
Transcriptomic markers in pediatric septic
shock prognosis: an integrative analysis of gene

expression profiles

Qian Wang1 00 , Jie Huang2 00 , Xia Chen1 00 , Jian Wang3 00 , and Fang Fang3 00

1Anesthesiology Department, Children’s Hospital of Soochow University, Suzhou, China
2Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China

3Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China

Abstract

The goal of this study was to identify potential transcriptomic markers in pediatric septic shock prognosis by an integrative
analysis of multiple public microarray datasets. Using the R software and bioconductor packages, we performed a statistical
analysis to identify differentially expressed (DE) genes in pediatric septic shock non-survivors, and further performed functional
interpretation (enrichment analysis and co-expression network construction) and classification quality evaluation of the DE
genes identified. Four microarray datasets (3 training datasets and 1 testing dataset, 252 pediatric patients with septic shock in
total) were collected for the integrative analysis. A total of 32 DE genes (18 upregulated genes; 14 downregulated genes) were
identified in pediatric septic shock non-survivors. Enrichment analysis revealed that those DE genes were strongly associated
with acute inflammatory response to antigenic stimulus, response to yeast, and defense response to bacterium. A support
vector machine classifier (non-survivors vs survivors) was also trained based on DE genes. In conclusion, the DE genes
identified in this study are suggested as candidate transcriptomic markers for pediatric septic shock prognosis and provide novel
insights into the progression of pediatric septic shock.
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Introduction

Sepsis is the world’s leading cause of death of
children, and it represents a complex disease with
dysregulated inflammatory responses and a high mortality
rate (1). An immune response initiated through an
invading pathogen cannot be controlled to restore home-
ostasis in sepsis, which generates a pathological syn-
drome with sustained excessive inflammation as well as
immune suppression (2). Toll-like receptors, nuclear factor
kB, and cytokines including tumor necrosis factor a,
interleukins 1, 2, 6, 8, and neutrophils all take part in the
generation of sepsis (3). Although there are common
points between adult and pediatric sepsis, crucial differ-
ences do exist in pathophysiology, clinical presentation, as
well as therapeutic approaches (4).

High-throughput transcriptomic data grow rapidly,
enabling gene expression profiling and identification of
prognostic targets in disease. Over the last decade,
several studies have explored the prognosis of
pediatric septic shock by transcriptional profiling using

microarrays (5–8). Integrative analysis based on multiple
transcriptomic datasets could help to discover robust
prognostic candidates. Therefore, in this study, the gene
expression patterns of pediatric septic shock patients
(of survivors and non-survivors) were investigated using
public microarray datasets. The differently expressed
(DE) genes identified were then further interpreted by
enrichment analysis, construction of co-expression net-
works, and receiver operating characteristic (ROC) curve
analysis.

In this study, data pre-processing, identification of
DE genes, ROC analysis, and support vector machine
(SVM) model training were performed using R software
(http://www.r-project.org/) and bioconductor packages
(9). Enrichment analysis and construction of co-expres-
sion networks were also performed using Database
for Annotation, Visualization and Integrated Discov-
ery (DAVID) (10,11) and Cytoscape (12) software,
respectively.
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Material and Methods

Microarray datasets search and selection
In this study, public microarray datasets were

searched from the earliest dataset until Dec 3, 2018
using the keywords ‘‘sepsis’’/‘‘septic shock’’ in the Gene
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) (13). Further selection of the datasets
was performed for subsequent analyses. The selection
criteria were: i) dataset using whole blood for gene expres-
sion analysis; ii) dataset with detailed gene expression
data for both survivors and non-survivors; and iii) dataset
with sample size not fewer than 30. Animal studies and
adult studies were excluded.

Data collection from each eligible dataset was per-
formed by two investigators independently. The data con-
sisted of the sample size, GEO accession, sample source,
raw gene expression data, and platform used. Final data
collection was determined by checking between the two
investigators.

Data analysis methods
Four Affymetrix datasets were included in this study

(3 datasets for training and 1 dataset for testing). Raw
data (CEL files) of the 3 training datasets were down-
loaded from the GEO database, merged, and pre-
processed using the R package ‘‘affy’’, based on the
Robust Multichip Average (RMA) method (14). Hybridiza-
tion probes were then mapped to genes (Entrez IDs)
based on the platform table. Probes not mapping to genes
and probes mapping to multiple genes were excluded. If
two or more probes mapped to the same gene, we
calculated the arithmetic mean of the probe values to
represent the gene expression. Using the R package
‘‘limma’’ (15,16), DE genes in septic shock non-survivors
compared with survivors were identified based on the
following criteria: i) absolute log2 fold change (LFC)
greater than 0.8; and ii) false discovery rate (FDR)-
adjusted P-value less than 0.05.

We further performed functional interpretation (both
gene ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis) of the
DE genes identified by DAVID 6.8 (10,11). The P-value
threshold was set at 0.05 in the GO analysis (17).
Hypergeometric testing (P-value threshold: 0.05) was
used in the pathway analysis (18). Then, calculation of
Pearson’s correlation coefficients was performed be-
tween the DE genes based on their expression levels.
A correlation threshold of 0.8 was used, and highly
correlated gene pairs were chosen to construct the
co-expression network using Cytoscape software, version
3.4.0 (12). Furthermore, using the R package ‘‘pROC’’
(19), we evaluated the classification performance of each
DE gene by ROC curve plotting and calculation of area
under the ROC curve (AUC) values. Then, we performed
recursive feature selection of DE genes using the R
package ‘‘caret’’ (20) and trained an SVM model for
pediatric septic shock prognosis according to the selected
features using the R package ‘‘kernlab’’ (21) (Gaussian
RBF kernel; 10-fold cross-validation). External model
validation was also performed using the testing dataset.

Results

DE genes in pediatric septic shock non-survivors
A total of 8 studies were obtained through the original

search, among which 4 adult studies were excluded. The
remaining 4 microarray datasets (3 training datasets and 1
testing dataset all from the Affymetrix microarrays) (5–8)
were used for subsequent analysis. Table 1 presents
detailed information about the 4 datasets.

For the 3 training datasets, pre-processing resulted
in expression data of 20,464 genes in 35 pediatric
septic shock non-survivors and 175 survivors. A total
of 32 genes were found to be differentially expressed
between non-survivors and survivors across the micro-
array datasets based on the criteria (absolute LFC 40.8,
FDR-adjusted P-value o0.05) (Supplementary Table S1).

Table 1. Microarray datasets used in this analysis.

Dataset GEO accession Sample size Sample source Platform Dataset usage Submission date

Non-survivor Survivor

1 GSE9692 (5) 6 24 Whole blood Affymetrix Human Genome

U133 Plus 2.0 Array

Training 2007

2 GSE26378 (6) 12 70 Whole blood Affymetrix Human Genome

U133 Plus 2.0 Array

Training 2010

3 GSE26440 (7) 17 81 Whole blood Affymetrix Human Genome

U133 Plus 2.0 Array

Training 2011

4 GSE4607 (8) 9 33 Whole blood Affymetrix Human Genome

U133 Plus 2.0 Array

Testing 2006

GEO: Gene Expression Omnibus.
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Figure 1 shows the heat map of expression data for the
32 DE genes in the collection of the 3 training datasets.
Among the 32 DE genes, 18 genes were up-regulated
and 14 genes were downregulated. Table 2 presents the
top 10 most significantly upregulated and top 10 most
significantly downregulated genes. The top upregulated
gene was olfactomedin 4 (OLFM4) (LFC=1.72). OLFM4
is a glycoprotein that functions in innate immunity,

inflammation, and cancer (22). It was suggested to be a
neutrophil subset marker in patients suffering from
septic shock (23). The most downregulated gene was
membrane metalloendopeptidase (MME) (LFC=–1.11).
MME is widely present in organs and tissues, contributing
to the inactivation of many biological peptides (24,25).
Decreased MME expression capacity was detected in the
neutrophils from patients with septic shock (25).

Figure 1. Heatmap of expression data for 32 differentially expressed genes in the collection of 3 training datasets.

Table 2. The 10 most significantly upregulated and most significantly downregulated genes in pediatric septic shock non-survivors.

Entrez ID Gene symbol Gene full name Log2 fold-change False discovery rate-adjusted P-value

Significantly upregulated genes

10562 OLFM4 olfactomedin 4 1.717146732 0.029147425

1088 CEACAM8 carcinoembryonic antigen-related

cell adhesion molecule 8

1.358191894 0.035863019

84419 C15orf48 chromosome 15 open reading

frame 48

1.283283163 0.002649534

1991 ELANE elastase, neutrophil-expressed 1.162470483 0.022391364

5657 PRTN3 proteinase 3 1.104928095 0.005347329

54541 DDIT4 DNA damage inducible transcript 4 1.069842902 0.000011715

5553 PRG2 proteoglycan 2, pro eosinophil major

basic protein

1.01469606 0.000011715

100133941 CD24 CD24 molecule 1.014691224 0.001427259

6241 RRM2 ribonucleotide reductase regulatory

subunit M2

1.001889643 0.014703381

55165 CEP55 centrosomal protein 55 1.00180377 0.001823254

Significantly downregulated genes

4311 MME membrane metalloendopeptidase –1.111678792 0.005267437

10875 FGL2 fibrinogen-like 2 –1.099276289 0.000425565

8843 HCAR3 hydroxycarboxylic acid receptor 3 –1.083432919 0.027926014

100134822 LOC100134822 LOC100134822 –1.065641306 0.003118448

3579 CXCR2 C-X-C motif chemokine receptor 2 –1.028150049 0.001756143

5997 RGS2 regulator of G protein signalling 2 –0.962605787 0.008475327

2215 FCGR3B Fc fragment of IgG receptor IIIb –0.923733902 0.001756143

54504 CPVL carboxypeptidase, vitellogenic-like –0.922107067 0.017614822

2867 FFAR2 free fatty acid receptor 2 –0.84291548 0.015277801

401233 HTATSF1P2 HIV-1 Tat specific factor 1

pseudogene 2

–0.837903188 0.022307329
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Enrichment analysis and co-expression network
construction

For further functional investigation, we performed
advanced analyses (GO and pathway analysis) of the
DE genes. Figure 2A and Supplementary Table S2 show
the results of GO biological process analysis, which were
similar to those reported in the original microarray
studies (5–8). The DE genes were significantly enriched
in 6 GO terms, and the top 3 were ‘‘acute inflammatory
response to antigenic stimulus’’ (P=0.013), ‘‘response
to yeast’’ (P=0.021), and ‘‘defense response to bacterium’’

(P=0.024). In the pathway analysis, when DE genes were
mapped to the KEGG database, no significant pathway was
identified.

We also constructed a co-expression network using
significantly correlated DE gene pairs (correlation coeffi-
cients greater than 0.8). The co-expression network
contained 16 nodes and 23 edges (Figure 2B). We further
extracted sub-networks for the GO enrichment analysis.
One GO term (‘‘chemotaxis’’) was significantly enriched
in the sub-network composed of ENPP2, LOC100134

822, CREB5, CXCR2, and FCGR3B. In the sub-network
containing ELANE, MPO, and PRTN34, 4 significant GO
terms (‘‘response to yeast’’, ‘‘negative regulation of growth
of symbiont in host’’, ‘‘defense response to bacterium’’, and
‘‘response to lipopolysaccharide’’) were identified.

Classification performance evaluation and validation
ROC curves and AUC values suggested that the

top performing DE genes were DDIT4, PRG2, ARH
GEF40, MME, CD24, CEP55, CD69, UHRF1, and KIF11
(Figure 3), with the best single gene’s AUC as great as
0.829. The results of recursive feature selection showed
that 11 genes (Supplementary Table S3) were sufficient
to achieve close to 91% prediction accuracy. Based on
the selected features, we trained an SVM classifier
(pediatric septic shock non-survivors vs survivors) and
evaluated its performance by 10-fold cross-validation
(cross-validation error: 0.133). The SVM classifier per-
formed well in the training dataset (AUC=0.986, Figure 4A).
The pre-processed testing dataset was also used for
independent validation, and the SVM classifier was

Figure 2. Enrichment analysis and co-expression network construction results. A, Summary of the gene ontology analysis results
for the differentially expressed (DE) genes in pediatric septic shock non-survivors. B, Co-expression network of highly correlated DE
gene pairs in pediatric septic shock non-survivors (correlation coefficients 40.8). Edge widths are proportional to the correlation
coefficients.
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constructed according to the training datasets, showing
modest performance in the testing dataset (AUC=0.722,
Figure 4B).

Discussion

Many genes are reported to be associated with septic
shock mortality (23,26,27). It is a challenge currently to
identify the most important candidate genes and pathways
in septic shock prognosis. Growth of high-throughput
transcriptomic data has enabled the integrative analysis
of multiple datasets to discover robust candidates for
prognosis and treatment. Therefore, to identify potential
transcriptomic markers in pediatric septic shock prog-
nosis, we performed an integrative analysis of multiple
public microarray datasets.

In this study, 32 DE genes were identified in pediatric
septic shock non-survivors, among which 18 genes were

upregulated and 14 were downregulated. The most
upregulated gene was OLFM4. The most downregulated
gene was MME. Among the 32 DE genes identified,
OLFM4 was reported to be present in only 20–25% of
peripheral blood neutrophils and identified a subset of
human neutrophils (28). MME is widely present in organs
and tissues, contributing to the inactivation of many
biological peptides (24,25). Decreased MME expression
capacity was detected in the neutrophils from patients with
septic shock (25). CXCR2 is a key stimulant to immune
cell migration as well as recruitment, especially for
neutrophils. The CXCR2 signaling pathway is suggested
to be a potential target for modification of neutrophil
dynamics in inflammatory disorders (29). CEACAM8
belongs to CEA family, which is known to function as
intercellular adhesion molecules. CEACAM8 is suggested
to be involved in the regulation of the neutrophil adhesion
(30). ELANE encodes neutrophil elastase, which is a

Figure 3. Receiver operating characteristic curves of top performing differentially expressed genes in prognostic prediction of pediatric
septic shock. A, DDIT4; B, PRG2; C, ARHGEF40; D, MME; E, CD24; F, CEP55; G, CD69; H, UHRF1; I, KIF11. AUC: area under the
receiver operating characteristic curve.
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cytotoxic serine protease stored in azurophil granules and
released after neutrophil activation. ELANE also functions
in neutrophil extracellular traps (31). Neutrophil dysfunc-
tion is known to promote sepsis, and the alterations of
chemokines, cytokines, as well as other mediators lead
to neutrophil dysfunction in sepsis. Thus, the DE genes
identified in this study, such as OLFM4, MME, CXCR2,
CEACAM8, and ELANE, probably take part in pediatric
sepsis development by regulation of neutrophil function (32).

Furthermore, a series of DE genes identified in this
study have not yet been investigated in pediatric septic
shock prognosis, and the exact contributions of these
genes to pediatric septic shock are not yet clear. Since
these DE genes could serve as potential transcriptomic
markers for pediatric septic shock, further research is
required.

In the enrichment analysis of the 32 DE genes,
‘‘response to yeast’’ (P=0.021) was the second most
enriched GO term. This is interesting because yeast
infection has been reported to cause sepsis (33).

According to the literature, machine learning methods,
including SVM, usually have high prediction accuracy
(34). Hence, in this study, we trained an SVM classifier
(pediatric septic shock in non-survivors vs survivors) using
gene expression data to improve the performance of
prognostic prediction. The SVM classifier performed well
in the training dataset with an AUC value of 0.986
(Figure 4A), compared with Pediatric Sepsis Biomarker
Risk Model-II (35). However, it showed modest perfor-
mance in the testing dataset (AUC=0.722, Figure 4B),
suggesting that there could be an over-fitting problem. To
the best of our knowledge, no gene expression-based
SVM model has yet been reported for pediatric septic
shock prognostic prediction. We hope the predictive
model trained in this study facilitates better prognosis
and treatment of pediatric septic shock.

Because of the existence of several limitations, the
results of our study should be considered cautiously.
First, the sample size used in our study was insufficient.
Second, stratified analyses according to potential influen-
tial factors (age, sex, and platform usage) could not be
performed in this study due to the lack of corresponding
data. Third, both the biological knowledge base and
the pathway data are currently incomplete. In considera-
tion of the reported impact of age and sex on pediatric
sepsis patients (36), stratified analyses, based on factors
including age, sex, and platform usage, are required in
the future. Further analysis based on larger sample sizes
is also necessary. Moreover, to explore the exact roles
of candidate DE genes in pediatric septic shock, experi-
mental verification and functional studies of these DE
genes must also be performed in the future.

In conclusion, consistently DE genes in pediatric
septic shock non-survivors were identified in this study,
and they could be potential transcriptomic markers. GO
analysis suggested that these candidates were strongly
correlated with acute inflammatory response to antigenic
stimuli, response to yeast, and defense responses to
bacteria. We also trained an SVM classifier (non-survivors
vs survivors) using candidate transcriptomic markers.
These results provided novel insights into the prognosis
of pediatric septic shock and promoted the generation of
prognostic gene sets.
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