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1 Introduction
Celiac disease (CD) is a chronic intestinal malabsorption 

disease characterized by life-long intolerance to materials 
such as prolamins in wheat (gliadin), barley (hordein), rye 
(secalin), and possibly oats (avidins), due to genetic factors 
(Murray, 1999). Celiac disease causes immunologically mediated 
inflammatory injury of the small intestinal mucosa, which leads 
to malabsorption of nutrients and gastrointestinal disorders 
(Kagnoff, 2005). Currently, studies have shown that the disease 
affects approximately 1% of the world population (Catassi & Fasano, 
2008; Mustalahti et al., 2010). The only current remedy is a life-long 
total exclusion of gluten and other related proteins from the diet. 
The European Union imposes a regulation stating that GF foods 
which are consisted of naturally GF ingredients should contain 
less than 20 ppm gluten (i.e., 10 ppm gliadin or 1 mg gliadin 
per 100 g) (Thompson, 2001). However, dough produced in the 
absence of gluten presents poor rheological properties, affecting 
the final quality. Gluten is a protein complex capable of retaining 
carbon dioxide, and it confers unique properties to yeast-leavened 
baked goods. Gluten is composed of two main groups of protein 
fractions: gliadins, which ensure the viscosity of the dough, and 
glutenins, responsible for dough elasticity (Becker et al., 2007). 
Baking without gluten is a technological challenge, owing to GF 
flours’ inability to form cohesive and elastic doughs. Additionally, 
the unique characteristics of wheat gluten makes it hard to find 
raw materials, additives, or ingredients that can entirely replace 
it and at present, many GF products available in the market 
have low nutritional properties, poor taste, and inferior quality 
(Pszczola, 2012). In the past few years, the use of alternative 
ingredients including starches (Tsatsaragkou et al., 2014), GF 
flours (Lemos et al., 2012; Wronkowska et al., 2013), hydrocolloids 

(Sabanis & Tzia, 2011; Nicolae et al., 2016), proteins (Ziobro et al., 
2016), enzymes (Yano, 2012; Palabiyik et al., 2016), and emulsifiers 
(López-Tenorio et  al., 2015), is allowing an improvement in 
dough rheological characteristics. More recently, novel processing 
technologies such as gluten proteolysis and sourdough fermentation 
(Stefańska et al., 2016; Różyło et al., 2016), freezing and partial 
baking technologies (Mezaize and othera 2010, Sciarini et al., 2012), 
and low-gliadin wheat breeding (Barro et al., 2016) have proved 
to be promising alternative techniques to enhance gluten‑free 
bread (GFB) quality. These innovative technologies provide 
solutions towards the improvement of GF dough and products.

This review focuses on the recent approaches undertaken 
in GF baking and presents alternative grains and starches, 
innovative techniques, new additives, as well as combined uses 
of these elements towards the improvement of GF products.

2 Alternative gluten-free flours and starches
Over the past decade, various products have been used 

to replace gluten, including cassava, potato, or rice starches, 
cereals like maize, rice or sorghum flours, and other innovative 
functional materials such as pseudocereals, legume, seeds, nuts 
and fruit-based ingredients, as described in Table 1.

Starches, play an important role in bread baking processes. 
During bread baking, starch granules gelatinize and have the 
ability to trap air bubbles, facilitating gas retention during 
fermentation (Hug-Iten et al., 2001). Rice and maize flours, along 
with various techniques or additives have also been applied to 
improve physicochemical properties, acceptance, and shelf life 
of dough and bread (Therdthai et al., 2016; Hager et al., 2012b).
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Sorghum has been used in formulations to diversify GF bakery 
products and Onyango et al. (2011) have reported promising 
results with starch-based (corn, potato, rice, or cassava starches) 
formulation that was made of up to 70% sorghum. Alternative 
cereal ingredients such as millet and teff exhibited promising 
properties in GF formulation that could improve the quality 
of GF goods. Dough and bread formulated with millet flour 
presented low specific volume and high bread hardness compared 
to the control (Sayed et al., 2016). Teff holds excellent nutritional 
qualities, however, bread prepared with 100% teff flour showed 
a dense structure and low specific volume (Hager et al., 2012a). 
Technology approaches such as hydrocolloids (Hager & Arendt, 
2013) or sourdoughs additions (Campo et al., 2016) provide a 
way to improve these defects.

Quinoa and amaranth contain higher proportions of 
soluble dietary fibers (DFs) than cereals, with high contents 
of pectic substances and xyloglucans, respectively, providing 
a good functional substitute for gluten (Lamothe et al., 2015). 
Replacement of starch with whole amaranth flour (Lemos et al., 
2012) and buckwheat flour (Wronkowska et al., 2013) not solely 

improved the nutritional value of GFB, but also yielded desirable 
final quality. Turkut et al. (2016) replaced buckwheat flour with 
increasing levels of quinoa flour and observed an increasing 
dough viscosity due to higher amount of soluble dietary fiber 
content compared to buckwheat flour, which would compensate 
the structure loss associated to absence of gluten. Miñarro et al. 
(2012) investigated the characteristics of four GF formulations 
made with chickpea flour, pea protein isolate (PPI), soya flour, 
and carob germ flour to evaluate a potential substitution of soya 
protein by other legume proteins. Carob germ flour bread showed 
the lowest specific volume value (2.51 cm3/g), even though it 
displayed good batter rheological properties. The results also 
showed that bread produced with chickpea flour yielded good 
results for all the parameters studied, indicating that it could 
possibly substitute soya flour.

Interesting results have been achieved by incorporating 
seeds, nuts and acorn flour.

According to Steffolani et al. (2014), bread containing 15% chia 
flour showed lower specific volume and increased hardness. However, 

Table 1. Summary of alternative materials for gluten-free bread improvement.

GF materials Additional ingredient/flour treatment Results References
Cereal flours

Sorghum Cassava, maize, potato or rice starch Decreased crumb firmness, chewiness
Increased cohesiveness, springiness, resilience

(Onyango et al., 2011)

Millet Low specific volume, sensory score, high bread hardness (Sayed et al., 2016)
Teff Low specific volume (Hager et al., 2012a)

Pseudocereals
Amaranth Cassava starch Increased dietary fiber content, iron content

Low specific volume
(Lemos et al., 2012)

Quinoa Presented similar bake loss%, specific volume, protein 
content to control

(Turkut et al., 2016)

Buckwheat Increased loaf specific volume, color, crumb softness (Wronkowska et al., 2013)
Legumes
Chickpea High specific volume, softness (Miñarro et al., 2012)
Soy flour High sensory appearance (Miñarro et al., 2012)

Carob germ Low volume, softness (Miñarro et al., 2012)
Seeds

Chia seed Dry or pre-hydrated Low specific volume and less weight loss (Steffolani et al., 2014)
Blackcurrant seed Defatted Increased loaf volume, nutritions, softness (Korus et al., 2012)
Strawberry seed Defatted Increased loaf volume, sensory acceptance, nutritions

Nuts
Tiger nut milk Increased specific volume, crumb softness, sensory 

characteristics
(Aguilar et al., 2015)

Tiger nut milk
by-product

Impaired bread quality

Tiger nut flour Bread characteristics similar to controls
Acorn Pectin and guar gum Increased volume, sensory acceptance, nutritional values

Slower staling
(Korus et al., 2015)

Fruits
Green plantain flour Rice flour and wheat starch Increased resistant starch content

Improved functional properties
(Sarawong et al., 2014)

Orange pomace Increased total fibre content (O’Shea et al., 2015)
Apple pomace Rice flour, cassava starch Increased viscosity, dietary fiber content (Rocha Parra et al., 2015a)
Apple pomace A suitable combination with water produced enough 

specific volume and sponginess
(Rocha Parra et al., 2015b)
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these effects were attenuated when the chia was incorporated as a 
seed. Moreover, chia flour addition generated a darker crust and 
crumb, less appreciated by consumers than breads produced with 
chia seeds. Korus et al. (2012) reported that the incorporation 
of defatted strawberry (DS-ST) significantly increased the loaf 
volume while defatted blackcurrant (DS-BC)-containing breads 
generated opposite results.

Chestnut flour was tested as a potential viable flour in GFB. 
Recently, spontaneously fermented chestnut flour sourdoughs have 
been demonstrated efficient on improvement of bread specific 
volume and crumb hardness (Aguilar et al., 2016). Aguilar et al. 
(2015) incorporated different tiger nut-derived products (tiger 
nut milk, tiger nut milk byproduct, tiger nut flour) into a corn 
starch-based GFB formulation to substitute the allergenic 
soya flour. Physicochemical properties of bread showed that 
the quality of bread formulations elaborated with these three 
derivants followed the order of tiger nut milk > tiger nut flour 
> tiger nut milk byprduct. Korus et al. (2015) included different 
proportions of debittered acorn flour into a starch-based bread 
recipe, along with pectin and guar gum. Promising results showed 
higher volume, slower staling and better crumb characteristics 
as well as good sensory acceptance. Addition of limited amounts 
of acorn flour not only strengthened dough structure but also 
enriched bread with proteins, minerals, and DFs.

Considering the nutritional importance of fruits, ingredients 
such as unripe banana (Sarawong et al., 2014) and orange pomace 
(O’Shea et al., 2015) have been tested in GFBs. Recently, Rocha 
Parra et al. (2015a, 2015b) developed an apple pomace-enriched 
formulation of GF baked product along with cassava starch and 
rice flour. The authors optimized the level of apple pomace and 
water and explained the interaction between apple pomace and 
starch from a microstructural point of view.

3 Approaches for improvements of dough and bread
Usually, patients with CD must follow a strict GF diet, typically 

involving a lower nutrition intake than that taken by healthy 
individuals. Owing to the lack of gluten, which can hold water 
but also form the matrix to embed the starch, GFBs commonly 
have poor structure and quality (Zannini et al., 2012). A range 
of additives has been studied to solve this issue.

3.1 Nutritional and functional ingredients

DFs have been widely studied for their nutritional and 
functional benefits in GFB formulations, owing to their water 
binding capacity, gel forming ability, fat mimetic properties, 
and textural and thickening effects (Tsatsaragkou et al., 2016). 
Studies have been performed on the effects of insoluble fibers 
on texture and sensory acceptability of GFB and the length or 
partical size also do contributions (Martínez et al., 2014). Dough 
cohesion and starch pasting properties were also influenced 
by fiber addition (pea fiber, oat bran) (Aprodu & Banu, 2015), 
owing to their high water-binding capacity to imparting dough 
viscosity and starch gelatinization for bread making (Capriles 
& Arêas, 2014).

Soluble fiber and resistant starch (RS) enrichment can 
decrease the glycemic response of GFB, which is highly desirable 
for individuals with concomitant CD and insulin-dependent 
diabetes. Formulations with functional soluble fibers such 
as β-glucan and psyllium have been studied intensively as a 
way to assist gut regulation and lower serum LDL cholesterol 
concentrations (Gunness & Gidley, 2010.)

Prebiotics such as inulin, oligofructose, and RS are the 
most widely researched functional DFs for GFB production. 
According to Capriles & Arêas (2013), GFB with increasing 
levels (4%, 8%, 10%, and 12%) of inulin-type fructans (ITFs) 
showed higher specific volume below 10%, while observing a 
decline above 10%. The authors suggested that ITFs can form a gel 
structure and retain CO2 in the same way as some hydrocolloids. 
Different degrees of polymerization (DP) of inulin also affect 
the quality of the bread. Generally, lower DP of of inulin has 
stronger effects than elevated ones (Ziobro et al., 2013). RS plays 
many functional roles and can not only reduce the energy of 
food and and enhance digestive functions but also improve 
bread quality (Witczak  et  al., 2016). In addition, RS caused 
no increase in crumb firmness but improved its elasticity and 
porosity (Tsatsaragkou et al., 2014).

3.2 Additives in gluten-free bread making

Additives such as hydrocolloids, proteins and enzymes 
(Table 2) have also been applied in GF bread making with the 
intention of improving the rheological properties and final 
quality of bread.

Hydrocolloids are often used as a thickening agent, binding 
water and increasing dough viscosity, for better volume, texture, 
and final quality of bread (Mir et al., 2016). HPMC and xanthan 
gum (XG) are the most widely used hydrocolloids in GF 
formulation due to their capacity to improve the quality of the 
products (Hager & Arendt, 2013). Other hydrocolloids such as 
guar gum, CMC, locus bean gum and agarose are also used in 
GF doughs. Recently, other hydrocolloids like cress see gum 
(Naji-Tabasi & Mohebbi, 2015) and sodium carboxymethyl 
cellulose (NaCMC) (Nicolae et al., 2016) have been used as novel 
gluten substitutes which obtained promising final bread quality.

The incorporation of protein-based ingredients from different 
sources like legumes, egg, and dairy in GF doughs has been a 
promising topic. Details about the proteins from these sources 
were shown in Table 2. Addition of proteins can not only enhance 
the functional and nutritional properties of GF products but 
also improve sensory quality by increasing Maillard browning 
and flavor (Deora  et  al., 2015). Ziobro  et  al. (2016) checked 
the effects of selected protein isolates (albumin, collagen, pea, 
lupine, and soy) and concentrates on the structure and quality 
of GFB without the introduction of any other structure forming 
additives such as guar gum and pectin. They found that replacing 
gums with proteins generated changes in crumb structure and 
yielded a darker bread. Formulations deprived of plant gums 
allowed to produce breads with the required quality parameters, 
low in or even free of structure-forming agents but enriched in 
amino acids.
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Another novel protein, bovine plasma proteins, has been 
incorporated into GF formulations with different process 
[by ultrafiltration and freeze-drying operations (PUF), with the 
addition of sucrose (PUFS), or inulin (PUFI)]. All the breads 
showed improvements in rheological properties and related 
product attributes (Furlán et al., 2015). However, incorporation 
of bovine serum albumin into rice based dough, along with 
soymilk, inhibited the fermentation and generated bread with 
crust hollowing (Nozawa et al., 2016).

Special promising protein including whey protein particles 
at the mesoscopic scale, zein and caroubin provided novel 
substitutes for preparation of GFB. Details about these studies 
have been reported by the review of O’Shea et al. (2014).

Enzymatic approaches are often used to enhance the GF 
dough-handling properties and to improve the final quality and 
shelf life of breads. Starch-modifying enzymes [amylase and 

cyclodextrin glycosyltransferase (CGT)] and protein modifying 
enzymes (crosslinking enzymes and proteases) are often added 
in GFB formulations (Renzetti & Rosell, 2016).

Crosslinking enzymes including transglutaminase 
(TG, EC 2.3.2.13), glucose oxidase (GO, EC1.1.3.4), tyrosinase 
(EC 1.14.18.1) and laccase (EC 1.10.3.1) have been prevalently 
used for the development of GFBs.

According to Pongjaruvat et al. (2014), the volume of rice 
bread containing 0.1% TG was more competitive than the one 
obtained with the wheat control. Conversely, increasing TG 
concentrations generated a deteriorating effect on bread volume 
and increased crumb hardness and chewiness. Bread prepared 
with microbial TG (1 U/g) and guar gum (30 g/kg) possessed 
desirable quality (Mohammadi et al., 2015). Aprodu & Banu (2015) 
added GO at 0.1% to a fiber-enriched GF dough and observed 
an increase in starch gelatinization accompanied by a decrease 

Table 2. Additions used in gluten-free formulations.

Category Additions References

Hydrocolloids

HPMC (Hager & Arendt, 2013)
XG (Hager & Arendt, 2013)

Guar gum (Mohammadi et al., 2014)
CMC (Sciarini et al., 2012)

Cress seed gum (Naji-Tabasi & Mohebbi, 2015)
LBG (Mir et al., 2016)

Agarose (Mir et al., 2016)

Proteins

Legume
SPI (Miñarro et al., 2012)
PPI (Miñarro et al., 2012)

Lupine (Ziobro et al., 2016)

Egg
Albumin (Ziobro et al., 2016)

Whole egg (Deora et al., 2015)

Dairy
Caseinate (Deora et al., 2015)

WPC (Deora et al., 2015)
MPI (Deora et al., 2015)

Special Substitutes
WP particles (O’Shea et al., 2014)

Zein (Capriles & Arêas, 2014)
Caroubin (Capriles & Arêas, 2014)

Others
Bovine plasma protein (Furlán et al., 2015)
Bovine serum albumin (Nozawa et al., 2016)

Collagen (Ziobro et al., 2016)

Enzymes

Crosslinking enzymes

TGases (Pongjaruvat et al., 2014)
GO (Aprodu & Banu, 2015)

Tyrosinase (Flander et al., 2011)
Laccase (Flander et al., 2011)

Proteases
Proteinases (Hatta et al., 2015)

GSH (Yano 2010, 2012)
GSSG (Yano 2010, 2012)

Starch modifying enzymes
CGT (Basso et al., 2015)

Amylase enzyme (Palabiyik et al., 2016)

Others
Emulsifiers (López-Tenorio et al., 2015)

Acidic food additives (Villanueva et al., 2015)
Sweeteners (Alencar et al., 2015)

HPMC: hydroxypropyl methylcellulose; CMC: carboxymethylcellulose; XG: xanthan gum; LBG: Locus bean gum; SPI: soy protein isolate; PPI: pea protein isolate; WPC: whey protein 
concentrate; MPI: milk protein isolate; TGase: transglutaminase; GO: glucose oxidase; GSH: reduced glutathione; GSSG: oxidized glutathione; CGT: cyclodextrin glycosyltransferase.
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in starch retrogradation values. There are few studies on laccase 
and tyrosinase applications in GF formulations. Flander et al. 
(2011) reported high specific volume and increased crumb 
softness of oat bread combining Trichoderma reesei tyrosinase 
and xylanase. While the combination of Trametes hirsute laccase 
and xylanase also improved the specific volume of the bread, 
crumb softness remained unaltered.

Proteases (EC 3.4), including proteinases and peptidases, are 
enzymes that can hydrolyze the peptide bonds present in proteins. 
Recently, Hatta et al. (2015) reported that the degradation of α- and 
β-glutelin subunits of rice protein is essential for the improvement 
of bread texture and quality. They observed improvements in the 
gas holding and textural properties in protease-treated (metallo, 
serine, cysteine proteases) rice breads, which almost completely 
degraded the α- and β-glutelin subunits. In contrast, degradation 
of rice glutelins or these improvements were not observed in 
the rice batter treated with aspartyl proteases.

Glutathione can also degrade the disulphide linkages 
between α- and β- subunits of rice glutelins (Yano, 2010, 2012). 
Bread incorporated with reduced glutathione (GSH) and oxidized 
glutathione (GSSG) in rice batter showed similar structure to 
wheat bread but with a smoother appearance (Yano, 2010, 2012). 
Moreover, sensory analysis revealed that GSSG bread had a 
significantly reduced sulfurous odor campared with GSH bread 
(Yano, 2012).

In a recent study, Basso et al., (2015) observed that breads 
containing CGT (EC 2.4.1.19) produced by Bacillus firmus strain 
37 achieved higher specific volumes, better crumb textures, and 
higher sensory scores than those prepared with commercial CGT. 
Palabiyik et al. (2016) reported that fungal amylase clearly affected 
its starch substrate’s properties, while the other enzymes, whose 
substrates were fiber and protein molecules did not generate 
any effects. The results obtained from this study highlighted the 
potential usage of fungal amylase in various food products as a 
mean to alter their pasting and textural properties.

Other additives such as emulsifiers (López-Tenorio et al., 
2015), acidic food additives (Villanueva et al., 2015) and sweeteners 
(Alencar et al., 2015) have been used to improve the quality of 
GF dough and bread.

4 Technological approaches
Recently, novel processing techniques including gluten 

proteolysis, genetically modified wheat breeding, sourdough 
fermentation, frozen storage, and partial baking have been 
applied, either individually or in conjunction, to obtain better 
quality characteristics of GF products.

4.1 Gluten proteolysis and Sourdough fermentation

A relatively new trend is the utilization of proteolytic enzyme to 
detoxify gluten by cleaving the peptide bonds next to proline- and 
glutamine-residues, with the action of prolyl-endopeptidases 
(PEPs). Unlike human gastrointestinal protease, PEPs can degrade 
gluten to amino acids or nontoxic peptides (less than nine amino 
acid residues) (Heredia-Sandoval  et  al., 2016). In addition, 
cereal germination can also degrade immunostimulatory gluten 

peptides and thereby diminish its toxic effects. Wheat grains 
hydrolyzed at certain conditions (20 °C, pH 5.5) showed the 
lowest concentration of glutens at the seventh day of germination 
(Michalcová et al., 2012).

Lactic acid bacteria (lactobacilli) (LAB) are known to possess 
a complex protease system, which can hydrolyse various proline 
residues of gluten. Selecting strains of LAB with targeted proteolytic 
effects, due to the complexity of the gliadin locus with multiple 
expressed genes, is vital important. Recently, Stefańska et al. (2016) 
selected 11 LAB strains capable of hydrolyzing albumin/globulin 
and gliadin in bakery sourdoughs. However, the concentration 
of polypeptides with IgE-reactive epitopes remains high and 
therefore formulas with the combination of fungal proteases and 
lactobacilli were developed, providing a new tool to eliminate 
gluten toxicity. Bread prepared with flours used selected sourdough 
LAB and fungal proteases presented similar physicochemical 
properties to control (Rizzello et al., 2014).

The application of sourdough may upgrade the characteristics 
of breads like texture, flavor, nutritional value and shelf-life due 
to the metabolites produced by LAB (De Vuyst & Vancanneyt, 
2007). These positive contributions could be exploited for the 
preparation of high quality GFBs with various GF flours.

Dried sourdough comes in powder forms, which 
presents some advantages over fresh sourdough, including 
a shorter fermentation time and longer sourdough shelf life 
(Różyło  et  al., 2015a). Recently, freeze-dried sourdough has 
also been used in GF formulation to improve the quality of final 
breads (Różyło et al., 2015a; Różyło et al., 2015b; Różyło et al., 
2016). The authors investigated the effects of added fresh and 
freeze-dried amaranth, buckwheat and rice sourdoughs at different 
ratios during GFB production. They concluded that sourdoughs 
dried at 400C were the most suitable for GFB production. 20% and 
30% additions of freeze-dried buckwheat sourdoughs conferred 
the best baking performances, while amaranth could only be 
added up to a 10% ratio. Moreover, rice sourdough at 10% or 
20% ratios proved to be a good substitute for fresh sourdough.

4.2 Genetically modified wheat breeding

Currently, the application of RNA interference (RNAi) 
technology to down-regulate-coeliac-toxic gliadins and/or 
glutenins attracts more interests for researchers. RNAi is a reverse 
genetics tool, producing double-stranded RNA that makes gene 
silencing before forming gluten (Watanabe, 2011).

Becker et al. (2007) reported down-regulation of α-gliadins 
by utilization of RNAi and produced a variety of transgenic lines 
with the α-gliadins silenced. Compared to the wild type flour, 
results of reversed-phase high-performance liquid chromatography 
(RP-HPLC) showed that content of α-gliadins in transgenic flour 
was reduced by over 60% (Becker et al., 2012). Whereas the overall 
contents of gliadins were reduced by 9% for the compensatory 
increases in other storage proteins like albumins/globulins, 
ω-gliadins, γ-gliadins and high-molecular-weight glutenin 
subunits (HMW-GS) with exception of low-molecular-weight 
glutenin subunits (LMW-GS). Gluten of the transgenic is stronger 
which was probably associated with the decreasing ratio of the 
gliadin to glutenin resulting from the reduction in α-gliadins. 
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While the rheological properties of the two lines were similar. 
RNAi has also been applied to produce transgenic lines with 
reduced levels of ω-5 gliadins which were good for wheat-
dependent exercise-induced anaphylaxis (Altenbach et al., 2014).

More studies about the down-regulation of only γ-gliadins 
(Pistón et al., 2011), all gliadins (α-, ω- and γ-) (Gil-Humanes et al., 
2010), and all gliadins and LMW-GS (Gil-Humanes  et  al., 
2011) in wheat have been reported by the group of Francisco 
Barro. Bread prepared with low-gliadin flour presented higher 
lysine content and final bread quality, similar to normal bread. 
Whereas bread volume showed a reduction between about 
20% and 30% compared to control (Gil-Humanes et al., 2014). 
Details about these investigations can be found in the review of 
Rosell et al. (2014). Recently, Barro et al. (2016) reported that 
seven plasmid combinations, encompassing RNAi fragments 
from α-, γ-, ω-gliadins, and LMW-GS, could down-regulate 
prolamin effectively. Compared to the wild type, gluten content 
in two of the plasmid combinations was reduced by over 90% 
(93%, 92% for Plasmid Combinations 5, 7 respectively); three 
plasmid combinations were totally devoid of immunogenic 
epitopes from ω- and γ- gliadins. These lines could probably be 
useful for cultivating coeliac-safe wheat. However, the resistance 
to transgenic foods in some country and the insufficiency of 
clinical trials in CD patients as such limit the commercialisation 
of the low-gliadin wheat.

4.3 Frozen and partial baking technologies

Frozen dough is a promising alternative to conventional 
bread making, inserting a freezing process at different steps 
of the bread making process. It is a value-added product that 
improves fresh bread availability. Moreover, patients with CDs 
can prepare and consume it at home when needed. Frozen dough 
breads displayed lower specific volumes due to the decrease in 
yeast sensitiveness and the change in the structure of the GF 
dough. Additionally, the crumbs were harder and the crust color 
characteristics were modified (Mezaize et al., 2010).

In recent years, the market has been rapidly moving from 
frozen dough to partially baked bread (part-baked, par baked 
bread or pre-baked bread). Partially baked bread is a semi-finished 
product with proper crumb texture and minimum crust 
coloration. The part-baking process consists of two stages: an 
initial baking stage until the bread structure is fixed followed by 
storage, and a second baking stage to create an appropriate flavor 
and crust color (Najafabadi et al., 2014). Sciarini et al. (2012) 
assessed the impact of the partial baking process on GFB and 
studied how CMC and XG incorporation affected this process. 
Part-baked breads displayed lower specific volumes, denser 
crumb appearances, and higher crumb hardness. The addition 
of hydrocolloids, in particular CMC, partially mitigated these 
negative effects.

Other novel technologies such as pregelatinized treatment 
(Pongjaruvat et al., 2014), extrusion technology (Clerici et al., 2009), 
high-pressure processing (Vallons et al., 2011) and microwave 
baking (Therdthai et al., 2016) have also been investigated to 
improve the texture and quality of GF dough and bread.

5 Conclusions
In response to a worldwide increasing prevalence of celiac 

disease in adults, the need to offer celiac disease patients 
satisfactory quality and wide variety of GF baking foodstuffs is 
an emergency. However, the absence of gluten, whose presence 
determines the overall appearance and textural properties of 
bread making goods, makes it a technological challenge.

This review presents various alternative materials, functional 
ingredients (added individually or in conjunction), and technologies, 
which can result in GFBs of desirable quality. In the future, 
further investigations and research should be focused on the 
discovery and application of more innovative gluten substitutes 
and the cultivation and commercialization of the coeliac-safe 
wheat. Research on combination of these approaches should be 
conducted to detect the potential synthetic effects and create 
GF products with properties equaling those of wheat breads.
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