm flashes of 3 x 1013 q s-1 (cm2)-1. For the group receiving intraperitoneal injections of
MeHg there was a decrease of the response amplitude with increasing doses. Different
results were obtained for the fish that received mercury through feeding. They showed an
increase in the response amplitude with the increase of the dose at low doses and a
decrease of the responses amplitude with the highest doses.
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jected with lower doses of MeHg, for which
it was possible to record activity, are shown
in Figure 1. The left column presents the
responses of the IP group and the right col-
umn those of the T group. The correspond-
ing dose is indicated next to the response
trace. A horizontal cell response from a retina
from the control group is also shown at the
top of each column; the same trace is dis-
played for both the IP and T groups. Notice
that the concentration range was 10-fold for
the IP group and 100-fold for the T group.

In the control group 19 horizontal cells
were recorded from 6 retinas. The ampli-
tudes of the responses to flashes of 3 x 1013 q
s-1 (cm2)-1 had an average value of -18.4 ±
7.7 mV at 640 nm. The response amplitude
to this stimulus (3 x 1013 q s-1 (cm2)-1 at 640
nm) will be compared below for all experi-
mental conditions. Figure 2 presents the av-

erages and standard deviations of the re-
sponse amplitudes obtained at all wave-
lengths and intensities under the different
experimental conditions.

In retinas from fish exposed to 0.1 mg
MeHg/kg, two cells recorded from the same
retina responded with a smaller amplitude to
640-nm flashes at -1 log compared to the
control group (average response amplitude
640 nm, -1 log = -6.48 ± 1.7 mV, P = 0.495).
In addition to almost complete absence of
electrophysiological responses, extensive
hemorrhaging was observed in the choroids
of all the retinas from the IP group exposed
to 0.1, 1.0, 2.0, and 6.0 mg MeHg/kg. Fish
from these groups were less responsive to
handling compared to control. It was only at
the two lowest ip MeHg doses used that a
higher number of intracellular responses were
recorded. Three cells from 2 retinas were

Figure 2. Response amplitudes
of the retinal horizontal cells at
four different wavelengths (ab-
scissa) and three light intensi-
ties (indicated by the attenua-
tion log values from the original
at the right of the graphs). The
bars represent the mean ± SD.
A statistically significant differ-
ence was observed between
the control group and the group
intoxicated with 0.075 mg/kg
through feeding. For all groups
there was a similar pattern of
the decrease in amplitude de-
crease with the increase of the
log attenuation indicated by the
numbers on the right side of the
figure.
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recorded in the 0.05-mg MeHg/kg IP group
(average response amplitude: 640 nm, -1 log
= -10.66 ± 0.78 mV, P = 0.598). In the 0.01-
mg MeHg/kg IP group, recordings were ob-
tained for 8 cells from 4 retinas (average
response amplitude: 640 nm, -1 log = -10.33
± 3.66 mV, P = 0.585).

In the T group exposed to 0.75 mg MeHg/
kg, 6 cells were recorded from one retina
(average response amplitude: 640 nm, -1 log
= -9.7 ± 4.6 mV, P = 0.658) and in the 0.075
mg MeHg/kg T group, 27 cells were re-
corded from 8 retinas (average response
amplitude: 640 nm, -1 log = -40.31 ± 17.49
mV, P = 0.009). These responses had the
same characteristics as those recorded from
the control group, but their amplitudes were
higher than control. Eighteen cells from 4
retinas were recorded in the 0.0075-mg
MeHg/kg T group (average response ampli-
tude: 640 nm, -1 log = -15.0 ± 12.09 mV, P =
0.950).

The mean amplitudes recorded at all doses
for the IP and T groups, as well as those for
the control group, are presented in Figure 2.
Response amplitudes increased with inten-
sity at all wavelengths. The response ampli-
tude peaked at 640 nm, which is characteris-
tic of monophasic horizontal cells. The am-
plitude differences as a function of intensity
were more apparent at the highest intensity
and even more for the intermediate dose of
the T group.

Discussion

We have recorded electrophysiological
responses of horizontal cells in the species
H. malabaricus. The horizontal cells that we
recorded from were basically characterized
by their large receptive fields and slow graded
potentials, similar to those recorded in sev-
eral other species such as the goldfish (Ca-
rassius auratus) (22,24), carp (Cyprinus
carpio) (21), or the Amazonian species Pro-
chilodus lineatus (25). The characteristics of
the spatial response and the response to dif-

ferent light intensities were similar to those
observed in many other species of fish.

In both the IP and T groups the monopha-
sic horizontal cell responses were affected
by intoxication with MeHg in a dose-de-
pendent way. This finding extends results
that contradict the report that the neurotoxic
action of mercury on the retina is restricted
to the rod system. We observed here that the
cone system is affected, and furthermore
that it is affected differently by different
administration procedures. Intraperitoneal
injection is an acute procedure, while the T
group is submitted to a slow, chronic intoxi-
cation procedure, much closer to what could
happen in the natural habitat. In the group
intoxicated with ip injection, no responses
were recorded at the three highest doses,
possibly due to widespread cellular damage
caused by intoxication. The damage caused
by the intoxication was also evident in the
extensive hemorrhage of the choroids and in
the alteration of the behavior of the intoxi-
cated fish. Some responses were recorded in
the groups intoxicated with injections of 0.1,
0.05, and 0.01 mg/kg MeHg, but they were
much more difficult to obtain, and had much
smaller amplitudes compared to control. We
conclude that intoxication with MeHg is
definitely harmful to retinal horizontal cells,
and that larger doses eliminate all intracellu-
lar responses.

The ip design used here was applied ac-
cording to Hawryshyn et al. (19,26) who
determined scotopic sensitivity behaviorally
in the rainbow trout (Salmo gairdneri Rich-
ardson), a species that inhabits colder wa-
ters. These investigators injected the fish
with 4.6 and 6.2 mg MeHg/kg and obtained
reliable behavioral responses. The same
doses applied to thrairas resulted in behav-
ioral unresponsiveness to handling and in
complete absence of electrophysiological
activity in the retina, suggesting a higher
sensitivity of tropical fish species to mer-
cury exposure, as also reported by de Oli-
veira Ribeiro et al. (27), as compared to the
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species used in the study by Hawryshyn et
al. (19,26). According to the same authors,
this could be due to the higher metabolic rate
of tropical species, resulting in damage to
the retina and in the impossibility of intra-
cellular recordings.

The trophic exposure group was designed
according to the procedure used by Rabitto
et al. (28), in which the doses used simulated
the conditions found in nature. As reported
by Kehrig et al. (29), it is estimated that
carnivorous fish from the Amazon region,
used daily in the human diet, have about 0.5-
0.9 mg MeHg/kg, a higher concentration
than used in the present study.

The retina recordings in the trophic prepa-
rations had larger amplitudes than those of
the control group. This result suggests that
for very low doses there is an excitability
effect, followed by a decrease in response
amplitude at intermediate concentrations and
finally the cessation of activity with high
doses. Increases in electrophysiological re-
sponses from the retina have also been found
in the electroretinograms of cats intoxicated
with mercury (17) and of humans intoxi-
cated with lead (30).

At the same time as the present study, a
morphological study was carried out on the
effects of MeHg intoxication on the retina
(31,32). For each retina used in an electro-
physiological experiment the other retina
from the same fish was used for the morpho-
logical study. Morphological analysis did
not suggest a complete absence of activity in
the exposed cells, as found in the electro-
physiological experiments. In fish injected
with the two highest ip doses (2 and 6 mg
MeHg/kg) a dose-dependent reduction of
the number of cells with immunoreactivity
to parvalbumin was detected, probably ama-
crine and displaced amacrine cells (31,32)

and bipolar cells of the ON type, with immu-
noreactivity to protein kinase C. The quanti-
fication of these data should provide a better
understanding of the electrophysiological
data.

An explanation of the opposite effects
obtained in the IP and T groups is the U-
shaped dose-response curve of synaptic trans-
mission of the MeHg effect. As reported by
some investigators, one of the primary ef-
fects of MeHg on synaptic transmission is
the increase, followed by a decrease, of the
spontaneous liberation of neurotransmitters,
as well as a decrease in the liberation of
neurotransmitters activated by the nerve im-
pulses (33-35). The reduction of the pro-
voked neurotransmitter release has been as-
sociated with a decrease in the amount of
neurotransmitter available for liberation (36),
with the blocking of the Ca2+-dependent volt-
age channels that control the exocytosis of
synaptic vesicles, and with the decrease in
the excitability of the neuronal membrane
(37-40).

The present findings constitute the first
intracellular demonstration of the retinal ef-
fects of MeHg. They demonstrate that the
cone system is profoundly affected by the
intoxication, thus confirming previous sug-
gestions from the literature regarding fish
(19,25) and humans (9,12). The effects
ranged, in a dose-dependent manner, from
complete elimination of the response to re-
sponse reduction in the acute intoxication
procedure, while in the chronic procedure,
they ranged from reduction of the response
to a hypersensitive response at low doses.
These effects are compatible with the find-
ings that cone-mediated functions such as
color vision and contrast sensitivity are af-
fected by mercury intoxication in humans
(9,12).
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