
Manual and semiautomatic segmentation of bone
sarcomas on MRI have high similarity

F.C.F. Dionísio0000-0000-0000-0000
1,2, L.S. Oliveira0000-0000-0000-0000

1,2, M.A. Hernandes0000-0000-0000-0000
1, E.E. Engel0000-0000-0000-0000

1, R.M. Rangayyan0000-0000-0000-0000
3,

P.M. Azevedo-Marques0000-0000-0000-0000
1, and M.H. Nogueira-Barbosa0000-0000-0000-0000

1,2

1Departamento de Imagens Médicas, Hematologia e Oncologia Clínica, Faculdade de Medicina de Ribeirão Preto, Universidade
de São Paulo, Ribeirão Preto, SP, Brasil

2Laboratório de Pesquisa em Imagens Musculoesqueléticas, Faculdade de Medicina de Ribeirão Preto, Universidade
de São Paulo, Ribeirão Preto, SP, Brasil

3Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada

Abstract

The aims of this study were to evaluate the intra- and interobserver reproducibility of manual segmentation of bone sarcomas
in magnetic resonance imaging (MRI) studies and to compare manual and semiautomatic segmentation methods. This
retrospective study included twelve osteosarcoma and eight Ewing sarcoma MRI studies performed prior to any therapeutic
intervention. All cases were histopathologically confirmed. Three radiologists used 3D-Slicer software to perform manual
segmentation of bone sarcomas in a blinded and independent manner. One radiologist segmented manually and also
performed semiautomatic segmentation with the GrowCut tool. Segmentation exercises were timed for comparison. The dice
similarity coefficient (DSC) and Hausdorff distance (HD) were used to evaluate similarity between the segmentation results and
further statistical analyses were performed to compare DSC, HD, and volumetric results. Manual segmentation was
reproducible with intraobserver DSC varying from 0.83 to 0.97 and HD from 3.37 to 28.73 mm. Interobserver DSC of manual
segmentation showed variation from 0.73 to 0.97 and HD from 3.93 to 33.40 mm. Semiautomatic segmentation compared to
manual segmentation resulted in DSCs of 0.71–0.96 and HDs of 5.38–31.54 mm. Semiautomatic segmentation required
significantly less time compared to manual segmentation (P value p0.05). Among all situations compared, tumor volumetry
did not show significant statistical differences (P value 40.05). We found excellent intra- and interobserver agreement for
manual segmentation of osteosarcoma and Ewing sarcoma. There was high similarity between manual and semiautomatic
segmentation, with a significant reduction of segmentation time using the semiautomatic method.
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Introduction

Primary bone sarcomas are rare and represent about
0.2% of all malignant tumors in the general population (1),
but about 5% of all primary malignant neoplasms in the
pediatric population, with osteosarcoma and Ewing sar-
coma being the most frequent in this group (2,3). Magnetic
resonance imaging (MRI) is considered the best method
for regional staging of primary bone sarcoma (3) because
it facilitates the evaluation of several tumor features, such
as anatomical extension of the tumor, compromise of the
growth plate, affected neurovascular or articular struc-
tures, and the presence of skip lesions (3,4). Primary bone
sarcomas still have significant morbidity and mortality
rates (3). In this context, new research is important to
develop new diagnostic strategies and therapeutic modal-
ities aiming, for example, to individualize the treatment
scheme to obtain better outcomes.

Radiomics has emerged as a process of extracting
measurements and attributes from medical images that
can generate relevant information for clinical decisions.
The steps related to radiomics include the extraction of
quantitative data from areas of interest in medical images,
the storage of these data, and their use to generate and
test clinical hypotheses (5). To extract data from medical
images, the segmentation of areas or volumes of interest
is usually necessary. There are three types of segmenta-
tion techniques based on the degree of automation in the
process. Manual segmentation consists of manual delimi-
tation of the boundaries of the area of interest, using the
interface of a software tool. Semiautomatic segmentation
uses software algorithms that process initial data provided
manually and creates a label with the possibility of manual
editing of the result. Automatic segmentation does not
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need any information to be provided manually and creates
labels based only on the image provided, with the possible
inclusion of predetermined parameters and prior training.
Although automatic segmentation seems to be the most
attractive option, mainly because of time savings, it
demands high computational resources and is not an
easy task in general, especially in cases of heterogeneous
tumors (6). Segmentation is an essential step in radi-
omics, but it is important that segmentation is accurate
and reproducible (7).

The purpose of this study is to evaluate the repro-
ducibility of manual and semiautomatic segmentation of
osteosarcoma and Ewing sarcoma in MRI, and to evaluate
if there are differences in the time required for segmentation
using these methods. To the best of our knowledge, this
information is not available in the medical literature.

Material and Methods

The study was approved by the Institutional Review
Board (IRB) on Research Ethics (Faculdade de Medicina
de Ribeirão Preto, Universidade de São Paulo). The IRB
waived the requirement of informed consent. All patient
information contained in the MRI DICOM files was anon-
ymized using KPACS software (IMAGE Information
Systems Ltd., Germany). To ensure patient privacy, the
patients were identified through numbers (e.g., Patient #1,
Patient #2) and not by name or initials.

Image and case selection
Cases from January 2006 to August 2016 were

selected from our institution’s (FMRP-USP) Radiology
Information System (RIS) by searching the keywords
‘‘osteosarcoma’’ or ‘‘Ewing sarcoma’’ in the conclusion of
MRI reports. We included only cases for which diagnosis
was confirmed by histopathology reports available in our
institution’s Hospital Information System (HIS).

All MRI data were acquired with Philips Achieva 1.5
Tesla MRI system (Philips Medical Systems, The Nether-
lands). MRI images with T1 weighting (T1WI) with fat
suppression after intravenous administration of gadoli-
nium (T1WI FS GD) were used to segment bone sarco-
mas in the axial plane. T1WI without fat suppression
images, prior to gadolinium administration, were also
available in the axial plane to assist in the process of
segmentation in the T1WI FS GD images. The mean
repetition time (TR) was 523 ms (ranging from 352 to 663
ms) and the mean time of echo (TE) of T1WI was 14 ms
(ranging from 10 to 37 ms). The mean TR and TE in T1WI
FS GD were, respectively, 523 ms (ranging from 352 to
663 ms) and 14 ms (ranging from 10 to 37 ms). The mean
field-of-view (FOV) was 392� 392 pixels (ranging from
240� 240 to 640� 640 pixels), with mean spatial resolu-
tion of 0.679 mm/pixel (ranging from 0.223 to 1.258 mm/
pixel), and the mean slice thickness was 5.6 mm (ranging
from 3.0 to 8.0 mm) for both sequences.

The inclusion criteria were as follows: osteosarcomas
and Ewing sarcomas confirmed by histopathology anal-
ysis, MRI acquired prior to any invasive diagnostic
procedure or any therapeutic intervention, and tumor site
at the appendicular skeleton or pelvic bones. The exclu-
sion criteria were cases acquired at 3.0 Tesla MRI, MRI
acquired after any invasive diagnostic procedure or any
therapeutic intervention, and MRI studies without acquisi-
tion of both axial T1WI and T1WI FS GD.

Figure 1 summarizes the sampling steps. Twenty
patients were randomly selected from the available cases.
The software available in the internet site ohttps://www.
randomizer.org/4 was used for this task. The demo-
graphic characteristics of this sample were collected from
our institution’s HIS: mean age of 14 years (ranging from
2 to 35 years), six females and fourteen males, twelve
osteosarcoma cases (representing 60% of the total
cases), and eight cases of Ewing sarcoma. The complete
demographic data collected are reported in Table 1.

MRI analysis and segmentation
Three radiologists manually segmented the bone

sarcomas on the MRI studies; two of them (Observers 1
and 2: O1 and O2) were in musculoskeletal radiology
fellowship training, while Observer 3 (O3) was a staff
radiologist with five years of experience in musculoskele-
tal radiology. The observers were not made aware of the
results of radiology or pathology reports, clinical data, or
the results of segmentation of the other observers. One
month after initial segmentation, O1 performed a second
manual segmentation task, and after one more month, O1
performed semiautomatic segmentation of the cases.

The image segmentation tasks were performed using
3D-Slicer software version 4.6.2. This is an open-source
software platform for medical image processing available
at https://www.slicer.org. The GrowCut tool (available
in 3D-Slicer software) provides an algorithm to perform
semiautomatic segmentation. This software was validated
and used in previous studies that segmented different types
of neoplasms in MRI (8–10). Figure 2 shows the interface
of the software after manual segmentation of a tumor.

Segmentation was performed on axial plane images,
and for both manual and semiautomatic segmentation, the
most cranial slice and the most caudal slice including the
tumor were excluded to avoid partial volume artifacts.
Manual segmentation was performed by drawing the
boundaries of the sarcoma slice-by-slice. The time
required for this process (the interval from opening the
image archive to the moment when the segmentation was
finalized) was measured for O1 and O3.

Semiautomatic segmentation was performed by draw-
ing the lesion boundaries and identifying all other areas
outside the tumor as not belonging to the tumor (back-
ground). In this method, first manual segmentation
was made in the extreme slices that would be included
in the tumor as well as a slice in the middle of the tumor.
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After that, the GrowCut tool processed the data provid-
ed and the final result was a segmented volume. The
segmented volume obtained in the previous step was
submitted for manual editing by the same observer to
exclude areas segmented by the tool that were deemed

not to belong to the sarcoma and to include areas that
were considered to belong to the tumor but were not
segmented by the tool. Figure 3 summarizes the semi-
automatic segmentation steps. The time required for
semiautomatic segmentation was also measured.

Table 1. Distribution of cases according to gender, age, location, and histopathological result of the tumor.

Case Gender Age (years) Location in skeleton Tumor

1 F 8 Right femur Osteosarcoma

2 M 35 Left calcaneus Osteosarcoma
3 M 11 Right tibia Ewing sarcoma
4 M 9 Right fibula Ewing sarcoma

5 M 9 Left iliac Ewing sarcoma
6 M 20 Right femur Osteosarcoma
7 M 13 Right femur Osteosarcoma
8 F 15 Right ischiopubic ramus Ewing sarcoma

9 M 12 Right femur Osteosarcoma
10 F 11 Right femur Osteosarcoma
11 M 21 Left iliac Ewing sarcoma

12 M 10 Right humerus Ewing sarcoma
13 F 11 Right fibula Ewing sarcoma
14 M 21 Right femur Osteosarcoma

15 F 17 Right humerus Osteosarcoma
16 F 20 Right femur Osteosarcoma
17 M 16 Left tibia Osteosarcoma
18 M 2 Right ulna Ewing sarcoma

19 M 19 Right radius Osteosarcoma
20 M 4 Right femur Osteosarcoma

F: female; M: male.

Figure 1. Flowchart of study sample selection.
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The sarcoma tissue was recognized as low-T1WI-
signal tissue and by contrast enhancement on T1WI FS
GD, both in intra- and extra-osseous compartments.
Cortical bone was included in the result of segmentation
when there was adjacent extra-osseous mass, evident
discontinuity of the cortical bone, or if the intramedullary
component of the sarcoma reached the internal cortical
layer and enhancement of the periosteum was present.
Tendon and neurovascular bundles were included in the
segmented area if they were completely contained by the
tumoral tissue. Skip lesions and articular recess effusion
or synovitis were not included in the segmented regions.

Similarity between segmented regions
The dice similarity coefficient (DSC) and Hausdorff

distance (HD) were used to evaluate similarity between
results of segmentation. DSC measures spatial overlap
and is a metric for validation of reproducibility; it is com-
monly used for validation of volumetric segmentation in
medical images (11). The absolute value of DSC is difficult
to interpret, but according to Zijdenbos et al. (12) and
Bartko (13), DSC greater than or equal to 0.7 indicates
excellent agreement between two segmented regions.
Based on analysis of the kappa statistic, a DSC result
between 0.61 and 0.80 is considered substantial, and one
between 0.81 and 1.00 is considered almost perfect
or excellent (14). The DSC between two A and B sets,
representing the results of two segmentation methods in
the present study, is defined as

DSC ¼ 2 jAT
Bj

jAj þ jBj

HD is derived by computing the minimum distance
from each point in A to all points in B, and then taking the
maximum of such values over all points in A. Since this
measure is not symmetric, the largest value computed as
above from A to B and from B to A is taken as the more
general value of HD. HD is a parameter that reflects the
worst situation in assessing the similarity of two regions,

because it indicates the maximum discrepancy between
the two contours, even if the discrepancy occurs locally
in a small portion of the segmented regions. Lower HD
values represent smaller distances between the points
on the contours of two results of segmentation being
compared, and therefore, the more similar the results, the
closer to zero is the value of HD.

Statistical analysis
Statistical analysis was performed for DSC, HD, tumor

volumetry, and segmentation time. The similarity of
regions obtained from manual and semiautomatic seg-
mentation techniques was assessed using DSC and HD.
A professional statistician tested the distributions and
applied the statistical tests as adequate for each case.
The t-test for independent samples and Tukey’s multiple
comparison tests were performed to compare DSC and
HD. Mann-Whitney and Kruskal-Wallis multiple compar-
ison tests were performed to compare the volumes of the
segmented regions and segmentation times. Additionally,
intraclass correlation was performed to compare meas-
ured tumor volumes. All statistical tests were performed
using Minitab 17 (Minitab, LLC., USA) and MedCalc 14.8.1
(MedCalc Software, Belgium) software tools and a statis-
tical significance level of 5% (P value p0.05) was defined
for this study.

Results

Intraobserver agreement
The mean DSC was 0.91, with a standard deviation

(SD) of ±0.03 (maximum: 0.97; minimum: 0.83). The
mean HD was 11.74±6.41 mm (maximum: 28.73 mm,
minimum: 3.37 mm). The mean volume of the first manual
segmentation performed by O1 over all cases was 270.1
cm3 (±259.6 cm3) and mean volume of the second
segmentation was 247.3 cm3 (±238.5 cm3). There was
no statistically significant difference between the tumor
volumes of the first and second segmentation exercises
(P=0.881). The ratio between the tumor volumes of manual

Figure 2. Slicer’s GrowCut manual segmentation on axial plane using femoral osteosarcoma magnetic resonance imaging. A, T1
sequence image is on the left and T1 FS GD sequence image is on the right. Manual segmentation of the tumor in axial T1 FS GD
images demarcated by yellow line. B, Same axial T1 FS GD image of (A), after marking the segmented area or ‘‘label’’ by the software
(in green). T1WI: T1 weighting; T1WI FS GD: T1 weighting with fat suppression after intravenous administration of gadolinium.

Braz J Med Biol Res | doi: 10.1590/1414-431X20198962

Manual and semiautomatic segmentation of bone sarcomas 4/10

http://dx.doi.org/10.1590/1414-431X20198962


segmentation of the same cases by O1 was 1.01 (101%),
with SD of ±39% (maximum: 270%, minimum: 76%).
The intraclass correlation coefficient comparison between
these volumes was 0.928 (with 95% confidence interval
0.827 to 0.970).

The average time for manual segmentation was
616.8±390.1 s (maximum: 1811 s, minimum: 175 s) in
the first reading and 518.4±325.1 s (maximum: 1710 s,
minimum: 237 s) in the second. There was no statistically
significant difference when comparing the times for
manual segmentation by O1 (P=0.280). Data of the
manual segmentation exercises of O1 and the related
statistical analysis are reported in Table 2.

Interobserver agreement
In the comparison between O1 and O2, the mean DSC

was 0.90±0.05 (maximum: 0.96; minimum: 0.73); the
mean HD was 14.01±7.18 mm (maximum: 33.40 mm,
minimum: 4.67 mm). In the comparison between O1 and
O3, the mean DSC was 0.89±0.03 (maximum: 0.97;
minimum: 0.84); the mean HD was 14.37±5.49 mm

(maximum: 26.83 mm, minimum: 3.93 mm). There was no
statistically significant difference in relation to the DSC
and HD obtained in the comparison of O1 vs O2 with
those obtained in the comparison of O1 vs O3 (P value of
0.606 and 0.863, respectively).

In the comparison between O2 and O3, the mean DSC
was 0.86±0.05 (maximum: 0.96, minimum: 0.75); the
mean HD was 7.4±9.18 mm (maximum: 36.00 mm,
minimum: 6.16 mm). There was no statistically significant
difference in relation to the DSC and HD obtained in the
comparison of the O1 vs O2 with those obtained in the
comparison of O2 vs O3 (P value of 0.609 and 0.167,
respectively), and also in relation to the DSC and HD for
O1 vs O3 and O2 vs O3 (P value of 0.633 and 0.840,
respectively).

The mean volume was 247.3±238.5 cm3 for O1,
249.5±230.8 cm3 for O2, and 265.3±250.3 cm3 for O3.
There was no statistically significant difference between
the volumes for the three observers (P40.05). The
intraclass correlation coefficient for the comparison of
the volume for O1 vs O2 was 0.996 (95%CI 0.991 to

Figure 3. 3D-Slicer’s GrowCut semiautomatic segmentation steps of a femoral osteosarcoma magnetic resonance imaging case. In the
first column (A, B, and C), the T1WI sequence images are on the left and the T1WI FS GD sequence images are on the right. In the
second (D, E, and F) and third columns (G and H), there are only T1WI FS GD sequence images. A, Yellow rectangular area of
background tissue beyond the inferior margin of tumor. B and C, Area of interest from the tumor tissue within green mark and
background tissue within yellow mark in the extremities of the tumor (B) and in the middle portion of the tumor on the longitudinal axis
(C). D, E, and F, Segmented volume of interest within green mark after GrowCut tool processing in coronal (D), axial (E), and sagittal (F)
planes. G and H, Manual editing of GrowCut tool excluding areas from the volume of interest (within green mark) that do not contain
tumor tissue, as indicated with the blue arrow in (G), and including areas with tumor tissue in the volume of interest, as shown in area
marked in red (H).
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0.998); O1 vs O3 was 0.993 (95%CI 0.983 to 0.997); and
O2 vs O3 was 0.992 (95%CI 0.981 to 0.997).

The segmentation time was compared only between
O1 and O3. The mean time for O1 was 518.4±325.1 s
and for O3 was 634.9±299.2 s (P=0.163).

Semiautomatic segmentation
The mean DSC was 0.88 (±0.05, maximum: 0.96,

minimum: 0.74) and the mean HD was 12.46 mm (4.95
mm, maximum: 22.01 mm, minimum: 5.38 mm) in the
comparison between semiautomatic and manual segmen-
tation. Table 3 gives the data for DSC and HD in the compar-
ison between manual and semiautomatic segmentation.

The mean tumor volume was 247.3±232.5 cm3

(maximum: 1044.6 cm3, minimum: 10.1 cm3) for manual
segmentation and 251.4±240.8 cm3 (maximum: 1047.6
cm3, minimum: 15.3 cm3) for semiautomatic segmentation
(P=0.946).

The segmentation time was different between the results
of manual and semiautomatic segmentation (P=0.05).

In manual segmentation, the mean time was 518.4±325.1 s
(maximum: 1710 s, minimum: 237 s). In semiautomatic
segmentation, the mean segmentation time was 325.8±
124.0 s (maximum: 745 s, minimum: 166 s).

Comparison of segmentation of Ewing sarcoma and
osteosarcoma

When analyzed separately, the results of intraobserver
comparison of segmentation of osteosarcoma were DSC
of 0.92±0.03, mean HD of 11.20±5.93 mm, and mean
volume of 231.4±185.4 cm3 for the first segmentation
and 224.4±167cm3 for the second segmentation. In the
intraobserver comparison, the results for Ewing sarcoma
cases were mean DSC of 0.90±0.002, mean HD of
12.53±7.40 mm, and mean volume of 278.2±323.6 cm3

for the first segmentation and 281.7±328.9 cm3 for the
second segmentation. There was no statistically signifi-
cant difference between the mean volumes of osteosar-
coma and Ewing sarcoma in the first and the second
manual segmentation (P40.05).

Table 2. Dice similarity coefficient (DICE) and Hausdorff distance (HD) descriptive
statistics for manual segmentation by Observer 1.

Manual segmentation Variables

DICE HD max (mm)

First vs second O1 segmentation

Mean±SD 0.91±0.03 11.74±6.41
Median 0.93 9.77
CV (%) 4.12 54.54

Min;Max (0.83; 0.97) (3.37; 28.73)
95%CI (0.90; 0.93) (8.74; 14.74)

O1: observer 1; CV: coefficient of variation; CI: confidence interval.

Table 3. Dice similarity coefficient (DICE) and Hausdorff distance (HD) descrip-
tive statistics for comparison between results of manual and semiautomatic
segmentation.

Segmentation Variables

DICE HD max (mm)

Manual vs semiautomatic O1 segmentation
Mean±SD 0.88±0.05 12.46±4.95
Median 0.90 12.31

CV (%) 5.7 39.7
Min;Max (0.74; 0.96) (5.38; 22.01)
95%CI (0.86; 0.90) (10.14; 14.78)

O1: observer 1; CV: coefficient of variation; CI: confidence interval.
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When the tumors were analyzed separately in inter-
observer comparisons, the results were mean DSCX0.89
and mean HD p15.48 mm (P40.05)

When the tumors were analyzed separately in the
comparison of manual and semiautomatic segmentation,
the results were mean DSC X0.88 and mean HD p12.61
mm (P40.05).

Discussion

To the best of our knowledge, there are no studies
published in the literature that have compared manual and
semiautomatic segmentation of bone sarcomas in MRI or
validated semiautomatic segmentation of osteosarcoma
and Ewing sarcoma. Studies involving the segmentation
of other solid tumors, such as non-small-cell lung carcino-
ma (10) and multiform glioblastomas (9), have obtained
good results in the evaluation of intraobserver reproduci-
bility, using both DSC and HD for comparison.

In this study, we used MRI as the imaging modality for
segmentation of bone sarcomas. MRI is considered the
method of choice for evaluating intra- and extra-osseous
tumor extension in bone sarcomas, and for the assess-
ment of infiltration of adjacent tissues, such as muscles
and neurovascular bundles. MRI is the reference standard
for the evaluation of tumor components, such as cysts,
adipose tissue, fibrous tissue, chondroid tissue, calcifica-
tions with some limitation of sensitivity, and tissue necrosis
(15,16); the representation of such components may be
useful for extraction of data in the context of radiomics.

Three MRI sequences are commonly used in clinical
practice for cases of bone sarcoma: T1WI, T2WI with fat
suppression, and T1WI FS GD. For segmentation, it was
necessary to choose a sequence to delimit the tumor.
According to Baweja et al. (17) in a study that correlated
MRI with surgical findings in bone tumors, bone marrow
involvement is best evaluated in the T1 sequence in the
coronal or sagittal plane, the involvement of soft tissues is
best evaluated in the T2 sequence in the axial plane,
cortical involvement is best evaluated in the longitudinal or
axial plane with T1, and neurovascular involvement is best
evaluated in the T2 or T1WI FS GD sequence in the axial
plane. The T1WI FS GD sequence was chosen in this
study to perform segmentation because this sequence
shows good tissue contrast between the tumor and non-
tumoral tissues, both in the intra- and extra-osseous
compartments. Post-contrast MRI is adequate for the
definition of cystic lesions, the pattern of vascularization of
a tumor, and to confirm necrotic areas. Additionally, the
T1WI FS GD sequence has been used in radiomics in
previous studies (3,18).

The non-fat-suppressed T1WI sequence was used as
an auxiliary tool in segmentation because this sequence
shows excellent contrast between the intraosseous tumor
and preserved bone marrow. However, since tumor tissue

and the surrounding soft-tissue structures both show low
signal in the T1WI sequence, it can be difficult to delimit
the tumor. Another useful contribution of the non-fat-
suppressed T1WI sequence is to evidence the existence
of adipose tissue permeating areas of edema, allowing
differentiation between edema and tumor solid tissue
in extra-osseous compartments (3,15,18–20). T2WI se-
quences usually show high signal in tumor tissue and
perilesional edema, and the interface between these
areas may be obscure; this could cause a tendency to
overestimate the tumor dimensions in T2WI (15,18).
We chose the axial plane for segmentation because this
plane was available in all MRI acquisitions to study bone
sarcomas and regional anatomical relations are well
depicted in this plane. During segmentation, the most
cranial and the most caudal slices of the tumor volume
were not used. Despite the loss of these two slices of
tumor volume, we standardized this procedure to avoid
the potential inclusion of non-tumoral tissue in the volume
of interest, due to partial volume effect.

We included cortical bone in tumor segmentation when
there were signs of cortical tissue rupture or resorption,
in cases of soft tissue components external and internal
to the cortical bone, and in cases in which the medullary
component of the tumor reached the internal cortical layer
and simultaneously there was post-contrast periosteal
enhancement. Kumar and Hari (21) reported that visua-
lization of cortical rupture on T1WI MRI was associated
with involvement of the cortical bone in the tumor’s
histology in 90% of the cases. On the opposite side, when
there was no cortical rupture detected by MRI, only 10% of
the cases had histopathological involvement of the cortical
bone by tumor cells. According to Zimmer et al. (22), cortical
involvement is characterized by increased cortical signal in
MR sequences with loss of bone marrow or soft tissue
interface adjacent to cortical bone. Our criteria for segmenta-
tion are in agreement with these observations. While MRI is
accepted as the most sensitive technique to detect bone
marrow abnormalities, the use of MRI to assess cortical
bone and periosteum abnormalities is less recognized but
has been addressed in the literature (23–27).

Although some studies have identified tumor cells in
peritumoral edema, soft tissue sarcomas (28), and glio-
blastoma (29), in this study, we chose to exclude peritu-
moral edema in the segmentation procedure. This option
is related to the poor conspicuity of the edema that could
potentially decrease the reliability of segmentation. Pre-
vious studies used the same strategy for segmentation of
soft-tissue sarcomas and osteosarcoma xenotransplanta-
tion in murine models (30,31), in which areas of peritu-
moral edema were not segmented. Peritumoral edema
may potentially contain useful information to be extracted
and analyzed, but it would probably be better to evalu-
ate this separately in relation to the solid tumor. We
encourage future studies to verify this hypothesis.

Braz J Med Biol Res | doi: 10.1590/1414-431X20198962

Manual and semiautomatic segmentation of bone sarcomas 7/10

http://dx.doi.org/10.1590/1414-431X20198962


Intraobserver reproducibility of segmentation was excel-
lent. We found no significant difference in DSC and HD
in interobserver analysis. There was also excellent inter-
observer agreement, with high similarity indicated by
DSC higher than 0.7 and close to 1. HD values obtained
from interobserver comparisons were not significantly
different compared with HD obtained from intraobserver
analysis.

There was no significant difference between the
volumes of repeated manual segmentation by the same
observer. Additionally, the intraclass correlation coefficient
was close to 1, indicating excellent intraobserver reproduc-
ibility in manual segmentation.

Interobserver comparison of the volumes of bone
sarcomas showed no significant difference. Correlation
coefficient values of the volume comparisons were close
to 1. In addition, there was no significant difference in the
evaluation of the volume of bone sarcomas when the
observers were evaluated in pairs. This result indicates
high similarity between the segmentation results of the
observers.

The difference in time required by O1 for the two
manual segmentation tasks performed was not significant.
Segmentation time showed no significant difference
between the observers.

The results indicated excellent agreement with high
similarity between manual and semiautomatic segmenta-
tion, with DSC values higher than 0.75. The HD values
obtained were similar to the values observed in the
analysis of intraobserver and interobserver reproducibility,
indicating that, in relation to these parameters, the repro-
ducibility was similar. There was no significant difference
between the volume of bone sarcomas when manual and
semiautomatic segmentation were compared.

The time required for semiautomatic segmentation
was significantly lower than the manual segmentation time.
However, as the P value was in the limit of significance
(P=0.05), more robust studies may be needed to reinforce
our results. Other studies that analyzed segmentation of
solid tumors have also found good similarity in manual and
semiautomatic segmentations and observed a reduction in
time with semiautomatic segmentation (8–10).

When compared separately, the results of segmenta-
tion of osteosarcoma and Ewing sarcoma were also

excellent in intraobserver and interobserver agreement
and without significant differences between the volumes of
segmentation.

Our results have potential application to future research
methodology using radiomic features in the evaluation
of osteosarcoma and Ewing sarcoma. Previous studies
have demonstrated the applicability of radiomics in the
assessment of several types of tumors (32–37). In cases of
bone sarcomas, research in radiomics is still scarce.
Foroutan et al. (31) studied a model of osteosarcoma
xenograft in mice and response after MK1175 and gemci-
tabine therapy. The authors performed manual segmenta-
tion of the tumors on MRI, and quantified volumetric
variation and variation of distribution in ADC maps,
demonstrating a correlation between the increase in signal
in ADC maps and cellular apoptosis, in correlation with
histopathological results. Wu et al. (38) studied manually
segmented high-grade osteosarcomas in computed tomog-
raphy images and analyzed their characteristics in the
context of radiomics. They found that a radiomic nomo-
gram, which combines clinical and radiomic features, was
better to predict survival when compared with only clinical
factors.

There are limitations in the present research. The
study was retrospective and the number of cases was
relatively small. Only a single observer used the GrowCut
tool for semi-automated segmentation and this was the
only observer that measured segmentation time for
comparison of different segmentation techniques. Another
limitation is the fact that, in the interobserver comparison,
only two of the three observers measured the segmenta-
tion time. Recently, deep learning and artificial intelli-
gence strategies have gained attention in the scenario of
research in medical imaging and oncology (39). Deep
learning algorithms do not need segmentation, but this
approach requires a large database for training, which
is difficult to obtain in the case of uncommon neoplasms
such as bone sarcomas.

Our results showed excellent intra- and interobserver
agreement for manual segmentation of osteosarcoma
and Ewing sarcoma. In addition, there was high simi-
larity between the results of manual and semiautomatic
segmentation, with a significant reduction of segmentation
time with the semiautomatic method.
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