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Abstract

In many countries, photodynamic therapy (PDT) has been recognized as
a standard treatment for malignant conditions (for example, esophageal
and lung cancers) and non-malignant ones such as age-related macular
degeneration and actinic keratoses. The administration of a non-toxic
photosensitizer, its selective retention in highly proliferating cells and
the later activation of this molecule by light to form reactive oxygen
species that cause cell death is the principle of PDT. Three important
mechanisms are responsible for the PDT effectiveness: a) direct tumor
cell kill; b) damage of the tumor vasculature; ¢) post-treatment immuno-
logical response associated with the leukocyte stimulation and release of
many inflammatory mediators like cytokines, growth factors, compo-
nents of the complement system, acute phase proteins, and other
immunoregulators. Due to the potential applications of this therapy,
many studies have been reported regarding the effect of the treatment on
cell survival/death, cell proliferation, matrix assembly, proteases and
inhibitors, among others. Studies have demonstrated that PDT alters the
extracellular matrix profoundly. For example, PDT induces collagen
matrix changes, including cross-linking. The extracellular matrix is vital
for tissue organization in multicellular organisms. In cooperation with
growth factors and cytokines, it provides cells with key signals in a
variety of physiological and pathological processes, for example, adhe-
sion/migration and cell proliferation/differentiation/death. Thus, the
focus of the present paper is related to the effects of PDT observed on the
extracellular matrix and on the molecules associated with it, such as,
adhesion molecules, matrix metalloproteinases, growth factors, and
immunological mediators.
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Introduction

Photodynamic therapy (PDT) is a stand-
ard treatment for various cancers (lung,
esophagus, stomach, cervix, bladder, etc.) as
well as for non-malignant conditions such as
age-related macular degeneration, actinic
keratoses and psoriasis. It is based on the

selective retention of a previously adminis-
tered nontoxic photosensitizer (Figure 1) in
the target cells, and irradiation of these cells
with visible light at the appropriate wave-
length (1). Upon illumination, the photosen-
sitizer generates reactive oxygen species (sin-
glet oxygen and free radicals, such as OH-,
HO,™ and -O,7; Figure 2). These reactive
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species ultimately eliminate highly prolifer-
ating cells by damaging membranes, DNA
and other cell structures, and also by affect-
ing extracellular matrix (ECM) components.

ECM is a complex network of macro-
molecules secreted by the cells. It resides
between cells as both a barrier and a scaffold
on which tissues are built. It is composed of
carbohydrates and proteins including adhe-
sion proteins such as fibronectin, vitronec-
tin, laminin, tenascin, and collagen. Cell
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adhesion and the ECM are involved in signal
transduction during a variety of cell func-
tions such as cell motility, morphogenesis,
differentiation, and proliferation. In addi-
tion to ECM-intracellular signal transduc-
tion, cell-cell communication takes place in
the extracellular environment when a chem-
ical secreted by a signaling cell interacts
with a receptor on the membrane of a second
(signal receiving) cell (2). Thus, cell migra-
tion comprises cell-cell adhesion and cell-
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Figure 1. Structure of some photosensitizers used in photodynamic therapy studies. Aminolevulinic acid is not a photosensitizer but a metabolic

precursor of protoporphyrin IX.
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Photodynamic therapy and the extracellular matrix

ECM interaction and is orchestrated by cell
adhesion molecules and integrin receptors,
ECM components, chemoattractant mol-
ecules, matrix proteinases, and glycosidases.

In addition to the cytotoxic reaction in
the target tissue (direct tumor cell killing),
damage to the tumor vasculature, the immu-
nological response associated with leuko-
cyte stimulation, and release of inflamma-
tory mediators like cytokines, growth fac-
tors, components of the complement system,
acute phase proteins are important mechan-
isms for the effectiveness of PDT (3). Based
on this information, in this paper we present
the ECM components and their processes
that have been found to be affected by PDT
both in vitro and in vivo.

Adhesion molecules

Integrins, E-cadherin, selectins, intercellular
adhesion molecule 1, and vascular cell
adhesion molecule 1

Integrins are class of molecules that
modulates adhesion to the ECM or the endo-
thelium, and subsequent migration through
vessel walls (4) via interaction with ECM
ligands, e.g., fibronectins, collagens and
laminins. They are ubiquitous transmem-
brane adhesion molecules that form a link
between the extracellular environment and
the cytoskeleton. In order to function in
signal transduction from one environment to
the other, the integrins cluster to form focal
adhesion plaques. They constitute a family
of heterodimeric cell surface receptors com-
posed of /B subunits (5). The identity of the
o/3 subunits determines the ECM ligand
specificity. Particular integrin/ECM interac-
tions lead to distinct cellular responses, such
as cell proliferation and differentiation. Run-
nels et al. (4) investigated the effects of mild
(lethal dose of 15%) benzoporphyrin-deriva-
tive monoacid ring A photosensitization on
the cell adhesion properties of surviving tu-
mor cells (ovarian carcinoma 3). After pho-
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tosensitization, B;-containing integrins lost
their function, as demonstrated by its dif-
fused pattern on the cell surface, less orga-
nized into focal adhesion plaques. It is im-
portant to emphasize that this change was
not due to the direct binding of the photosensi-
tizer to the integrin receptor at the sites of
ECM interaction. This is consistent with the
loss of integrin ability to bind to ECM pro-
teins, namely, collagen IV, fibronectin, lami-
nin, and vitronectin, both in vitro and in vivo.
Still, the cells retained their capacity to adhere
to a collagen I'V matrix, suggesting that either
alternative B-subunit integrins or other adhe-
sion molecules were used for this binding.
Another study showed that benzopor-
phyrin-derivative monoacid ring A PDT in-
terfered with the ability of fibroblasts to
adhere to extracellular matrices without al-
tering integrin expression (6). Interestingly,
it has been shown that photosensitization
with Photofrin® caused polymorphonuclear
leukocytes to adhere to the wall of normal
vessel (7) but not to those of tumor capillar-
ies (8). Despite the adherence of neutrophils
to the microvascular wall after PDT in vivo,
the expression of P-selectin (one of the main
adhesion molecules that bind leukocytes) by
endothelial cells (EC) was not stimulated (9)
but the expression of the adhesion molecule
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Figure 2. Photosensitization process represented by a modified Jablonski diagram. PS Sg =
singlet ground state photosensitizer; PS S¢ = short-lived singlet excited state photosensi-
tizer, PS T1 = long-lived triplet state photosensitizer; ki = fluorescence; kp = phosphores-

cence; ®jgc = intersystem crossing; 10, = singlet oxygen.
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E-selectin (expressed by inflamed endothe-
lium) was increased in HPPH-mediated PDT-
treated tumors, facilitating neutrophil mi-
gration into the tumor area (10). Intercellular
adhesion molecules (ICAM) are members of
the Ig superfamily expressed on the surface
of EC. Integrins on the surface of leukocytes
bind to this molecule in order to form more
stable adhesions at sites of tissue inflamma-
tion (11). This attachment enables leuko-
cytes to migrate through the EC of capillar-
ies and enter the underlying tissue (Figure
3). The expression levels of the adhesion
molecules ICAM-1 and vascular cell adhe-
sion molecule 1 were down-regulated in EC
after PDT (12). However, a marked up-regu-
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lation of the ICAM-1 ligands CD11b and
CDlIc, which are found on neutrophils, was
also associated with PDT-treated tumors (11)
(Figure 3). Following in vitro PDT, adhesive-
ness of malignant cells to EC, as well as their
capability to invade the basement membrane
(13) decline. Similarly, Vonarx et al. (14)
observed that PDT using a hematoporphyrin
derivative decreased the adhesiveness of co-
lonic cancer cells to EC monolayers. The ef-
fect of PDT was also studied on cadherins,
another class of adhesion molecules primarily
responsible for the formation of stable junc-
tions between cells in tissues. During cancer
progression, however, E-cadherin-mediated
adhesion is frequently lost (15).
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Figure 3. Photodynamic therapy (PDT)-induced inflammatory stimulus in the vascular bed: migration of neutrophils and expression of adhesion
molecules. T = up-regulation; | = down-regulation; ICAM = intercellular adhesion molecule; VCAM = vascular cell adhesion molecule; PECAM-1 =

platelet-endothelial cell adhesion molecule 1.
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Human adenocarcinoma (WiDr) cells in
suspension after aminolevulinic acid (ALA)-
PDT were unable to attach to a plastic sub-
stratum and showed redistribution of o33
integrin, with no change in E-cadherin ex-
pression (16). Under apoptotic conditions,
zinc (II)-phthalocyanine-PDT induced a
rapid disorganization of the E-cadherin-me-
diated cell-cell adhesion, which preceded
both the detachment of cells from the sub-
stratum via B, integrins. PDT has also been
reported to alter cell trypsinization in vitro.
Photosensitization with pyridinium zinc (II)
phthalocyanine and polyhematoporphyrin
significantly decreases the efficiency of tryp-
sinization of RIF-1 (murine fibroblasts),
HT29 (human colonic carcinoma), and ECV-
304 (human umbilical vein endothelial cells).
Also, a correlation seems to exist between
increased adhesion and increased tissue trans-
glutaminase (tTGase) activity in these cells
(17). This group also proposed that the direct
activation of tTGase may play a role in the
increased resistance to trypsinization fol-
lowing pyridinium zinc (IT) phthalocyanine-
PDT. The induction of tTGase has been
linked to a suppressive effect on tumor
growth (18). The same effect was obtained
when sublethal ALA or disulfonated tetra-
phenylporphyrin-PDT inhibited trypsin-in-
duced detachment of WiDr cells and D54Mg
(glioblastoma cells) from a plastic substrate
(19). Platelet adhesion to the ECM and fi-
brinogen can be significantly decreased af-
ter PDT of these substrates; however, PDT
of collagen resulted in significantly increased
platelet adhesion, with large aggregate for-
mation (20). In addition, EC retracted after
PDT, enabling neutrophils to adhere to the
subendothelial matrix by their B,-integrin
adhesion receptors (21).

Proteoglycans
Proteoglycans are a class of glycoconju-

gates consisting of a core protein covalently
linked to one or more linear polymers of
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repeating disaccharide units named gly-
cosaminoglycans. They reside on the cell
surface membrane (e.g., syndecan, decorin,
glypican) or within the ECM including carti-
lage, basement membranes and connective
tissue (e.g., versican, aggrecan, perlecan).
They form a cover of negative charge, which
coats virtually all animal cells, playing a role
in the integrity of the ECM (22). The gly-
cosaminoglycans found in the ECM include
chondroitin/dermatan sulfates, heparan sul-
fates, and hyaluronan (23). Information re-
garding PDT and proteoglycan is scarce in
the literature. In the repopulating cells of the
adventitia of balloon-injured carotid arteries
of rats after methylene blue-PDT there was a
significant decrease in versican mRNA (24),
a proteoglycan which seems to be involved
in cell proliferation and is often found in
tissues exhibiting elevated proliferation, as
is the case during development and in a
variety of tumors (25). Despite the essential
role of glycosaminoglycans, research involv-
ing the effect of PDT on the metabolism of
this molecule remains open.

Chemical mediators
Cytokines

Cytokines are small-secreted proteins that
regulate the development and differentia-
tion of blood cells and control the activities
of lymphocytes during the immune response.
If targeted cells are not destroyed, photo-
oxidative stress leads to transcription and
translation of various stress response and
cytokine genes. Release of various inflam-
matory cytokines has been reported to be
modulated by PDT (Figure 3) and factors
such as tumor necrosis factor-alpha (TNF-
o) and interleukins (IL-18, IL-2, IL-6, IL-8,
IL-10) may also have a potential meaning
for PDT effectiveness (26). Up-regulation
of IL-6 was observed in Photofrin® photo-
sensitization of epithelial HeLa (cervix car-
cinoma) cells (27) and EMT6 cells (mam-
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mary carcinoma) (28). In another study, hy-
pericin photoactivation enhanced IL-6
mRNA production in poorly differentiated
but not in well-differentiated nasopharyn-
geal cancer cells (29). Photofrin-mediated
PDT of solid tumors induces host cell infil-
tration associated with an intense inflamma-
tory response involving the expression of
IL-18, TNF-o, and IL-6 (10). Also, the de-
crease of the PDT-mediated tumor cure rate
after blocking the functions of some cyto-
kines proves the significance of the immu-
nological response correlated with photo-
sensitization (30). Diamino acid derivatives
of protoporphyrin IX evoked an immuno-
logical response when the light was applied,
stimulating an increase of IL-18 and IL-6 in
sera of treated mice. An interesting finding
is that untreated tumor metastases localized
at distant sites from the origin of the tumor,
underwent regression after PDT treatment
(3). This modulation shows a secondary
mechanism mediated by PDT. It has been
shown that PDT is able to enhance the inher-
ent immunogenicity of at least some tumor
cells, as demonstrated by its protection
against subsequent tumor inoculation and
induction of tumoricidal activity in the spleen
and of increasing numbers of interferon
(IFN)-y-secreting splenic cells. Thus, in situ
PDT amplifies the host immune response.
Incubation of immature dendritic cells with
PDT-generated tumor cell lysates in vitro
stimulated IL-12 production, whereas incu-
bation with UV and ionizing irradiation-gen-
erated tumor cell lysates did not. These re-
sults may indicate enhancement of PDT ef-
fectiveness in generating host antitumor im-
mune response and potential protection
against metastases outside the treatment field
(31). A PDT-generated vaccine was also
obtained by treating squamous cell carcino-
ma with a benzoporphyrin derivative and
later with a lethal X-ray dose. When injected
peritumorally into mice with established
squamous cell carcinoma, these treated cells
produced a significant therapeutic effect,
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including growth retardation, tumor regres-
sion and cure. Importantly, vaccine cells
retrieved from the treatment site 1 h after
injection were intermixed with dendritic cells
(32). On the other hand, Jee et al. (33) re-
ported that over-expression of IL-6 in ALA-
PDT-treated human basal cell carcinoma in-
creased the anti-apoptotic activity. A num-
ber of studies have suggested that the cyto-
kines (34) found in untreated tumors are
more likely to contribute to tumor growth
and progression and to immunosuppression
than to promote an effective host antitumor
response. For example, IL-6 is also believed
to function as a growth factor for various
tumors (e.g., colorectal carcinomas) (35).
On the other hand, PDT-mediated reduction
in function of IL-6 and other cytokine recep-
tors prevents the occurrence of the predicted
cytokine effects on cells. The altered cy-
tokine responsiveness is predicted to affect
functions of both normal and tumor cells in
the post-PDT tissue environment and may
determine the treatment outcome in patients
undergoing PDT (36). Nevertheless, the real
benefit of their up- or down-regulation for
the outcome of PDT treatment of tumors
remains to be investigated. Moreover, can-
cer incidence and progression may be sub-
jected to functional polymorphisms of in-
flammatory cytokine genes and to altered
expression of inflammatory cytokines (34).

Growth factors and growth factor receptors

Growth factors are polypeptides that con-
trol the growth and differentiation of animal
cells. The predicted functions of growth fac-
tors and cytokines are critically dependent
on the receptor status of the target cells (37).
Epidermal growth factor receptor (EGFR) is
over-expressed in a wide variety of solid
human tumors and is considered to enhance
cell proliferation, motility, adhesion, and
invasion, and angiogenesis (38). As a conse-
quence, inhibition of EGFR activity has been
examined as an approach to the management
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of solid tumors (39). An inhibition of the
EGF response by down-regulation of EGFR
tyrosine kinase has been noted in PDT-treated
cells in vitro and in vivo (40). Treatment of
lung fibroblasts with ALA-PDT and Photo-
frin-PDT caused a marked loss (>90%) of
EGFR within the period of light treatment
(36). These investigators also observed that
this reduction of EGFR paralleled the loss of
EGF signaling toward the ERK pathway.
The same protocol applied to FaDu cells
(squamous cell carcinoma) showed that the
EGEFR level decreased even further during a
subsequent 1-h culture period, besides the
loss of fully processed leukemia inhibitory
factor receptor o. On the other hand, only
minor reduction of oncostatin M receptor 3
was detected in both HeLa and FaDu cells.
Two other growth factors play an important
role in the pathogenesis of neovascular age-
related macular degeneration. Schmidt-
Erfurth et al. (41) observed that vascular
endothelial growth factor (VEGF) and pig-
ment epithelium-derived factor (PEDF) were
up-regulated in the vascular endothelium of
the choroid of treated areas, whereas they
were absent in adjacent PDT-unexposed re-
gions and in control tissue. PEDF is an an-
tagonist of VEGF and inhibits VEGF-in-
duced EC growth and migration, and the
development of retinal neovascularization
(42). PDT has a stimulating effect on the
release of VEGF in murine tumors treated
with Photofrin®-mediated PDT (43). On the
other hand, synthesis of PEDF mRNA was
detected in ganglion cells, cells of the inner
nuclear layer, and retinal pigment epithelial
cells of normal rat eyes (44). Presumably,
angiogenic inhibitors such as PEDF are re-
sponsible for the described reduction in hu-
man vascular cell migration after PDT (45),
and the simultaneous release of PEDF may
balance the effects of VEGF (41). Trans-
forming growth factor (TGF) inhibits pro-
teases involved in matrix breakdown or ma-
trix destruction and increases the expression
of a number of matrix-associated structural
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genes such as collagen and fibronectin (46).
It was shown that chloroaluminum-sul-
fonated phthalocyanine-PDT inactivated the
functional activity of matrix-associated growth
factors such as TGF- and basic fibroblast
growth factor (bFGF), and decreased cellu-
lar bFGF levels of PDT-treated bovine
smooth muscle cells (47). In addition, it was
demonstrated that PDT of collagen matrix,
that mimics the cell-free vascular matrix
after PDT in vivo, significantly decreased
TGF-8 and bFGF mRNA levels in fibro-
blasts not treated with PDT (48).

Prostanoids

Prostanoids are the cyclooxygenase
(COX) metabolites of arachidonic acids and
exert a range of actions in the body. Treat-
ment of tumor cells with Photofrin®-based
PDT releases prostanoids, including prosta-
glandin E, (PGE,), prostacyclin and throm-
boxane as well as von Willebrand factor, a
protein involved in platelet adhesion and
aggregation (43,49). Expression of the en-
zyme prostaglandin endoperoxide synthase
2, also known as COX-2, is regulated by
nuclear factor kappa B and produces the
inflammatory mediators known as eicosan-
oids (including PGE, and leukotrienes). PDT
induces increased expression of COX-2 along
with increased PGE, synthesis (50), and sup-
presses the expression of tissue inhibitor of
metalloproteinases (51). An increase in the
number of cures was obtained after systemic
administration of the COX-2 inhibitor [/N-
(2-cyclohexyloxy-4-nitrophenyl)-methane
sulfonamide] (NS-398) which decreased the
PDT-induced expression of both PGE, and
VEGF in BA (mouse mammary carcinoma)
tumors. COX-2 inhibitors act as potentiators
of the anti-tumor effectiveness of PDT when
they are given after illumination. This anti-
tumor effect is probably caused by the inhi-
bition of angiogenesis, which is necessary
for tumor regrowth (52). On the other hand,
the release of thromboxane from endothelial
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cells after PDT is partly responsible for the
vascular shutdown (49).

Matrix metalloproteinase

Matrix metalloproteinases (MMP) are
extracellular proteolytic enzymes (endopep-
tidases) capable of digesting various struc-
tural components of the ECM. Growth, in-
vasion and metastatic potential of solid tu-
mors depend on the formation and develop-
ment of new blood vessels concomitant with
the degradation of the ECM. It was shown
that ALA and light induced MMP-1 and
MMP-3 expression in normal and sclero-
derma fibroblasts, besides reducing collagen
type I mRNA expression (53). Also, after
repeated PDT, lesional skin biopsies of pa-
tients with localized scleroderma showed a
marked induction of MMP-1 in the dermis
(54); a paracrine mechanism seemed to oc-
cur, as evidenced by the induction of MMP-
1 and MMP-3 protein levels of fibroblasts
stimulated with previously PDT-treated ke-
ratinocyte medium. Thus, induction of col-
lagen-degrading enzymes together with a
reduction of collagen production was thought
to be responsible for the antisclerotic effects
of ALA-PDT observed in vivo (55). PDT
can also increase both the expression and the
enzymatic activity of MMP-9 in BA tumors
(56). The inflammatory response and host
cell infiltration, described previously, sug-
gest that the increased expression of MMP-9
observed in tumor tissue after PDT involves
the influx of MMP-9-expressing inflamma-
tory host cells, as opposed to direct PDT-
induced expression of MMP-9 in inflamma-
tory cells present within tumor tissue at the
time of treatment. These results demonstrate
that EC and infiltrating host cells are sources
of MMP-9 in PDT-treated BA tumors (56).

Protein cross-linking

As presented previously, PDT is able to
induce expression of MMP. Yet, the singlet

M.d.C. Pazos and H.B. Nader

oxygen generated during PDT interacts with
amino acid residues in proteins to generate
reactive species. These newly generated free
radicals interact with other molecules to form
cross-links (57), inactivating matrix-resid-
ing growth factors. Cross-linked collagen
shows an increased resistance to protease
degradation. Indeed, PDT of cell-free matrix
using phthalocyanine-PDT induced matrix-
protein cross-linking, which resulted in re-
sistance to metalloproteinase digestion (58).
Thus, PDT might generate matrix protein
cross-links, hindering invasive cellular mi-
gration (45), which was also evidenced by
cell detachment from the collagen gel sur-
face after PDT, possibly because of induced
structural alterations of matrix binding sites
(58). Heckenkamp et al. (48) showed that
PDT had an inhibitory effect on smooth
muscle cell and fibroblast migration, and no
significant change in the secretion of MMP
was observed. It has been theorized that
ECM cross-linking is a major contributor to
the inhibition of cell migration following
PDT.

Final considerations

It is widely recognized that the interac-
tion of cells with the ECM has profound
effects on a number of biological processes,
as can be observed in the intertwined rela-
tion between angiogenesis, tumorigenesis
and ECM metabolism. For this reason, post-
PDT responses involving ECM components
help to modulate the fate of cells, especially
the surviving cells. This occurs because the
effects of PDT are not limited to the site
where photosensitization takes place, but is
rather propagated in a chain reaction. For
example, PDT can induce a complex im-
mune response that may enhance anti-tumor
immunity. ECM components will be affected,
even when they are not the primary targets,
and thus modulation of this interaction as a
result of photosensitization is of great im-
portance. As Castano and colleagues (59)
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stated in a recent review, the ideal cancer
therapy, besides destroying the primary tu-
mor, should also trigger the immune system
to recognize, pursue and destroy any re-
maining tumor cells, located either at or near
the site of the primary tumor, or distant
micrometastases. We should also keep in
mind that the action of PDT on specific
molecular pathways depends on cell line,
fluence rate and photosensitizer used. Table
1 summarizes the information discussed in

the preceding sections regarding the investi-
gation of various aspects of PDT modulation
of the ECM and related components. Other
important molecules involved in the regula-
tion of cellular functions, such as proteogly-
cans, deserve more attention for a better
understanding of the effects of photosensiti-
zation on the remaining surviving cells and
on the tissue bed as a whole. Finally, besides
the dual selectivity of PDT, that is the photo-
sensitizer localization in the target tissue and

Table 1. Summary of the effect of photodynamic therapy (PDT) on some molecules of the extracellular matrix

and related components.

Molecules Modifications induced by PDT Related
references
Adhesion molecules
E-selectin T 10
ICAM-1; VCAM-1 4 12
CD11b; CD11c T 11
tTGase T 17,19
31-containing integrins Loss of functionality 4
E-cadherin Disorganization of E-cadherin 16
mediated cell-cell adhesion
Proteoglycans
Versican mRNA 4 24
Collagens
Collagen-1 4 53
Growth factors and growth factor receptors
Epidermal growth factor receptor d or loss 36,40
Oncostatin M receptor B 10 36
Vascular endothelial growth factor i) 41,43
Pigment epithelium-derived factor T 41
Basic fibroblast growth factor; 1 or inactivation 47,48
transformin growth factor-8
Leukemia inhibitory factor receptor o loss 36
Cytokines
Interleukin-6 T 10,27,28,29,33
Tumor necrosis factor-a; interleukin-13 T 10
Interferon-y T 31
Interleukin-12 T 31
Interleukin-6 receptor and other cytokine receptors 10 36
Prostanoids
Prostaglandin Ex T 43,49,50
Thromboxane; von Willebrand factor ) 43,49
Matrix metalloproteinases (MMP)
MMP-1 T 53,54
MMP-3 T 53
MMP-9 T 56
Tissue inhibitor of metalloproteinase 1 4 51

ICAM-1 = intercellular adhesion molecule 1; VCAM-1

= vascular cell adhesion molecule 1; tTGase = tissue

transglutaminase; T = up-regulation; { = down-regulation.

www.bjournal.com.br
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the light spatially focused on the lesion, the
secondary effects related to the modulation
of ECM components and molecules of the
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