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1 Introduction
The use of natural dyes in food has increased recently due 

to the marketing advantages with the development of natural 
ingredients and the consumer concern about the harmful 
effects of synthetic pigments on health (DUFOSSÉ, 2006). 
Pigments are derived from natural sources such as plants, 
insects, and microorganism. There has been much interest in 
the development of new natural colorants for use in the food 
industry owing to strong consumer demand for more natural 
products. It is technologically feasible to prepare new colorants 
from locally known plants or microorganisms that have not yet 
been investigated scientifically (WISSGOTT; BORTLIK, 1996).

The genus Monascus involves three main species (M. pilosus, 
M. purpureus, and M. ruber) pertaining to the family 
Monascaceae and class Ascomyceta, whose most important trait 
is the ability to produce secondary metabolites of polyketides 
structures, some of them with yellow, orange, and red 

pigmentation. Easily found in many ecosystems, this fungus 
was originally used in China and Thailand in the preparation 
of angkak, dark red colored rice with various uses. It gives color 
to other products such as wine, cheese, and meat; it also serves 
medicinal purposes and can be used as a preservative in meat 
(DUFOSSÉ et al., 2005; MAPARI, 2005).

The traditional process of pigment production involves 
solid state fermentation. Submerged techniques for Monascus 
pigment production have been used to minimize problems of 
space, scale, and process control (HAMDI; BLANC; GOMA, 
1996; VENDRUSCOLO et al., 2010).

Some pigments produced by Monascus sp. are intracellular 
and insoluble in water, but growth conditions such as nitrogen 
source, pH, and aeration can result in the formation of 
extracellular and water soluble pigments (HAJJAJ et al., 1998).

Resumo
O estudo e o uso de pigmentos naturais nas indústrias de alimentos têm aumentado nos últimos anos devido à toxicidade apresentada pelos 
pigmentos de origem artificial. Monascus ruber é um fungo filamentoso conhecido por produzir pigmento vermelho, laranja e amarelo 
sob diferentes condições de cultivo. Paralelo ao crescimento do mercado de alimentos naturais cresce o de biocombustíveis, como é o caso 
do biodiesel, que gera concomitantemente um aumento na produção de glicerina, podendo esta ser utilizada em bioprocessos. O objetivo 
deste estudo foi utilizar glicerina e glicose como substratos para produção de pigmentos naturais em biorreator. O cultivo foi realizado em 
biorreator Bioflo III, com volume útil de 4 L, equipado com controle de temperatura, pH, vazão de aeração e frequência de agitação. A maior 
produção de pigmentos foi observada em 60 horas de cultivo com 8,28 UDO510 de pigmento vermelho. O pH permaneceu na faixa de 5,45 
a 6,23, favorecendo a liberação de pigmentos vermelhos. O estudo realizado mostra a viabilidade da produção de pigmentos naturais por 
Monascus ruber, em biorreator, utilizando resíduos da produção de biodiesel, sem tratamento prévio.
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Abstract
The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. 
Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of 
health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase 
in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in 
the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working 
volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture 
with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study 
shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous 
treatment as a substrate.
Keywords: Monascus ruber; glycerin; bioreactor.
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consumption and production levels, and they are estimated 
to reach 30,000 t per year. This indicates that the commercial 
viability of biodiesel goes beyond the consumption of this extra 
volume of glycerin seeking large-scale applications and adding 
value to the production chain (MOTA; SILVA; GONÇALVES, 
2009).

With the growth of biodiesel production, it is important to 
develop new applications for glycerin and expand the existing 
ones.

Based on the aforementioned, the main objective is to study 
the production of pigments by the fungus Monascus ruber in 
a bioreactor using glycerin obtained as a by-product from a 
biodiesel industry as a substrate.

2 Materials and methods

2.1 Microorganism

Monascus ruber CCT 3802 was obtained from the Tropical 
Culture Collection André Tosello (Campinas-SP, Brazil). The 
stock culture was maintained on potato dextrose agar (PDA) 
tubes. Tubes and Roux bottles were inoculated, incubated at 
30 °C, for 7 days, and subsequently stored at 4 °C.

2.2 Culture medium and inoculum preparation

The growth medium contained per liter: 10  g glucose, 
10 g glycerin, 5 g glycine, 5 g K2HPO4, 5 g KH2PO4, 0.1 g CaCl2, 
0.5 g MgSO4.7H2O, 0.01 g FeSO4.7H2O, 0.01 g ZnSO4.7H2O, and 
0.03 g MnSO4.H2O

 (PASTRANA et al., 1995).

The glycerin used in this study was obtained from a 
biodiesel production plant located in Brazil. Crude glycerin 
is a co-product of biodiesel production and was used without 
purification or pretreatment.

The inoculum was obtained by the germination of 
Monascus ruber spores suspended in 1 L baffled flasks, containing 
0.4 L of culture medium incubated at 30 °C, in an orbital shaker 
at 120 min-1 for 60 hours (VENDRUSCOLO et al., 2010).

The batch runs were performed in a Bioflo III reactor (New 
Brunswick Scientific, New Jersey, USA) with 4 L of working 
volume. After sterilization, 0.4 L of the inoculum culture 
was filled into the bioreactor containing 3.6 L of medium 
(VENDRUSCOLO  et  al., 2012). The following operational 
conditions were kept constant: temperature at 30 °C, stirring 
speed of 350 rpm, and aeration rate of 1 vvm. The initial pH of 
the medium was adjusted to 6.5 with HCl or NaOH.

The end of the fungal culture was defined when the 
production of pigments decreased and the concentration of 
biomass remained constant.

2.3 Biomass concentration

The biomass was quantified gravimetrically. Each sample 
(10  mL of culture medium) was weighed on an analytical 
balance after being vacuum filtered through previously weighed 
quantitative filter paper (J. Prolab, Brazil), and the retained 
material was submitted to microwave (Consul, Brazil) drying 

Changes in the Monascus sp. culture medium pH alter the 
proportion between the formation of different pigments and 
extracellular production (MUKHERJEE; SINGH, 2011).

Extracellular pigments are preferred because they are soluble 
in the medium in which they are produced, and downstream 
processes are simpler and cheaper (VELMURUGAN  et  al., 
2010). However, the development of less expensive processes 
for the production of natural pigments is one of the challenges 
to enable production in large scale. The cost of the substrate has 
an important contribution to the overall production cost, and it 
can be minimized by using low-cost organic waste.

The production of Monascus pigments in submerged 
cultures has been investigated using glucose as main substrate. 
However, there are studies reporting the use of alternative 
substrates such as ethanol (HAMDI et al., 1997) and agricultural 
waste. Red pigments have been obtained from growth on 
solid medium of cassava (BABITHA; SOCCOL; PANDEY, 
2006), corn syrup (HAMANO; KILIKIAN, 2006), wheat flour 
(DOMÍNGUEZ-ESPINOSA; WEBB, 2003), shrimp flour and 
crab shell (WANG et al., 2002), pear juice (HAMDI; BLANC; 
GOMA, 1996), and grape waste (SILVEIRA; DAROIT; 
BRANDELLI, 2008).

Biodiesel is produced by transesterification of a triglyceride 
with a mono-alcohol (methanol or ethanol) in the presence of 
a catalyst forming mono-alkyl esters and glycerol. Brazil will 
become a major producer and consumer of biodiesel for two 
reasons: first, the use of alcohol to fuel cars has long tradition 
in the Brazilian culture and, secondly, the conditions for 
cultivating oleaginous plants are extremely favorable in many 
areas. Furthermore, the agricultural know-how to grow these 
plants is available, and also, large areas of cultivatable land have 
not yet been explored (SILVA; MACK; CONTIERO, 2009).

Glycerin is formed as a by-product of this reaction. There is 
a wide range of biotechnology products with high added value 
such as 1,3 propanediol and biosurfactants (AMARAL et al., 
2009), citric acid (IMANDI et al., 2007) and ethanol (JARVIS; 
MOORE; THIELE, 1997), which can be produced using 
glycerin. The high amount of glycerin generated from biodiesel 
production, in Brazil and the world, means an abundant and 
cheap source of renewable raw materials in the coming years 
(MOTA; SILVA; GONÇALVES, 2009).

Glycerin is successfully used as carbon source to produce a 
variety of microbial metabolites. Enteric bacteria of the genera 
Klebsiella, Enterobacter, Clostridium, and Citrobacter degrade 
glycerin to obtain 1,3 propanediol, which is a monomer used 
to produce polyesters such as propylene. The production of 
biosurfactants by microorganism, such as Pseudozyma antartica, 
Rhodococcus erythropolis, Bacillus circulans, Candida bombicola, 
and Pseudomonas aeruginosa, using glycerin obtained as by 
product of biodiesel as a substrate is viable (AMARAL et al., 
2009).

For each 90 m3 of biodiesel obtained by transesterification 
in Brazil, approximately 10 m3 of glycerin are generated. The 
projections show a production of about 250,000 t each year with 
the introduction of B5 (fuel: 5% biodiesel and 95% petrodiesel) 
in 2013. These figures are much higher than the current 
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1 dPp
X dt

µ =
	

(4)

where μp is the specific production rate of red pigments 
(UA510.g

–1.h–1), X is biomass (g.L–1) at time t, P is production of 
red pigment (UA510), and t is time (hours).

The specific growth rate was calculated using Equation 5, 
according to the methodology proposed by Le Duy and Zadic 
(1973).

1 *x
dX

X dt
µ =

	
(5)

where μx is the specific growth rate (h–1) and X is biomass (g.L–1) 
at time t.

3 Results and discussion
The kinetics of biomass and pigment production are 

presented in Figure  1. The maximum yield of pigments was 
observed after 60 hours of cultivation with the formation of 
8.28 UA510 of red pigment and 7.13 UA400 of yellow pigment 
and after 72 hours of cultivation with production of 7.26 UA470 
of orange pigment.

The cultivation time was 72 hours, and the pigment 
production was growth associated (HAJJAJ  et  al., 1998; 
LEE et al., 2001). Figure 2 shows the specific growth rate (µx) 
and the specific production rate of red pigments (µp) obtained 
in the cultivation, indicating that pigment production is growth 
associated.

In previous studies (MEINICKE et al., 2012), maximum 
production of 7.38 UA of red pigments in flasks using glycerol as 
the only synthetic substrate was observed. Pastrana et al. (1995) 
studied the production of pigments in a 20 L bioreactor using 
glucose as a substrate, and they obtained 9.7 UA of red pigment.

The optimum conditions of cultivation in a 3 L bioreactor 
obtained by Lee  et  al. (2001) were: 5.9  g.L–1 of biomass and 
13.37 UA510 of red pigments, in 80 hours of cultivation.

at 180 W for 15 minutes (PEREIRA; KILIKIAN, 2001). After 
cooling in a desiccator for 15 minutes, it was weighed in order 
to determine the dry weight of the biomass retained on the 
filter paper.

2.4 Quantification of pigments

The pigments were quantified using a spectrophotometer 
(SP-1100 Series Model SP-105, Tecnal, Brazil). The concentration 
of extracellular pigment was estimated by measuring the 
absorbance of filtrates at 510  nm (red pigments), 470  nm 
(orange pigments), and 400 nm (yellow pigments) (JUZLOVÁ; 
MARTÍNKOVÁ; KREN, 1996; KIM et al., 2002). The pigments 
produced by Monascus ruber CCT 3802 were expressed in 
absorbance units (UA).

2.5 Kinetic parameter

The maximum specific growth velocity was calculated from 
the slope of the linearized curve of logarithm residual biomass 
over time, according to Equation 1.

ln(X) = ln(X0) + µ
máx

t	 (1)

where X is the biomass in the exponential phase (g.L–1); X0 is 
the biomass in the initial exponential phase (g.L–1); µmáx is the 
specific growth velocity (h–1) and t is time (hours).

The maximum productivity of cells was calculated by the 
difference between the greatest amount of biomass at a time t, 
and the initial amount of biomass divided by the corresponding 
period of time, as seen in Equation 2,

( ) ( )0

0

–

–
tMÁX t

cells

X X
P

t t
=

	

(2)

where Pcells is the maximum productivity of biomass at the period 
of time (t – t0) (g.h–1); XMÁXt is the maximum amount of biomass 
at time t; Xto is the amount of biomass at time t0; t is the time 
to achieve the maximum value of biomass; and t0 is the initial 
time of cultivation.

The maximum productivity of pigments was calculated by 
the difference between the greatest amount of pigment (UA510) 
at a time t, and the initial amount of pigments divided by the 
corresponding period of time, as seen in Equation 3,

( ) ( )0

0

–

–
tMÁX t

M

UA UA
P

t t
=

	

(3)

where PM is the maximum productivity of pigments at the 
period of time (t – t0) (UA. h–1); UAt is the maximum amount 
of pigment at time t; UAt0 is the amount of pigment at time t0; t 
is the time to achieve the maximum value of UA; and t0 is the 
initial time of cultivation.

The specific production rate of red pigments was calculated 
using Equation 4, according to the methodology proposed by 
Le Duy and Zadic (1973).

Figure 1. Biomass and pigments production kinetics using glucose 
and crude glycerin as substrate.
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The specific growth rate (µx) obtained by Hamdi, Blanc and 
Goma (1996) was 0.1 and 0.05 h–1, and the specific production 
rate of red pigments was 0.08 and 0.2 UA.g–1.h–1. The specific 
production rate of red pigments increased continuously with red 
pigment(s) formation and reached 7.85 at the end of the culture.

In a 20 L bioreactor, Pastrana et al. (1995) found a maximum 
specific growth of 0.04 h–1 and 0.08 UA.g.h–1 of maximum 
specific production rate of red pigments in a culture that lasted 
180 hours using Monascus ruber and glucose as a substrate.

4 Conclusions
The results obtained in this study show that crude glycerin 

derived from biodiesel production has a high potential for 
pigment production. The greatest production of red pigments 
obtained using glycerin and glucose as substrates was 8.28 UA510 
with a productivity of 0.13 UA510.h

–1 and 2.15 g.L–1 of biomass. 
The production of pigments is growth associated. The nitrogen 
source and the pH had great effects favouring the production 
of red pigments and Monascus sp. growth.
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