
Food Sci. Technol, Campinas, 41(2): 482-488, Apr.-June 2021482   482/488

Food Science and Technology

OI: D https://doi.org/10.1590/fst.04020

ISSN 0101-2061 (Print)
ISSN 1678-457X (Online)

1 Introduction
The unripe (green) raspberry of Rubus chingii Hu, containing 

high medicinal ingredients e.g. polyphenols, terpenoids, 
saponins, polysaccharides, alkaloids, and essential oils, exhibits 
antioxidant, anti-bacteria, anti-complement and anticancer 
activities (Yang et al., 2019; Yu et al., 2019). It is the only plant 
of Rubus species included in The Chinese Pharmacopoeia and 
used to improve kidney functions, such as enuresis and urinary 
frequency, in Traditional Chinese Medicine for many years (Chinese 
Pharmacopoeia Commission, 2015). Whereas, the ripe fruits of R. 
chingii, R. idaeus, R. occidental and Rubus spp., called “fu-pen‑zi” 
in Chinese, or raspberry in English, mainly contain tannin and 
anthocyanins for daily dietary (Krauze‑Baranowska et al., 2014; 
Xiao et al., 2017; Yu et al., 2019).

The widespread uses of antibiotics in healthcare and agriculture 
have been beneficial, but have also had unexpected negative 
consequences on human beings and the environment. The excessive 
use of antibiotics creates a new pollutant that has been released into 
rivers and soil through exposure to human waste, which disturbed 
the entire biosphere (Gillings, 2013; Popowska et al., 2012). The 
evolution of pathogenic microorganisms has been increased 
in the environment due to high concentrations of antibiotics. 
The adaption time require for Escherichia coli to go from zero 
to 1,000-fold the minimal inhibitory concentration (MIC) in a 
gradient medium was just 10 d when expose to trimethoprim 
or 12 d to ciprofloxacin (Baym et al., 2016a; Belica et al., 2017). 
Increasing antibiotic doses and the use of new synthetic antibiotics 

not only do not solve the problem of antibiotic-resistant bacteria, 
but also cause more serious ecological pollution. Fortunately, plant 
evolution involves the struggle between plants and pathogenic 
microorganisms or herbivores (Baym  et  al., 2016a; Gillings, 
2013). In this process, plants evolve thousands of metabolites, 
such as flavonoids and non-flavonoids polyphenols, to defend 
against biotic and abiotic stresses (Zhang et al., 2010). Therefore, 
Newman found that ~50% of new medicines developed from 
1981 to 2006 were directly or indirectly derived from plant 
products (Newman & Cragg, 2007). The most representative 
of the plant-derived drugs is veregen, a mainly green tea 
extract that includes a variety of polyphenols. It was the first 
Chinese herbal medicine approved by the US Food and Drug 
Administration (Schmidt et al., 2007). The Realgar-Indigo naturalis 
formula (RIF) based on 100,000 Traditional Chinese Medicine 
formulae is very effective in treating human acute promyelocytic 
leukemia. RIF contains extracts of two plants (Indigo naturalis 
and Salvia miltiorrhiza) as well as minerals (Wang et al., 2008). 
Extracts of freeze-dried black raspberries (R. occidentalis) may 
be considered as potential sources for polyphenolic drugs in the 
treatment of diabetes mellitus (Xiao et al., 2017). Our previous 
study on four R. Chingii extracts found that ellagic acid, brevifolin 
carboxylic acid and kaempferol-3-rutinoside were the highest 
proportion of 11 tested phenolic compounds. Their MICs against 
Escherichia coli, Staphylococcus aureus and Salmonella enterica 
ranged from 2-20 mg/mL (Yang et al., 2019).
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In addition, catechin, epicatechin, quercetin, kaempferol and 
isorhamnetin derived from almond skin combine with vitamins C 
and/or E have synergistic effects to protect low density lipoprotein 
against oxidation in human and hamster (Chen et al., 2005). 
A synergistic activity is also observed when ceftazidime is combined 
with either apigenin or naringenin using the checkerboard method 
with a fractional inhibitory concentration index (FICI) between 
0.01 and 0.27 against ceftazidime-resistant Enterobacter cloacae 
strains, whereas ceftazidime plus quercetin has no synergy, with 
an FICI > 1.0 (Eumkeb & Chukrathok, 2013). Similarly, green 
tea extract (containing 47.92% epigallocatechin‑3‑gallate) or 
just epigallocatechin-3-gallate in combination with antibiotics 
(metronidazole or tetracycline) shows synergistic activities against 
Porphyromonas gingivalis, a key pathogen in the chronic form 
of periodontitis (Fournier-Larente et  al., 2016). Fruit extract 
(R. chingii) combined with fluconazole, has an antifungal 
activity against fluconazole-resistant Candida albicans (a diploid 
fungus) (Han et al., 2016). Moreover, the mixture of raspberry 
and adzuki bean more effectively attenuate H9c2 cardiomycytes 
under oxidative stress than the individual extracts (Wang et al., 
2012). Here, the synergistic effects of multi-drugs, especially 
antibiotics and plant-derived antibacterials, may compensate for 
the deficiencies of the drugs themselves and address more complex 
diseases that have multi-causal etiology and complex pathogen 
physiology (Baym et al., 2016b; Gertsch, 2011; Yang et al., 2014).

The purpose of this study was to provide a basic for the 
synergistic effects of raspberry extract and antibiotics. Therefore, 
the synergistic effects between two unripe raspberry extracts 
(R. chingii) and four antibiotics against bacteria were evaluated 
using checkerboard microdilution and time-kill curves. Firstly, 
unripe raspberry extracts (URE) by ethanol extraction, and 
purified raspberry extract (PRE) by macroporous resin were 
prepared according to Yang et al.(2019). Secondly, the MICs 
of two extracts and four antibiotics against E. coli, S. aureus 
and S. enterica were investigated respectively. Then, pairwise 
combinations of extracts (URE or PRE) and antibiotics (ampicillin, 
erythromycin, tetracycline or streptomycin) against three bacteria 
were independently assayed. 

2. Materials and Methods
2.1 Reagents

Four antibiotics including ampicillin (AMP), erythromycin 
(ERY), tetracycline (TET), streptomycin (STR) (Nanjing Oddfoni 
Biological Technology Co., Ltd. China) and XDA-6 macroporous 
resins (Lanxiao Technology New Material Co., Ltd. China) were used 
in this study. The unripe raspberry of R. chingii Hu was harvested 
and dried in Zhejiang (N30°, E120°), by Hebei Hanyaocaotang 
Pharmacy Co. Ltd. China). The powder of dried unripe raspberries 
was purchased from local pharmacy (Taiyuan, China).

2.2 Bacteria and culture conditions

China General Microbiological Culture Collection Center 
(CGMCC) provided Escherichia coli (CGMCC1.12883), 
Staphylococcus aureus (CGMCC1.282), and Salmonella enterica 
(CGMCC1.755). They were incubated with shaking (200 rpm) 
in LB medium at 37°C incubator.

2.3 Extraction and purification

The extracts were prepared according to Yang et al.(2019). 
Briefly, dried unripe raspberry powder was extracted using the 
ultrasonic-assisted ethanol method, in which 10 mg/mL of powder 
was extracted in 52% ethanol at 360 W for 45 min, twice, using 
a JOYN-15AL Ultrasonic apparatus (Shanghaiqiaoyue Co.). 
One part of concentrated extraction solution was freeze-dried 
into a brown powder, as unpurified raspberry extract (URE). 
The rest concentrated solution was purified by XDA-6 macroporous 
resin under the following purification conditions: six bed volumes 
(BVs)/h as the velocity of adsorption, 60% ethanol as the elution 
reagent, with four BV/h as the elution velocity and five BV 
effluent. The concentrated purified solution was freeze-dried 
into a light brown powder, as purified raspberry extract (PRE).

2.4 MIC and FICI

MICs of URE or PRE and four antibiotics against the three 
bacteria were determined by the checkerboard microdilution, 
respectively (Hall  et  al., 1983). The extract stock solutions 
were freshly prepared by dissolving 64 or 80 mg of the URE 
or PRE powder in 1% of DMSO solution filtered through a 
0.22 μm filter membrane. Antibiotics were dissolved diluted in 
sterilized deionized water according to different concentration 
requirement. All samples bacteria suspensions were diluted in 
fresh LB to adjust to an OD660 of 0.2. Equal volumes (100 μL) 
of bacteria and serial two-fold dilutions of extract solution or 
antibiotic solution in LB medium were mixed into the wells of 
a 96-well microplate. Wells with no bacteria or no compounds 
were negative control. After an incubation with shaking (50 rpm) 
of 18-24 h at 37°C incubator, bacterial growth was recorded 
visually. MICs were determined as the minimum concentrations 
at which no bacterial growth observed.

URE or PRE was serially diluted along the ordinate of a 
96-well microplate, while the antibiotics were serially diluted 
along the abscissa. Bacterial suspensions and MICs alone were 
the same as above. The FICI was calculated using the following 
equation: FICI = FICA + FICB = (MICextract in combination/ 
MICextract alone) + (MICantibiotic in combination/ MICantibiotic alone). 
The synergy type was judged by FICIs: 0 < FICI ≤ 0.5, 
synergy effect, S; 0.5 < FICI < 4, no interaction, N; and FICI > 4, 
antagonism (Hall et al., 1983; Odds, 2003).

2.5 Time-kill curve assay

Time-kill curve assays were performed to evaluate the killing 
dynamics of samples and to determine the synergistic effect of URE 
or PRE and antibiotics combinations according to the National 
Committee for Clinical Laboratory Standards guidelines (National 
Committee for Clinical Laboratory Standards, 1999). Exponentially 
growing bacteria were diluted to ∼1×106 colony‑forming units 
(CFU)/mL in medium. Tubes containing 10 mL cultures were 
exposed to URE or PRE alone at 0.5 × MIC, or antibiotic alone 
at 0.5 × MIC, or URE or PRE plus antibiotics at 0.5 × MIC and 
incubated at 37 °C incubator. One tube containing 10 mL culture 
without samples was used as a growth control. At 0, 4, 8, 12 and 24 h, 
20 μL aliquots obtained from tubes were inoculated on agar 
plates for colony counts after 10-fold serial dilution. The number 
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amount of antibiotics against them is beneficial to reducing the 
production of multidrug-resistant superbacteria (Baym et al., 
2016a, b). AMP, ERY, TET and STR with different molecular 
structures are the most representative broad-spectrum antibiotics. 
AMP inhibits and kills bacteria mainly by inhibiting their cell 
wall growth. The other three mainly act as protein synthesis 
inhibitor (Popowska et al., 2012).

In this study, the MICs of URE, PRE and four antibiotics 
against the three bacteria, E.coli, S. aureus and S. enterica, were 
summarized in Table 1. The MICs of URE and PRE were > 4 mg/mL, 
and the dose of PRE was half that of URE, indicating that 
the antibacterial activity of the purified extract was superior 
compared to the unpurified extract for these selected bacteria. 
The MICs of AMP and TET ranged from 4 to 125 μg/mL, and 
those of ERY and STR ranged from 125 to 500 μg/mL (Table 1). 
Pairwise combinations of URE or PRE and the antibiotics 
(AMP, ERY, TET or STR) were independently assayed against 
E. coli, S. aureus and S.enterica. FICIURE/ERY and FICIPRE/ERY 
against S. aureus and E. coli ranged from 0.1 to 0.25, 

of viable colonies was counted only from the plates containing 
between 30 and 300 colonies to calculate CFU/mL. Synergy was 
defined as a decrease of ≥ 2-log10 CFU/mL induced by the drug 
combination compared with that by the drug alone in 24 hours, 
while no interaction was defined as a change of < 2-log10 CFU/
mL (Wei et al., 2016).

2.6 Statistical analysis

All experiments were performed in triplicate. The data 
were expressed as the means ± standard deviation. All statistical 
analyses were performed with SPSS software (Statistical Package 
for Social Sciences, USA, version 19.0). Statistical significance 
between two groups was determined using Student’s t-test. 
Statistical significance of differences was taken as p < 0.05.

3 Results and discussion
One Gram-positive bacterium (S. aureus) and two 

Gram‑negative bacteria (E. coli and S. enterica), are three 
common pathogens causing infections in humans. Reducing the 

Table 1. Synergistic effects of raspberry extracts and antibiotics against bacteria.

Drug
A/B

MIC alone
A B

(mg/mL) (μg/mL)

MIC in combination
A+B

(mg/mL) + (μg/mL)

Fold MIC in 
combination FICI Effect Time-kill curve

S. aureus
URE/AMP 16 4 6.4 + 0.4 2/5 + 1/10 0.50 Sa Sc

URE/ERY 16 250 3.2 + 2.5 1/5 + 1/100 0.21 S S
URE/TET 16 4 0.8 + 0.2 1/20 + 1/20 0.10 S S
URE/STR 16 125 0.8 + 12.5 1/20 + 1/10 0.15 S S

PRE/AMP 8 4 3.2 + 1.6 2/5 + 2/5 0.80 Nb S
PRE/ERY 8 250 0.8 + 2.5 1/10 + 1/50 0.12 S S
PRE/TET 8 4 0.4 + 0.2 1/20 + 1/20 0.10 S S
PRE/STR 8 125 0.4 + 12.5 1/20 + 1/10 0.15 S S
E. coli
URE/AMP 8 64 3.2 + 6.4 2/5 + 1/10 0.50 S S
URE/ERY 8 500 0.8 + 5.0 1/10 + 1/100 0.11 S S
URE/TET 8 16 0.8 + 1.6 1/10 + 1/10 0.20 S S
URE/STR 8 500 0.4 + 25 1/20 + 1/20 0.15 S S

PRE/AMP 4 64 1.6 + 6.4 2/5 + 1/10 0.50 S S
PRE/ERY 4 500 0.4 + 5.0 1/10 + 1/100 0.11 S S
PRE/TET 4 16 0.4 + 1.6 1/10 + 1/10 0.2 S S
PRE/STR 4 500 0.2 + 25 1/20 + 1/20 0.10 S S
S. enterica
URE/AMP 20 125 2.0 + 12.5 1/10 + 1/10 0.20 S S
URE/ERY 20 500 8.0 + 50.0 2/5 + 1/10 0.50 S S
URE/TET 20 8 1.0 + 0.8 1/20 + 1/10 0.15 S S
URE/STR 20 500 1.0 + 100 1/20 + 1/5 0.25 S S

PRE/AMP 10 125 2.0 + 12.5 1/5 + 1/10 0.30 S S
PRE/ERY 10 500 4.0 + 100 2/5 + 1/5 0.60 N S
PRE/TET 10 8 0.5 + 0.8 1/20 + 1/10 0.15 S S
PRE/STR 10 500 0.5 + 25 1/20 + 1/20 0.10 S S
MIC, Minimal inhibitory concentration; CFU, colony forming units; AMP, ampicillin; TET, tetracycline; ERY, erythromycin; STR, streptomycin; URE, unpurified raspberry extract; 
PRE, purified raspberry extract; FICI = FICA+ FICB = (MICA in combination/ MICA alone) + (MICB in combination/ MICB alone); aS, synergy: 0 < FICI ≤ 0.5; bN, no interaction: 
0.5< FICI < 4; cS, synergy with a decrease of ≥ 2×log10 CFU/mL by Figure 1.
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0.5 × MIC each, all three tested strains showed slower growth 
rates. There was a >2×log10 decrease in CFU/mL at 24 h compared 
with URE, PRE or antibiotic alone (Figure 1). Thus, a synergistic 
effect was observed in all combinations, including 0 < FICI < 1.0. 
The macrolide antibiotics, clarithromycin, roxithromycin (ROX), 
azithromycin and spiramycin, were used to repeat the above 
experiments (Table  S1 of Supplementary Material) based on 
the important role of ERY (a macrolide antibiotic) in the above 
result (Table 1). The time-kill curve assays of the combinations 
(FICIURE/ROX=1.01 and FICIPRE/ROX=1.01) revealed no interactionas 
indicated by a < 2×log10 decrease in CFU/mL at 24 h compared 
with URE, PRE or antibiotic alone. Other combinations 
(0 < FICI < 1.0) showed synergy based on the time-kill curve 
assays. Therefore, we hypothesized that synergistic effect should 
occur in all cases (0 < FICI < 1.0). In addition, the PRE produced 
by macroporous resin purification effectively gathered the 
antibacterial materials, e.g. flavonoids and polyphenols, and 
reduced the reagent doses of combinations, which benefits their 
preservation, transportation and reutilization.

which indicated significant synergistic effects (FICI ≤ 0.5). 
The ERY concentration in the combinations was reduced to 
1/50-1/100 of its normal independent dose while retaining its 
effectiveness against S. aureus and E. coli. However, FICIURE/ERY 
and FICIPRE/ERY against S.enterica were 0.5 and 0.6, respectively, 
which indicated almost no interaction (0.5 < FICI < 4.0). 
In addition, FICIURE/AMP and FICIPRE/AMP against S.enterica were 
0.2 and 0.3, respectively, which indicated synergistic effects, while 
the same combinations against S.aureus and E. coli ranged from 
0.5 to 0.8, which indicated no interaction. Even so, compared with 
the MIC of the antibiotics alone, their levels in the combinations 
were markedly reduced.

To validate the synergistic effects of URE or PRE and antibiotic 
combinations against the three bacteria, the combinations were 
assessed using time-kill curve assays again. Either extract or 
antibiotic alone (0.5 × MIC) decreased the rate of bacterial 
growth compared with the control (without sample), while 
when the URE or PRE and any antibiotic were combined at 

Figure 1. Time kill curves of pairwise combinations of RUE or RPE and antibiotics against bacteria. The experiment was repeated twice with 
similar results. The data was from one of the two repeated experiments. MIC, minimal inhibitory concentration; CFU, colony forming units; 
AMP, ampicillin; TET, tetracycline; ERY, erythromycin; STR, streptomycin; URE, unpurified raspberry extract; PRE, purified raspberry extract. 
Synergy, a decrease of ≥ 2×log10 CFU/mL; No interaction, a change of < 2×log10 CFU/mL.
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having less effect on normal cells (Wang et al., 2015). However, 
the pharmacological components and synergistic effects of the 
vast amount of foods and/or herbs have not been clarified even 
with the development of analytical chemistry and molecular 
biology. Thus, further research is still needed.

4 Conclusions
All pairwise combinations of URE or PRE and antibiotics 

against bacteria showed synergistic effects (0.10 ≤ FICI ≤ 0.5). 
In particular, the ERY concentration in the combinations was 
reduced to 1/50-1/100 of its normal independent dose while 
retaining its effectiveness against S. aureus and E. coli. EA may 
play an important role in the synergistic effects, based on the 
high content of EA in extracts [73.00% (9 mg/g) in the URE and 
67.00% (12 mg/g) in the PRE]. Understanding the potential of 
unripe raspberry extract to fight more diseases in vitro or in vivo, 
will allow a comprehensive exploitation of raspberry extract, 
which may be a dietary supplement and/or potential medicine.
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