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1 Introduction
Carotenoids are natural pigments with polyene chains which 

have from 3 to 15 conjugated double bonds. They are considered 
bioactive compounds due to their antioxidant capacity, since 
they neutralize free radicals through the reception of electrons 
from reactive species (Valduga et al., 2009a; Gonnet et al., 2010). 
Although these pigments are found in plants, animals and 
microorganisms, most carotenoids destined to the food industry 
are obtained by chemical processes (Valduga et al., 2009b), a fact 
that suggests growing interest in studies of carotenoid production 
by biotechnological processes (Valduga et al., 2009a).

Phaffia rhodozyma is a GRAS (Generally Recognized as Safe) 
yeast which has the ability to produce carotenoids intracellularly 
(Frengova & Beshkova, 2009). By comparison with other 
microorganisms and other natural sources, it has advantages, 
such as the possibility of using alternative inexpensive media, 
since it requires simple sources of carbon and nitrogen for its 
growth and little physical space when it comes from crops on 
an industrial scale, besides being independent of bioproducts 
seasonality (Cipolatti et al., 2015; Valduga et al., 2009b).

However, regardless of the production source, carotenoids are 
unstable compounds at high temperatures in the presence of light 
and oxygen. Thus, it is difficult to maintain their characteristics 
when they are subjected to certain intrinsic conditions of some 
products (Bagetti, 2009). An alternative to increasing stability 
in storage and processing is the use of microencapsulation 
methods, which consist in the entrapment of compounds in 
extremely small capsules obtained by different techniques. As a 
result, encapsulated material may be protected and released in 
a controlled way under specific conditions so as to expand its 
application to food (Favaro-Trindade et al., 2008).

Therefore, this study aims to promote the encapsulation of 
carotenoids produced by P. rhodozyma yeast by the lyophilization 
method with soy protein as the encapsulating agent.

2 Materials and methods
2.1 Microorganism and inoculum preparation

Phaffia rhodozyma NRRL-Y 17268, a GRAS (Generally 
Recognized as Safe) yeast from the Northern Regional 
Research Laboratory (Peoria, USA), was used by this study. 
The microorganism was kept on sloping agar in malt and yeast 
(YM) medium with 3 gL-1 yeast extract, 3 gL-1 malt extract, 
5 gL-1 peptone and 10 gL-1 glucose. Then, 0.2 gL-1 KNO3 was 
added at 4 °C (Parajó et al., 1998). For reactivation, stock culture 
tests were performed in test tubes with the same medium and 
incubated at 25 °C for 48 h. Cell resuspension was performed 
in 1 mL peptone water (0.1%), added to 9 mL YM medium and 
incubated under the previously described conditions.

2.2 Production of carotenoids

The inoculum used for yielding pigments was prepared in 
500 mL Erlenmeyer flasks with 90 mL YM broth and 10 mL culture 
from the reactivation. It was incubated at 25 °C, 150 rpm for 48 h 
or the period of time needed to reach 1×108 cel.mL-1, counted 
by the Neubauer chamber (Rios et al., 2015). Bioproduction of 
carotenoids was carried out in 500 mL Erlenmeyer flasks with 
153 mL YM production medium, at initial pH of 6.0, and 10% 
inoculum (108 cel.mL-1). The operating conditions of the process 
were 25 °C, 180 rpm for 168 h (Rios et al., 2015). The resulting 
biomasses were dried in an oven at 35 °C for 24 h. Then, they 
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were macerated with mortar and pestle and particle sizes were 
standardized by a Tyler 115 sieve, corresponding to > 125 mm 
(Cipollati, 2012).

2.3 Extraction and recovery of carotenoids

Cell disruption was performed by the ultrasonic wave method 
with 0.01 g dry biomass (at 35 °C for 48h); 6 mL acetone was 
added to facilitate carotenoid extraction. Ultrasound (4 cycles 
of 40 kHz) was applied for 10 min and water from water baths 
was replaced at every cycle, according to the method adapted 
from Medeiros et al. (2008). Each sample was centrifuged at 
1745xg for 10 min. The solvent was separated and the bursting 
procedure was repeated until the whole cell bleached. In the 
solvent phases, obtained by centrifugation, 10 mL 20% NaCl 
solution (w/v) and 10 mL petroleum ether were added. After 
shaking and phase separation, excess water was removed with 
sodium sulfate (Na2 SO4), yielding carotenogenic extracts (Bonfim, 
1999). In  order to obtain the total volume of carotenogenic 
extracts to be encapsulated, 5 extractions were performed in 
each treatment.

2.4 Microencapsulation of carotenoids and characterization 
of microcapsules

Microencapsulation of carotenoids was performed by 
the lyophilization method, with soy protein as the coating 
material, according to Pralhad & Rajendrakumar (2004) and 
Laine et al. (2008). To prepare the microparticles, the solvent was 
rotaevaporated from the carotenogenic extracts at 35 °C, followed 
by dissolution in aqueous solution with the wall material, in the 
ratios of 1:1 and 1:2 (carotenoids:wall material) in relation to the 
solid content. The mixture was stirred for 3 h and then subjected 
to freezing at -80 °C, followed by the lyophilization process.

Microcapsule formation, as well as morphological analysis 
and particle size, was observed by scanning electron microscopy 
(SEM), according to Castro (2002). Mean particle size was 
determined by at least 100 measurements performed by the 
Sigma Scan Pro 5 software.

Carotenoid encapsulation efficiency (EE) was performed 
according to the spectrophotometric method described by 
Sutter et al. (2007), based on the estimation of total carotenoids 
found inside and outside microparticles. To quantify the 
carotenoids on the surface of the microparticles, 0.1 g sample 
and 5 ml hexane were mixed and kept in a vortex shaker for 
10 seconds, followed by centrifugation at 3420xg for 10 minutes. 
The supernatant was collected. To quantify total carotenoids found 
inside and outside microparticles, they were dispersed in 5 ml 
hexane, stirred vigorously for the removal of total carotenoids 
and filtered with cotton into a 10 ml volumetric flask. The residue 
was washed with hexane. Both collected fractions were evaluated 
spectrophotometrically at 470 nm to obtain total carotenoid 
content. Results are expressed as a percentage of encapsulated 
carotenoids by Equation 1:

Total Carotenoids – Surface Carotenoids%EE 100
Total Carotenoids

= × 	 (1)

Calculation of the yield of the encapsulation process was based 
on the mass of the initial and final solids followed by conversion 
to percentage. Confirmation of the encapsulation was performed 
by differential scanning calorimetry (DSC) analysis according 
to Rutz (2013) with rate of 10 °C min-1 between 25 and 280 °C, 
with a nitrogen flow of 40 mL.min-1.

Experiments were performed in triplicate and results were 
statistically evaluated by the analysis of variance. When differences 
were detected at 5% (p <0.05), the T test was applied.

3 Results and discussion
Results of the microencapsulation yield of the lyophilization 

process with soy protein as the encapsulating agent are shown 
in Table 1. The highest yields of the microcapsule yields based 
on the mass of solids in each treatment was 96.40% in the ratio 
of 1:1 and 97.46% in the ratio of 1:2. It shows that losses of 
compounds of interest in the process are very small. The same 
is not observed regarding the efficiency of encapsulation, 
which considers the percentage of carotenoids protected by the 
encapsulating agent, since about 65% of total carotenoids was 
actually protected by the soy protein. Remaining amounts were 
dispersed among the microcapsules that were formed and, thus, 
susceptible to alterations caused by the external environment. 
The ratio of carotenogenic extract:encapsulating agent did not 
influence the efficiency of encapsulation, since the percentage 
of entrapped carotenoids did not differ significantly, suggesting 
that there is no need to add higher proportion of cover material.

Scanning electron micrographs (SEM) (Figure  1) show 
characteristic microparticle formation, regardless of the ratio 
under investigation. Granular material with small, well defined 
and separate particles, but with quite different shapes, was 
formed. This fact results from the preparation of the sample 
and the technique which does not enable particle sizes to be 
standardized.

Microcapsules had an average size of 12.11 ± 4.60 μm for 
“a”, with variation from 3.73 to 24.10 μm and to 11.34 ± 5.16 μm 
for “b”, ranging from 2.69 to 23.21 μm.

According to Rutz (2013), the acquisition of spherical 
microparticles depends on the process conditions and the coating. 
Studies conducted by Sousdaleff  et  al. (2013), Zuanon  et  al. 
(2013) and Rutz et al. (2016) applied the lyophilization method 
to the encapsulation of different compounds and showed the 
acquisition of non-characteristic particles. They also showed 
that microparticle spheres were not formed, suggesting that, 
depending on the wall material, such conditions are not suitable 
for obtaining microcapsules, although the method has been 
commonly used.

DSC thermograms (Figure  2) show endothermic and 
exothermic events by the representation of downward and 
upward curves, respectively.

Carotenogenic extracts exhibit an endothermic event at 
59 °C. Wall materials have different behavior, since soy protein 
has two endothermic events at 171 °C and 226 °C (a and b). 
When all encapsulated carotenogenic extracts, regardless of 
the concentration, are observed, there are no endothermic 
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events at temperatures around 59 °C, which is typical of the free 
carotenogenic extract. It shows a behavior that resembles the 
wall materials, suggesting the protection of the compounds of 
interest and consequent encapsulation.

4 Conclusion
Microencapsulation of carotenoids produced by P. rhodozyma 

yeast with soybean protein as the encapsulating agent by the 
lyophilization technique was carried out. High process yield and 
encapsulation efficiency around 65% were reached, resulting 
in the formation of well-defined and separate microparticles. 
Protection of the compounds of interest was successful, indicating 
the possibility of their application to food.
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