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Abstract

To explore whether an environment of weightlessness will cause damage to the reproductive system of animals, we used the 
tail-suspension model to simulate microgravity, and investigated the effect of microgravity on the tissue structure and function 
of the testis in sexually mature male rats. Forty-eight male Wistar rats weighing 200-250 g were randomly assigned to three 
groups (N = 16 each): control, tail traction, and tail suspension. After the rats were suspended for 7 or 14 days, morphologi-
cal changes of testis were evaluated by histological and electron microscopic methods. The expression of HSP70, bax/bcl-2 
and AR (androgen receptor) in testis was measured by immunohistochemistry. Obvious pathological lesions were present in 
the testis after the rats were suspended for 7 or 14 days. We detected overexpression of HSP70 and an increase of apoptotic 
cells, which may have contributed to the injury to the testis. The expression of AR, as an effector molecule in the testis, was 
significantly decreased in the suspended groups compared to control (P < 0.01). We also observed that, with a longer time 
of suspension, the aforementioned pathological damage became more serious and some pathological injury to the testis was 
irreversible. The results demonstrated that a short- or medium-term microgravity environment could lead to severe irreversible 
damage to the structure of rat testis.
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As mankind enters the space age, people become more 
and more concerned about the effect of a weightless environ-
ment on human health (1,2). During the past decade, numer-
ous studies have investigated the impact of the weightless 
environment on the organizational structure and correspond-
ing physiological function of the respiratory, cardiovascular, 
gastrointestinal, and musculoskeletal systems (3-7). These 
studies have shown that microgravity leads to pulmonary al-
veolus fusion, hemorrhage and hyperplasia of the pulmonary 
alveolus wall (8). In the gastrointestinal system, it caused 
changes in the secretion of gastric somatostatin, gastrin, 
gastroenteropancreatic peptides, and other gastrointestinal 
hormones (9,10). Microgravity conditions can also lead to 
a negative calcium balance and to the loss of bone mineral 

density (11,12). However, studies of the effect of space flight 
on the reproductive system are still scarce and insufficient. 
As we move closer to the reality of space habitation, there is 
growing scientific interest in how the weightless environment 
would influence the reproductive system. 

The testis, as the main part of the male reproductive 
system, has the dual function of spermatogenesis and 
steroidogenesis. Testicular secretion of androgen is widely 
distributed in most of the human and animal organs and 
tissues, and plays a crucial role in the development, main-
tenance, and regulation of male phenotype and reproduc-
tive physiology (13). Therefore, the testis has been often 
chosen to reflect the functional status of the reproductive 
system (14,15).
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In the present study, we investigated the effects of 
weightlessness on the reproductive system using the 
rat tail-suspension model to simulate microgravity. The 
results showed that apparent pathological lesions, such 
as degeneration and necrosis of the spermatogenic cells, 
were present in the testis when the rats were suspended 
for 7 days. A decrease of androgen receptor (AR) and an 
increased expression of heat shock protein (HSP70) and 
apoptotic protein (bax/bcl-2) were also detected. The data 
imply that weightlessness could harm not only the structure 
of the testis, but also affect testis function. The effects on 
the testis were time-dependent and could be irreversible. 

Material and Methods

Animals and tail suspension
Eight-week-old male Wistar rats weighing 200-250 g 

were obtained from the Beijing Medical University Labora-
tory Animal Center. The rats were caged individually in an 
air-conditioned room maintained at 23°C with 12-h light/12-h 
dark cycle. The rats were randomly divided into three groups: 
control (N = 16), tail traction (TT, N = 16) and tail suspension 
(TS, N = 16). The rats were sacrificed after 7 or 14 days of 
treatment (N = 8 at each time). Control rats were housed 
in standard cages in the same room as the TS groups. The 
TT group, in which the rats were placed in a tail-lift harness 
without suspension, was designed to investigate the impact 
of the TT device used in the TS model on the tissue structure 
of the testis. TS was achieved with a tail harness suspend-
ing the hindlimbs above the floor of the cage according to 
the method of Wronski and Morey-Holton (10). The tail was 
suspended and adjusted to prevent the hindlimbs of the rats 
from touching the grid floor or other supportive surfaces. The 
animal’s body was tilted about 30°, allowing the forelimbs 
to maintain contact with the grid floor and the rat to move in 
a circular area to gain access to food and water. All control, 
TT and TS rats were fed ad libitum a similar diet of labora-
tory chow and tap water. All experimental procedures were 
approved by the Institutional Animal Care and Committee 
of China Agricultural University.

Sampling
After 7 and 14 days of TS, rat body weight, thymus 

weight and adrenal weight were measured, and rat testes 
were removed quickly and washed thoroughly with normal 
saline to remove residual blood after euthanasia and then 
processed for biochemical and morphological studies.

Histopathological examinations
Testes were fixed with 2.5% (v/v) glutaraldehyde-

polyoxymethylene solution immediately after euthanasia. 
The tissue samples were dehydrated and embedded in 
paraffin. Serial paraffin sections (4 μm) were obtained 
and kept at 37°C for more than 12 h. The sections were 
immersed in xylol in three consecutive washes for 5 min to 

remove paraffin, and then hydrated with five consecutive 
washings with a descending alcohol series (100, 95, 80, 
70, 50%) and deionized water. The histological paraffin 
sections were then stained with hematoxylin-eosin (HE). 
Changes in organizational structure were visualized with 
a light microscope.

Transmission electron microscopy 
For transmission electron microscopy, the testis samples 

were cut into pieces (2 x 2 mm) and fixed in 2.5% (v/v) 
glutaraldehyde-polyoxymethylene solution for 6-8 h at 4°C 
and then washed and post-fixed in 2% OsO4 for 1 h at 4°C. 
The tissue was dehydrated with an ascending ethanol series 
and embedded in araldite CY212. Ultrathin sections (60-70 
nm) were cut and stained with uranyl acetate and alkaline 
lead citrate. Sections were visualized under a JEM 100CX 
transmission electron microscope.

Immunological assays
The testis tissue samples collected for histology were 

subjected to immunohistochemical analysis for the examina-
tion of AR, HSP70 and bax/bcl-2. The histological sections 
(4 µM) were immersed in 10 mM citrate buffer solution, pH 
6.0, and heated at 120°C in an autoclave sterilizer for 10 
min, naturally cooled for 30 min, and then immersed in 3% 
aqueous hydrogen peroxide (H2O2) for endogenous peroxi-
dase ablation at room temperature for 30 min. The following 
steps were executed in a moist chamber according to the 
procedures described by Liu et al. (16). Briefly, the histological 
sections were washed in PBS, quenched with blocking buf-
fer (Zymed Laboratories Inc., USA) and sequentially treated 
with primary antibody, biotinylated secondary antibody and 
horseradish peroxidase-labeled avidin chain working fluid 
(Beijing Zhong Shan Golden Bridge Biotechnology Co., Ltd., 
China). Finally, the tissue sections were counterstained with 
HE, dehydrated, cleared and mounted with neutral gums. In 
parallel, tissue specimens in which the primary antibody was 
replaced with PBS served as negative control. Specificity was 
established by demonstrating the loss of immunoreactivity 
in matched tissue sections.

The positive signal of AR, HSP70 and bax/bcl-2 was 
brown or yellow granular mass that could be used to trace 
and measure the aforementioned proteins. The positive 
signals in testes were observed under an Olympus mi-
croscope. The results are reported as the area density of 
positive substance, which was obtained by dividing the 
area of positive signals by the area of one field under the 
microscope with combined magnification of 400X. 

Quantitative and statistical analysis
Experimental data were analyzed by one-way ANOVA 

and subsequent by the Tukey test using the SAS statisti-
cal program (SPSS Institute Inc., USA). The results are 
reported as means ± SEM. Differences were considered 
to be statistically significant at P < 0.01. 
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Results

Body weight, thymus index, and adrenal index
Body weight, thymus index, and adrenal index have been 

widely used to assess stress responses (17). Here we showed 
that the body weight of the control and TS groups was 244.2 
± 3.2 g and 246.0 ± 4.3 g, respectively, with no significant 
differences at the beginning of the experiment. After 7 or 14 
days of TS, the weight of TS rats was still comparable to 
that of the control groups. Analysis of thymus atrophy and 
adrenal hypertrophy, which are two important post-mortem 
indicators of stress, showed that there was no difference in 
thymus index or adrenal index between the control group 
and the TS group after 7 and 14 days of tail suspension. 
These findings demonstrate that 7 and 14 days of TS did 
not induce a systemic stress response in rats.

Histopathology observation of the testis by light 
microscopy

The morphology of the testes was first examined in the 
TT group. Histological examination of the testes showed that 
the testicular tubules of the TT group were arranged in close 
alignment. Spermatogonia and all levels of spermatogenic 
cells within the seminiferous tubules were clearly, orderly and 
closely arranged in rows (Figure 1B,F), which was the same as 
the normal structure seen in the control group (Figure 1A,E). 
In contrast, severe pathological changes were observed in 
the TS groups. In the rats subjected to short-term suspension 
(7 days), the main pathological changes were degeneration 
and necrosis of the spermatogenic cells. A higher resolution 

image (Figure 1C,D) showed that 1) the testicular tubules 
were arranged sparsely; 2) the basement membrane surface 
of the tubules appeared to be rough and disordered; 3) the 
interstitial tissue of the testis showed edematous changes; 4) 
the spermatogonia and spermatogenic cells of the seminiferous 
tubules became loose, sparse, and disorderly; 5) cell nucleus 
chromatin resembled cotton wool and appeared to be visibly 
shrunken; 6) fresh sperm cells in some seminiferous tubules 
showed denaturation, necrosis and edema; 7) the spermato-
genic cells of some seminiferous tubules were totally absent; 
8) the wall of the seminiferous tubules became thinner; 9) there 
were almost no sperm cells, which in some seminiferous tubules 
were replaced with some syncytial structure without necrosis. 
When the suspension time was extended to 14 days, fibrous 
proliferation, local hemorrhage and protein fluid exudation 
were conspicuously observed in interstitial tissue, resulting 
in obvious fibroplasia (Figure 1G,H). Within the seminiferous 
tubules, almost all germ cells disappeared and only a small 
number of residue and seminoma cells were observed (Figure 
1G,H). For both the groups suspended for 7 and 14 days, the 
diameter of the seminiferous tubules was visibly smaller than 
that of the control groups.

Transmission electron microscopy observation of 
the testis 

To further characterize the structural injury of testicular 
tissue, the changes of the 7- and 14-day suspended rat testis 
were assessed by an ultrastructural pathological method. In 
control groups, the basal lamina of the seminiferous tubules 
was intact and euchromatin was present in the nucleus of 

Figure 1. Histopathological analysis of rat testes with HE staining by light microscopy. A, E, The normal structure of rat testes in the 
control group for 7 and 14 days, respectively. B, F, The morphology of rat testes of the tail traction group for 7 and 14 days, respectively. 
C, In the 7-day tail suspension group, the testicular tubules were arranged sparsely (arrow) with degeneration and necrosis of the 
spermatogenic cells (arrowhead). D, In the 7-day tail suspension group, the spermatogenic cells of the seminiferous tubules became 
loose, sparse and disorderly, with the formation of a syncytial structure (arrow). G, In the 14-day tail suspension group, protein fluid 
exudations (arrow) were conspicuously present in interstitial tissue and all germ cells had disappeared (arrowhead). H, In the 14-day 
tail suspension group, all germ cells had disappeared, with only a small number of residue and seminoma cells (arrow) being left; also, 
obvious fibroplasia was observed in interstitial tissue (arrowhead).
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spermatogonia cells. All stages of spermatogenic cells and 
spermatozoa were present in the tubules. Primary spermato-
cyte mitochondria appeared to be normal with cristae (Figure 
2A,B,C). In contrast, TS caused severe damage to the semi-
niferous tubules and testicular interstitium (Figure 2D,E, and 
F). In addition to the observation of loss of germinal cells and 
of seriously necrotic tubules, the basal lamina of seminiferous 
tubules in TS groups had a rough appearance. Mitochondria, 
which lost cristae, were vacuolated and there were abundant 
vacuoles in the cytoplasm of primary spermatocytes, as well 
as fragmented and condensed nucleus substances in primary 
spermatocyte and germ cells, respectively.

Localization and quantitative expression of androgen
receptor 

The gene expression levels of AR reflect the reproductive 
function of the rat (18-20). Therefore, the localization and 
quantitative analysis of AR was performed using immunological 
assays. The results showed that AR was located not only in 
the spermatogonia and germ cells in different developmental 
stages, but also in the interstitial capillary endothelial cells and 

peritubular contractile cells. Lower expression of AR was de-
tected in stromal cells (Figure 3A,C). Following TS for 7 days, 
the number of cells in the seminiferous tubules expressing AR 
(Figure 3B,E) was decreased. With the increasing suspen-
sion time (14 days), the expression of AR was reduced more 
significantly (Figure 3D,E). Semiquantitative analysis showed 
that the AR protein expression in the rat testes of the 7-day TS 
group decreased by 9-fold compared to control and AR protein 
expression in the 14-day TS group showed a nearly 39-fold 
decrease compared to control. Therefore, the decreased ex-
pression of AR in testicular tissue may be linked to reproductive 
dysfunction or eventually to the loss of reproductive function 
of suspended rat testes.

Expression of HSP70 in the testis of tail-suspended rats 
HSP70 plays a protective role under stress condition. 

However, overexpression or release of HSP70 from the cell is 
risky and may trigger cell necrosis (21-24). Compared to the 
control groups, testicular tissues showed a significantly higher 
level of HSP70 expression in 7-day-suspended rats (P <0.01; 
Figure 4E), and the expression of HSP70 was even higher in 

Figure 2. Electron micrographs of testis tissue from the control and experimental groups. A, B, C, Control groups showed that the basal 
lamina of seminiferous tubules was intact and all stages of spermatogenic cells and spermatozoa were present in the tubules (arrow). 
D, E, F, In the tail suspension groups the basal lamina of seminiferous tubules was rough and germinal cell loss and seriously necrotic 
tubules were observed (arrow).
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Figure 3. Localization and quantitative analysis of androgen receptor (AR) with immunohistochemical stain-
ing. AR in the control (CON) groups (A, not treated for 7 days; C, not treated for 14 days) and tail-suspended 
(TS) groups (B, TS group for 7 days; D, TS group for 14 days). AR was detected using rabbit anti-AR antisera, 
biotinylated second antibody and horseradish peroxidase-labeled avidin chain working fluid. The immunohis-
tochemical staining of AR resulted in brown or yellow color of the areas containing AR, which can be used to 
trace and measure AR. E, Relative signal intensity of AR in rat testis. *P < 0.01 compared to control (one-way 
ANOVA and Tukey test). 

Figure 4. Localization and quantification of HSP70 by immunostaining. HSP70 in the control (CON) groups (A, control group for 7 
days; C, control group for 14 days) and tail-suspended (TS) groups (B, TS group for 7 days; D, TS group for 14 days) was detected us-
ing rabbit anti-HSP70 antiserum, biotinylated second antibody and horseradish peroxidase-labeled avidin chain working fluid. E, The 
area density of positive substance was obtained by dividing the area of positive signals by the area of one field under the microscope 
with combined magnification of 400X. *P < 0.01 compared to control (one-way ANOVA and Tukey test). 



1248 Ye Ding et al.

www.bjournal.com.brBraz J Med Biol Res 44(12) 2011

the 14-day-suspended group than in the 7-day-suspended 
group (P <0.01; Figure 4E). Furthermore, the release of 
HSP70 proteins from testis cells was observed in the semi-
niferous tubules and exudate of interstitial cells in the rats 
of the 7-day-suspended group or 14-day-suspended group 
(Figure 4B,D), while HSP70 expression in the cells of the 
control groups was lower (Figure 4A,C). HSP70 expression 
levels in cells of the testicular tubules were correlated with 
the degree of damage, indicating that overexpression or 
release of HSP70 may have played a role in the testicular 
damage in rats of the suspension groups.

Up-regulation of apoptosis-regulating proteins in TS 
rat testis

The bax and bcl-2 proteins are pro-apoptotic molecular 
and anti-apoptotic molecular, respectively, and the bax/bcl-
2 ratio reflects a cell’s vulnerability to apoptosis (25). The 
bax and bcl-2 proteins were evaluated by the density of bax 
or bcl-2 substrates. The bax/bcl-2 ratio was obtained by 
dividing the area density of bax-positive substance by bcl-
2-positive substance. The immunohistochemical staining 
of bax/bcl-2 revealed that, compared to control rats (Figure 
5A,C,E, and G), the expression of bax and bcl-2 in the testes 

Figure 5. Detection of apoptosis by anti-bax and anti-bcl-2 immunoassay. In situ immunoassay for bax: A, control (CON) group for 7 
days; B, tail-suspended (TS) group for 7 days; C, control group for 14 days; D, TS group for 14 days. In situ immunoassay for bcl-2: E, 
control group for 7 days; F, TS group for 7 days; G, control group for 14 days; H, TS group for 14 days. I, The bax/bcl-2 ratio is obtained 
by dividing the intensity of bax-positive substance by that of bcl-2-positive substance.
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