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Serum microRNA-30c levels are correlated with
disease progression in Xinjiang Uygur patients
with chronic hepatitis B
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Abstract

We aimed to investigate the potential role and mechanism of microRNA-30c (miR-30c) in the pathological development of
chronic hepatitis B (CHB). The serum levels of miR-30c in hepatitis B virus (HBV) carrier Xinjiang Uygur patients with inactive,
low-replicative, high-replicative and HBe antigen-positive CHB were investigated. HepG2 cells were co-transfected with
pHBV1.3 and miR-30c mimic or inhibitor or scramble RNA. The effects of miR-30c dysregulation on HBV replication and gene
expression, cell proliferation and cell cycle were then investigated. miR-30c was down-regulated in Xinjiang Uygur patients with
CHB compared to healthy controls and its expression level discriminated HBV carrier patients with inactive, low-replicative,
high-replicative and HBe antigen-positive risk for disease progression. Overexpression of miR-30c significantly inhibited HBV
replication and the expressions of HBV pgRNA, capsid-associated virus DNA and Hbx in hepatoma cells. Moreover, over-
expression of miR-30c significantly inhibited cell proliferation and delayed G1/S phase transition in hepatoma cells. Opposite
effects were obtained after suppression of miR-30c. Our results indicate that miR-30c was down-regulated in Xinjiang Uygur
patients with CHB, and miR-30c levels could serve as a marker for risk stratification of HBV infection. Down-regulation of miR-30c

may result in the progression of CHB via promoting HBV replication and cell proliferation.

Key words: Chronic hepatitis B; Disease progression; microRNA-30c; Hepatitis B virus replication; Cell proliferation

Introduction

Chronic hepatitis B (CHB) is a serious worldwide
public health problem caused by the infection of hepatitis
B virus (HBV) (1,2). Patients with CHB have been found to
exhibit a high risk of developing devastating complica-
tions, such as liver cirrhosis and hepatocellular carcinoma
(3,4). Currently, detecting the enzymatic activities of some
markers, such as aspartate aminotransferase and alanine
aminotransferase in blood, is the most commonly used
method to assess liver injury. However, the sensitivity and
specificity of these markers to diagnose virus-induced liver
damage are insufficient (5,6). Therefore, it is still a major
clinical challenge to assess the severity of HBV-induced
liver damage. Exploration of effective markers is important
to better monitor the progression of CHB.

MicroRNAs (miRNAs) are evolutionarily conserved, non-
coding RNAs of lengths of 20 to 25 nucleotides that can
modulate gene expression of specific targets, and thus par-
ticipate in various physiologic and pathologic processes
(7,8). Recent findings have highlighted the pivotal roles of
miRNAs in HBV-related diseases, including CHB (9-11).
For instance, upregulation of miR-146a has been shown to
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suppress T cell function in patients with CHB and conse-
quently contributes to immune defects during chronic viral
infection (12). Serum miR-122 levels has been reported to
be strongly correlated with HBs antigen and can function
as a risk stratification marker to discriminate HBV carrier
patients with high or low risk for disease progression (13).
The elevation of serum miR-210 level is also reported to
play a crucial role in liver inflammation in patients with CHB
(13). Recently, miR-30c has been identified to be down-
regulated in CHB patients compared to healthy donors by
microarray analysis (14). However, the roles of miR-30c
in regulating HBV replication and cell proliferation in the
progression of CHB have not been investigated.

In this study, we investigated the serum levels of miR-
30c in patients with different stages of chronic hepatitis B.
Furthermore, we examined whether miR-30c dysregula-
tion influenced HBV replication and gene expression, cell
proliferation and cell cycle in hepatoma cells. Our study
aimed to investigate the potential role and mechanism of
miR-30c in the pathological development of CHB. Our
findings will provide new insight for the diagnosis of CHB.
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Material and Methods

Patients and samples

This study was approved by the Ethics Committee of
the Beijing YouAn Hospital and was performed according
to the 1964 Declaration of Helsinki.

Between April 2015 and July 2016, a total of 48
treatment-naive Xinjiang Uygur patients (D genotype
91%, B genotype 3%, and C genotype 6%) with CHB
were enrolled in this study. The patients with detectable
serum HBs antigen and serum HBV DNA for more than
6 months were included. Studies that are excluded fit the
following criteria: within the latest 5 years, studies asso-
ciated with the following research content 1) patients with
organ transplantation, 2) patients with co-infections with
immunodeficiency virus (HIV)/hepatitis C virus (HCV),
immunosuppression, and other malignant comorbidities.
Patient characteristics are summarized in Table 1. According
to the HBV levels and HBe antigen status of patients and the
European Association for the Study of the Liver guidelines,
patients with CHB were classified into 3 groups: inactive
carriers, HBe antigen-negative hepatitis (low- and high-
replicative hepatitis) and HBe antigen-positive hepatitis.
Low-replicative hepatitis was characterized by low viral load
(HBV DNA <2000 IU/mL) and high-replicative hepatitis was
characterized by high viral load (HBV DNA >2000 IU/mL).
Moreover, 18 healthy subjects were included as control.

Blood samples were collected from each individual at
the time of presentation at the outpatient department and
then centrifuged at 1500 g for 10 min at 4°C. The sera
were aliquoted and then stored at —80°C until use.

Cells culture and transfection

Human hepatoma cell line HepG2 (ATCC, USA)
was maintained in Dulbecco’s modified Eagle’s medium
(DMEM, Hi-Media Laboratories Pvt. Ltd., India), fixed with
10% fetal bovine serum (Invitrogen, USA), and treaded
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with penicillin-streptomycin antibiotics (Invitrogen) in a
37°C-incubator with 5% CO..

After washing twice with Opti-MEM (Invitrogen),
HepG2 cells were then co-transfected with pHBV1.3 and
miR-30c mimic or inhibitor or scramble using Lipofecta-
mine 2000 (Invitrogen) following the manufacturer’s rec-
ommended protocol. Each treatment was conducted in
triplicate at least.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from different transfected
cells using RNA Iso-plus reagent (Takara Bio, China) and
then reverse transcribed into cDNA using PrimeScript RT
Reagent Kit (Invitrogen) following the manufacturer’s proto-
col. The primers in this study were designed using Primer
5.0 (Primer-E, Ltd., United Kingdom) as follows: miR-30c
RT: 5-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGC
ACTGGATACGACGCTGAG-3’; U6 RT 5-GTCGTATCC
AGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTG
GAAC-3'. With a standard protocol provided by the man-
ufacturer, qRT-PCR was performed in the ABI PRISM
7300 Fast Real-Time PCR System (Ambion, USA) using
the SYBR ExScript gqRT-PCR Kit (Takara, China), under
the following conditions: 95°C for 5 min, 95°C for 10 s, and
40 cycles at 60°C for 30 s. Each reaction was performed in
triplicate. The expression levels of miR-30c were normal-
ized to U6. The results of RT-PCR are reported as 242,

Western blot analysis

Cells were lysed using mammalian protein extraction
reagent and HALT protease inhibitor cocktail (Thermo
Scientific, USA). Then, the supernatant was collected and
its protein content was measured using bicinchoninic acid
reagent (Thermo Scientific). The equal amount of protein
samples were separated using 10% SDS-PAGE and then
transferred to polyvinylidene fluoride membranes (Milli-
pore). Membranes were blocked with Tris-buffered saline

Table 1. Clinical characteristics of participants.

Features HBV Healthy controls
Gender: male/female 26/22 10/8

Age (years) 35.6+10.4 33.1£10.8
Genotype (D/B/C) (%) 91% / 3% / 6% 0

ALT (IU/L) 81.6 (16—416) 21.1 (14-42)
AST (IU/L) 64.6 (10-216) 20.6 (16-40)
GGT (IU/L) 66.4 (11-549) 21.2 (11-31)
ALP (IU/L) 94.6 (54-216) 61.2 (41-94)
TBIL (umol/L) 18.2 (10.3-50.4) 15.6 (6.8-26.6)
HBV DNA (copy/mL) 7 x 107 (0-9 x 10%) 0

HBV status (n) Ina/Neg/Pos 12/18/18 0

ALT: alanine aminotransferase; AST: aspartic transaminase; GGT: serum y-glutamyl
transferase; ALP: alkaline phosphatase; TBIL: total bilirubin; HBV: hepatitis B virus;
Ina: inactive; Neg: negative; Pos: positive.
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(TBS) containing 5% non-fat dry milk for 1 h, and then
probed using antibodies against HBx (ab203540, Abcam,
UK) overnight at 4°C. The membranes were then probed
with horseradish-peroxidase conjugated secondary anti-
bodies (Santa Cruz, USA) at room temperature for 1 h,
and the blots were visualized using an enhanced chemi-
luminescence kit (Amersham, Germany). Phosphoglyc-
eraldehyde dehydrogenase (GAPDH) was used as an
internal control (Santa Cruz).

HBYV replication and gene expression analysis

HepG2 cells were grown in 6-well plates and cell cul-
ture medium was collected at 48 h post-transfection. The
amount of HBsAg and HBeAg in the supernatant was
determined using ELISA kits (Shanghai KeHua Biotech,
China) according to the manufacturer’s protocol. In addi-
tion, at 72 h post-transfection, the expression levels of
HBV pgRNA and HBV DNA were determined by quan-
titative real-time PCR (qRT-PCR) analysis. Briefly, cells
were lysed in lysis buffer (50 mM Tris, pH 7.5, 100 mM
NaCl, 1 mM EDTA and 0.5% Nonidet P-40) at 4°C for 1 h.
Then, cells were incubated with MgCl, and DNase | (10 mg/
mL, Takara) at 37°C for 2 h to remove DNA that was not
protected by the HBV core protein. Viral cores were then
precipitated by centrifugation at 8,000 g for 5 min at 37°C
after adding 0.5 M EDTA and 35% polyethylene glycol.
The pellet was then resuspended in buffer A (10 mM Tris,
1 mM EDTA, 1 mM EDTA, 100 mM NaCl, 1% SDS, and
2.5 mg/mL proteinase K) for 16 h. Subsequently, capsid-
associated viral DNA, which was released from the lysed
cores, isolated using phenol and chloroform, precipitated
with isopropyl alcohol and finally quantified with gqRT-PCR
analysis. The primers for HBV DNA detection were as
follows: forward, 5'-AGAAACAACACATAGCGCCTCAT-3,
reverse, 5-TGCCCCATGCTGTAGATCTTG-3, and the HBV
probe 5-TGTGGGTCACCATATTCTTGGG-3'. All samples
were analyzed in ftriplicate and the relative HBV DNA
levels were determined after converting the viral copy
numbers to fold-changes.

Cell proliferation analysis by MTT and colony
formation assays

For MTT assay, cells (3000 cells/well) were plated onto
96-well plates after transfection and continued to culture
for 1-5 days. At 0, 24, 48, and 72 h after transfection,
the MTT reagent (AMRESCO, USA) was added to incu-
bate cells for 4 h at 37°C. The supernatants were then
removed, and DMSO (150 pL/well) was added to dissolve
the formazan crystals. The absorbance value of each
well at 450 nm was measured using a multilabel plate
reader (PerkinElmer, USA).

For colony formation assay, cells at a density of 100
cells/dish were placed on the 60 mm culture dishes after
48 h of transfection and maintained in complete medium
for 2 weeks. Colonies were then fixed with methanol,
stained with 0.1% crystal violet and counted under a
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microscope (IX83, Olympus, Japan). Cell number in each
colony was at least 30.

Cell cycle analysis

For cell cycle analysis, HepG2 cells transfected with
miR-30c mimic, inhibitor and scramble control were cul-
tured for 48 h. Then cells were fixed in 70% ethanol at
4°C. After washing, fixed cells were incubated in PBS
mixed with 20 pg/mL of propidium iodide, 200 pg/mL of
RNasemA and 0.1% Triton X-100 (BD Biosciences, USA)
at 37°C for 20 min. Finally, the stained cells were analyzed
using flow cytometry with the BD FACSCalibur™ system
(BD Biosciences) for cell cycle distribution.

Statistical analysis

All experiments were carried out in triplicate. Data from
multiple experiments are reported as means + SD. The
difference between the two groups was then compared
by Student’s two-tailed unpaired t-test, and among three
or more groups by one-way analysis of variance with
Bonferroni’s multiple comparison test. A value of P<0.05
indicated statistically significant differences.

Results

Serum levels of miR-30c in patients with different
stages of CHB

As shown in Figure 1, the expression levels of miR-30c
in patients with CHB were significantly lower than in
healthy controls (P<0.05). In addition, the expression
levels of miR-30c were gradually decreased in healthy
controls, inactive carriers, low-replicative hepatitis, high-
replicative hepatitis and HBe antigen-positive hepatitis,
with significant differences (P <0.05), indicating that miR-
30c might be a potential marker for the diagnosis or risk
stratification of HBV infection.
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Figure 1. Serum levels of miR-30c in healthy controls and hepatitis
B virus (HBV) carrier patients with inactive, low-replicative, high-
replicative and HBe antigen-positive chronic hepatitis B. Data are
reported as means = SD. *P <0.05, **P<0.01, ***P<0.001 com-
pared to healthy controls (ANOVA).
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Aberrant expression of miR-30c regulated HBV
replication and gene expression in hepatoma cells
miR-30c expression was significantly increased in
hepatoma cells transfected with miR-30c mimic com-
pared to miR-30c scramble control group, while markedly
decreased in hepatoma cells transfected with miR-30c
inhibitor (P <0.05), indicating that miR-30c was success-
fully overexpressed and suppressed in hepatoma cells
(Figure 2A). After hepatoma cells were co-transfected
with pHBV1.3 and 50 nM of miR-30c mimic for 48 h,
the results of ELISA showed that the amount of HBeAg
and HBsAg was significantly decreased compared to
that in cells co-transfected with pHBV1.3 and miR-30c
scramble control (P <0.05, Figure 2B). Furthermore, the
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results of qRT-PCR analysis showed that the expression
levels of HBV pgRNA and capsid-associated virus DNA
was also significantly decreased after co-transfection
with pHBV1.3 and miR-30c mimic for 72 h (P<0.05,
Figure 2C). The results of western blot analysis showed
that the expression levels of Hbx protein were also sig-
nificantly decreased after co-transfection with pHBV1.3
and miR-30c mimic for 48 h (P <0.05, Figure 2D). After
cells were co-transfected with pHBV1.3 and miR-30c
inhibitor, opposite effects were obtained in the amount
of HBeAg and HBsAg, in mRNA expression levels
of HBV pgRNA and capsid-associated virus DNA,
and in the protein expression levels of Hbx (P <0.05,
Figure 2B-D).
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Figure 2. Overexpression of miR-30c inhibited HBV replication and gene expression in hepatoma cells. A, miR-30c expression in
hepatoma cells after transfection with miR-30c mimic, inhibitor or scramble control. B, Amount of HBeAg and HBsAg in hepatoma cells
after co-transfection with pHBV1.3 and 50 nM of miR-30c mimic, inhibitor or scramble control for 48 h. C, Expression levels of HBV
pgRNA and capsid-associated virus DNA in hepatoma cells after co-transfection with pHBV1.3 and miR-30c mimic, inhibitor or scramble
control for 72 h. D, Expression levels of Hbx protein in hepatoma cells after co-transfection with pHBV1.3 and miR-30c mimic, inhibitor or
scramble control for 48 h. Data are reported as means = SD. *P <0.05, **P <0.01 compared to scramble controls (ANOVA).

Braz J Med Biol Res | doi: 10.1590/1414-431X20176050


http://dx.doi.org/10.1590/1414-431X20176050

Role of miR-30c in CHB progression

Overexpression of miR-30c inhibited cell proliferation
in hepatoma cells

The results of MTT assay showed that, compared to
miR-30c scramble transfected cells, the viability of miR-
30c mimic-transfected cells significantly decreased after
48 and 72 h of transfection, while the viability of miR-30c
inhibitor-transfected cells markedly increased (P<0.05,
Figure 3A). In addition, the results of colony formation assay
were consistent with the MTT assay results and showed
that the number of colonies was significantly decreased in
miR-30c mimic transfected group and increased in miR-
30c inhibitor transfected group (P <0.05, Figure 3B).

Overexpression of miR-30c induced G1/S cell cycle
arrest in hepatoma cells

The effects of miR-30c on cell cycle dysregulation
were also investigated in our study. As shown in Figure 4,
miR-30c mimic-transfected hepatoma cells at G1 phase
were significantly increased compared to scramble trans-
fected hepatoma cells at G1 phase, while miR-30c mimic-
transfected hepatoma cells at S phase were decreased.
Furthermore, hepatoma cells at G1 phase were signifi-
cantly decreased after transfection with miR-30c inhibitor,
while cells at S phase were markedly increased. These
data indicated that overexpression of miR-30c induced
G1/S cell cycle arrest in hepatoma cells.
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Discussion

This study investigated the interaction between miR-
30c and HBV. The data presented here showed that
miR-30c expression was significantly down-regulated in
patients with CHB and its expression level was negatively
correlated with the extent of HBV replication. In addition,
in vitro cell experiments showed that overexpression of
miR-30c significantly inhibited HBV replication and the
expressions of HBV pgRNA, capsid-associated virus DNA
and Hbx in hepatoma cells, as well as suppressed cell
proliferation and induced G1/S cell cycle arrest in hep-
atoma cells.

Increasing evidence has shown that miRNAs play
vital roles in the diagnosis, pathogenesis and therapeutic
aspects of viral infection (15). A recent study has also
shown that cellular and viral miRNAs can function as a
new class of regulators in viral pathogenesis (16). Cellular
miRNAs have the potential to promote viral replication in
host cells (17). Furthermore, blood-derived microRNAs
are considered to be new potential markers for the assess-
ment of disease severity (18). Serum levels of microRNAs,
such as miR-572, -575 and -744 can specifically predict
liver injury in patients with CHB (14). Yu et al. (19) dem-
onstrated that serum miR-181b was correlated with HBV
replication as well as disease progression in patients with
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Figure 3. Overexpression of miR-30c inhibits cell proliferation in hepatoma cells. A, MTT assay shows the cell viability of hepatoma cells
after transfection with miR-30c mimic, inhibitor or scramble control. B-C, Colony formation assay shows the number of colonies after
hepatoma cells were transfected with miR-30c mimic, inhibitor or scramble control.
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Figure 4. Overexpression of miR-30c induced G1/S cell cycle arrest in hepatoma cells.

CHB. Huang et al. (20) reported that serum miR-29 was
correlated with liver fibrotic stages and necroinflammation
grades, and thus may be a biomarker for predicting dis-
ease progression in CHB patients. There is also evidence
that down-regulation of miR-30c results in the activation of
hepatitis C virus core protein-induced epithelial-mesenchymal
transition, and thus may serve as a marker for poor prog-
nosis of hepatocellular carcinoma (21). In our study, we
determined that miR-30c expression was significantly
down-regulated in patients with CHB compared to healthy
controls. Also, serum miR-30c levels discriminated HBV
carrier patients with inactive, low-replicative, high-replicative
and HBe antigen-positive risk for disease progression.
These data suggest that miR-30c may be negatively cor-
related with disease progression and could be a potential
marker for risk stratification of HBV infection. Besides,
miR-30c can attenuate HBV replication in hepatoma cells,
which provides evidence for the role of miR-30c in HBV
replication in CHB.
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Furthermore, the Hbx protein of HBV has been shown
to modulate cell cycle in cultured primary human hepa-
tocytes (22). It is also reported that Hbx can activate the
ATM-Chk2 pathway in HBV pathogenesis, inducing cell-
cycle delay (23). Shukla et al. (24) also demonstrated that
the Hbx oncoprotein of HBV could deregulate cell cycle by
regulating the cellular deubiquitinase USP37. In addition,
cell proliferation allows orderly progression through the
cell cycle (25,26). Hbx protein has shown to regulate the
proliferation of hepatocellular carcinoma cells (27). Further-
more, miR-30c was down-regulated in non-small cell lung
cancer cells and can inhibit cancer cell proliferation (28).
In our study, overexpression of miR-30c resulted in a signif-
icantly decreased Hbx protein level in hepatoma cells.
Moreover, overexpression of miR-30c significantly inhibited
cell proliferation and delayed G1/S phase transition in hepa-
toma cells. Although the roles of miR-30c in regulating cell
proliferation in HBV pathogenesis are unclear, based on our
results, it can be speculated that the decreased expression
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of Hbx caused by miR-30c overexpression may delay the
cell cycle, inhibiting cell proliferation.

In conclusion, our results indicate that miR-30c is

down-regulated in Xinjiang Uygur patients with CHB and
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