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Obesity induces upregulation of genes
involved in myocardial Ca?* handling
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Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental
models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium
(Ca?*) handling. However, information about the expression of Ca2*-related genes that lead to this abnormality is scarce. We
evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2*-related genes, focusing the L-type Ca2*
channel (Cacnaic), sarcolemmal Na*/CaZ* exchanger (NCX), sarcoplasmic reticulum Ca2* ATPase (SERCA2a), ryanodine
receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control)
or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression
of Ca2*-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased
percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an
increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacnalc and NCX.
These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2* transport-related genes in the
sarcoplasmic reticulum.
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Introduction the mechanisms responsible for obesity-related abnor-

malities in cardiac performance have not been identified.

Obesity, characterized by the accumulation of exces-
sive body fat, is considered to be a global epidemic and
constitutes a major public health problem (1,2). Although
the etiology of obesity is complex, distinct risk factors have
been implicated in its development, especially hyperca-
loric intake (3). Recent investigations have demonstrated
that obesity decreases life expectancy and is associated
with numerous medical complications, such as type 2
diabetes mellitus, dyslipidemia and cardiovascular dis-
eases (4,5).

Cardiac dysfunction has been demonstrated in an ani-
mal model of high-fat diet-induced obesity (6-8). However,
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According to some investigators, functional cardiac con-
tractile depression caused by excessive adipose tissue is
related to changes in myocardial intracellular Ca2* tran-
sients (7). Relling et al. (7), using Sprague-Dawley rats fed
a high-fat diet for 12 weeks, reported that obesity-induced
cardiac contractile depression is related to reduced phos-
pholamban (PLB) phosphorylation, even though the pro-
tein expression of sarcoplasmic reticulum Ca2* ATPase
(SERCAZ2a) and PLB were increased.

Given the scarcity of data on the relationship between
myocardial CaZ* homeostasis and obesity, the present
study evaluated the expression of L-type Ca2* channel
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(Cacnalc), sarcolemmal Na*/Ca2* exchanger (NCX),
SERCAZ2a, ryanodine receptor (RyR2), and PLB genes in
rats with high-fat diet-induced obesity.

Material and Methods

Animals and experimental design

All experiments and procedures were performed in
accordance with the Guide for the Care and Use of Labo-
ratory Animals, published by the U.S. National Institutes of
Health (9) and were approved by the Botucatu Medical
School Ethics Committee (UNESP, Botucatu, SP, Brazil).

Thirty-day-old male Wistar rats, provided by the Botu-
catu Animal Center of Botucatu Medical School, were
randomly assigned to one of two groups: control (C; N =
13) and obese (Ob; N = 13). The control group was fed a
standard rat chow containing 11.2% fat, 55.5% carbohy-
drate, and 33.3% protein; whereas the obese animals
received a high-fat diet containing 45.2% kcal fat, 28.6%
carbohydrate, and 26.2% protein. The high-fat diet was
calorically rich (high-fat diet = 4.5 kcal/g vs standard diet =
3.3 kcal/g) due to the higher fat content.

All rats were housed in individual cages in an environ-
mentally controlled clean-air room (23 = 3°C; 60 * 5%
relative humidity) with a 12-h light/dark cycle (lights on at
6:00 am). Each group was fed the appropriate diet with free
access to water and food for 15 consecutive weeks. Food
consumption was measured daily; water intake and body
weight were evaluated once a week. Weekly calorie intake
was calculated by average weekly food consumption x
caloric value of each diet. Feed efficiency, the ability to
transform calories consumed into body weight, was deter-
mined by following the formula: mean body weight gain
(g) / total calorie intake. Initial and final body weight (FBW),
left ventricle weight (LVW), right ventricle weight (RVW),
and LVW/FBW as well as RVW/FBW ratios were calcu-
lated.

Oral glucose tolerance test

After 15 weeks of feeding, rats fasted for 12-15 h were
submitted to oral glucose tolerance test. Blood samples
were drawn from the tip of the tail at baseline and after
gavage administration of a glucose load (3 g/kg body
weight) (10). Blood samples were then collected at 0, 60,
120, and 180 min. Glucose levels were determined using
the ACCU-CHEK GO KIT glucose analyzer (Roche Diag-
nostic Brazil Ltda., Brazil). Glucose tolerance was deter-
mined by the area under the curve for glucose (0-180 min).

Determination of plasma hormones
At the end of the diet treatment, animals were submit-
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ted to a 12-15 h fast, anesthetized with sodium pentobar-
bital (50 mg/kg, intraperitoneally) and sacrificed by decapi-
tation. Blood was collected in heparinized tubes, centri-
fuged at 3000 gfor 15 min at 4°C, and then stored at-80°C.
Plasma leptin and insulin concentrations were determined
by ELISA (11) using commercial kits (Linco Research Inc.,
USA).

Body fat analysis

After the animals were decapitated and thoracotomized,
the viscera were discarded leaving only the carcass. Car-
casses were dried at 100 £ 5°C for 72 h in a ventilated
Fanem® dryer (Fanem, Brazil). After drying, the carcass
was wrapped in filter paper and the fat was extracted in a
Soxhlet Extractor (Corning Incorporated Life Sciences,
USA). The percentage of body fat in each carcass was
calculated by the following formula: [(post-drying weight -
dry weight after fat extraction) / pre-drying weight] x 100
(12).

Gene expression studies

Cacnalc, NCX, SERCA2a, RyR2, and PLB mRNA
were measured by semiquantitative RT-PCR (13). Total
RNA was extracted from rat left ventricles in each experi-
mental group using TRIzol reagent (Invitrogen, Life Tech-
nologies, Brazil), which is based on the guanidine thiocy-
anate method (14), according to manufacturer recommen-
dations. Total muscle RNA (100 mg) was homogenized
mechanically on ice in 1 mL ice-cold TRIzol reagent. RNA
was solubilized in RNase-free H,O and quantified by spec-
trophotometry (GeneQuant™ RNA/DNA Calculator, Amer-
sham Pharmacia Biotech, USA) at 260 nm. The ratio of
absorbance at 260 to 280 nm was >1.8 for all samples.
Degradation of RNA samples was monitored by the obser-
vation of appropriate 28S to 18S ribosomal RNA ratios as
determined by ethidium bromide staining of the agarose
gels. One microliter of RNA (1000 ng/pL) was reverse
transcribed with random hexamer primers and Superscript
I RT, according to standard methods (Invitrogen). Nega-
tive control RT reactions were carried out in which the RT
enzyme was omitted. The negative control RT reactions
were PCR amplified to ensure that DNA did not contami-
nate RNA. The cDNA (1.5 pL) was then amplified using 10
pM of each primer, 10X PCR buffer, DEPC water, 50 mM
MgCl,, 10 mM dNTPs and 2 units Taqg polymerase® (In-
vitrogen) in a final volume of 25 pL. Transcript levels for the
constitutive housekeeping gene product cyclophilin were
measured in each sample and used to normalize the
transcript data obtained. The data were expressed as
change relative to control values.

The primer sequences used were: PLB: S 5TACC
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TTACTCGCTCGGCTATC3' and AS 5CAGAAGCATCA
CAATGATGCAG3'"; SERCA2a: S 5’ATGAGATCACAGCT
ATGACTGGTG3' and AS 5’GCATTGCACATCTCTAT
GGTGACTAG 35 RYR2: S 5’ GAATCAGTGAGTTACT
GGGCATGG3' and AS 5’'CTGGTCTCTGAGTTCTC
CAAAAGC3', and cyclophilin: S 5’ACGCCGCTGTCT
CTTTTC3' and AS 5TGCCTTCTTTCACCTTCC3' as pro-
posed by Mirit et al. (15) and Coussin et al. (16). Primer
pairs for Cacnalc, and NCX were determined using the
Primer 3 software available on-line at http://frodo.wi.mit.edu/
cgi-bin/primer3/primer3_www.cgi. To determine specific-
ity, sequences were compared with GenBank using the
Blast program available at the National Central Biotechnol-
ogy Information website (http://www.ncbi.nim.nih.gov/). The
following primers were used: Cacnalc: S 5TCTGCTCTG
CCTGACTCTGAS3' and AS 5’GAGATACTCCACCC
GTTCCAZ3'; NCX: S 5’GGCAGAAACAGGAGGAAATGI'
and AS 5’AGCGGACACAACACAGATGG3Z'. Preliminary
experiments were conducted with each gene product to
determine the number of PCR cycles that provided a linear
range of amplification. cDNA from each sample for both
the control and obese groups was amplified simultaneously
using aliquots from the same PCR mixture. After PCR
amplification, 10 pL of each reaction was electrophoresed
on 1% agarose gels stained with ethidium bromide. Im-
ages were captured and bands corresponding to each
gene were quantified by densitometry by the Labworks™
Analysis Software 3.0 (UV/White Darkroom, UVP Labora-
tory Products, USA). PCR products were run in triplicate on
gels different for each gene and results were averaged.
The size (number of base pairs) of each band corresponds
to the size of processed mRNA. The target genes were
normalized to housekeeping gene cyclophilin (17).

Statistical analysis

Data are reported as means = standard deviation.
Comparisons between groups were performed using the
Student t-test for independent samples. The mean weekly
body weight and the glucose profile of the groups were
compared by ANOVA for repeated measures. When sig-
nificant differences were found (P < 0.05), the post hoc
Bonferroni multiple comparisons test was carried out (18).
The level of significance was considered to be 5%.

Results

The control and obese groups started with similar body
weight at week 0 of the study. However, a significant
difference in body weight between the groups was ob-
served at week 2 and thereafter (Figure 1). Table 1 shows
the influence of obesity on the general and nutritional
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characteristics of the animals. Although the obese group
ingested less food than the control group, the calorie
intake, feed efficiency, and final body weights of the obese
rats after 15 weeks were greater than the control rats by
approximately 23%. Furthermore, the percentage of car-
cass body fat was markedly higher for the obese group (C
=9+ 1vs Ob=17%7%, P <0.05). Water consumption was
similar for both groups. LVW and RVW were higher in
obese animals than in controls, but no statistical difference
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Figure 1. Weekly body weight control of obese and control rats.
Data are reported as means + SD for 13 rats in each group. *P <
0.05 vs control (ANOVA for repeated measures and post hoc
Bonferroni test).

Table 1. Effect of high-fat diet-induced obesity on the general
and nutritional characteristics of rats.

Characteristics Control (N = 13) Obese (N = 13)
IBW (g) 106 = 10 111 £ 10
FBW (g) 439 + 26 539 + 52*
LVW (g) 0.85 + 0.09 0.99 + 0.09*
RVW (g) 0.22 + 0.03 0.28 + 0.04*
LVW/FBW (mg/g) 1.93 + 0.20 1.84 + 0.19
RVW/FBW (mg/g) 0.52 + 0.03 0.52 + 0.04
FC (g/day) 222 +12 16.4 + 1.4*
WC (mL/day) 409 = 4.7 418 £ 3.7

Cl (g-kcal!-day") 73.2 £ 3.8 85.2 + 6.7*
FE (g/kcal) 0.043 + 0.002 0.048 + 0.003*
FAT (%) 9+1 17 £ 7
AUC 20247.7 £ 1416.8 23596.2 + 3023.4*

Male rats received a high-fat diet (45.2% fat, 28.6% carbohy-
drate) and controls received a standard diet (11.2% fat and 55%
carbohydrate) for 15 weeks. Data are reported as mean + SD.
IBW = initial body weight; FBW = final body weight; LVW = left
ventricle weight; RVW = right ventricle weight; LVW/FBW = left
ventricle and final body weight ratio; RVW/FBW = right ventricle
and final body weight ratio; FC = food consumption; WC = water
consumption; Cl = calorie intake; FE = feed efficiency; FAT (%) =
percent of body fat in carcass; AUC = area under the curve for
glucose. *P < 0.05 vs control (Student t-test for independent
samples).
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between groups was observed after normalization to FBW
(Table 1).

The area under the curve for glucose (C = 20247.7 +
1416.8 vs Ob = 23596.2 + 3023.4; P < 0.05) (Table 1),
plasma leptin (C =2.31 £ 0.53 vs Ob =4.82 + 1.34; P <
0.05) and insulin levels (C = 0.45 +0.19 vs Ob = 148
0.67; P < 0.05) were higher in the obese group than in the
control group, which indicates that the obese rats were
hyperinsulinemic, hyperleptinemic and glucose intolerant.

The measurement of gene expression by RT-PCR
revealed that the cardiac mRNA expression of SERCA2a,
PLB and RyR2 was enhanced in the obese group (C = 1.00
+£0.11vsOb=1.18+0.17,P <0.05;C=1.00 £ 0.05 vs Ob
=1.58+0.24,P<0.05;C=1.00+0.06 vsOb=1.83+0.08,
P <0.05, respectively). However, Cacnalcand NCX mRNA
levels were not different (C = 1.00 £ 0.10 vs Ob = 1.03 +
0.08, C = 1.00 = 0.05 vs Ob = 1.01 + 0.04, P > 0.05,
respectively; Figure 2).

A.P. Lima-Leopoldo et al.

Discussion

The results of the present study show that rats fed a
high-fat diet for 15 weeks had a 22.8% increase in final
body weight and an 89% increase in body fat compared
with control animals. The difference in body weight be-
tween groups was observed after two weeks of obesity
induction (Figure 1). Although the obese group ingested
less food, the higher weight gain exhibited by these ani-
mals was most likely due to their increased calorie intake
and feed efficiency. In addition, the obese rats developed
metabolic abnormalities that are typically associated with
obesity, e.g., glucose intolerance, hyperinsulinemia and
hyperleptinemia. These findings are consistent with other
studies that have reported that diet-induced obesity dis-
plays several characteristics commonly related to human
and experimental obesity (7,19).

Our major findings suggest that obesity induced the
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Figure 2. Effect of high-fat diet-induced obesity on the expression of genes related to CaZ* transport in the rat. RT-PCR was carried
out for L-type Ca2* channel (Cacnalc; 604 bp, 28 cycles), Na*/Ca2* exchanger (NCX; 634 bp, 28 cycles), Ca2* ATPase (SERCA2a;
653 bp, 28 cycles), ryanodine receptor (RyR2; 635 bp, 28 cycles), and phospholamban (PLB; 140 bp, 30 cycles). Gene expression
was normalized to cyclophilin expression (440 bp). Experiments on control (C, N = 13) and obese (Ob, N = 13) rats were performed in
triplicate and PCR quantification was by densitometry analysis. *P < 0.05 vs control (Student ttest for independent samples).
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upregulation of the gene expression of proteins related to
Ca?* transport, SERCA2a, RyR2 and PLB, but did not
cause changes in sarcolemmal Ca?* genes, NCX and
Cacnalc. This result confirms Relling et al. (7) who re-
ported enhanced protein expression of SERCA2a and
PLB in obese rats. These investigators have suggested
that the increased protein expression of SERCA2a may
reflect a compensatory mechanism to restore impaired
intracellular Ca2* handling. On the other hand, other inves-
tigators have observed unchanged SERCAZ2a, RyR2 and
PLB protein expression levels in non-obese rats fed a
high-fat diet (6). This result could indicate that only a high-
fat diet without obesity does not affect expression of CaZ*-
related genes.

The mechanisms responsible for changes in transcrip-
tional factors that regulate the expression of Ca?*-related
genes in obesity are still unknown. Given that most studies
on obesity report increased triiodothyronine levels (T3)
(20-22), and that this hormone is related to SERCA2a
expression (23,24), the T3 elevation may be responsible
for the increase in SERCA2a mRNA. However, since obe-
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