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1 Introduction
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin 

mainly produced by Fusarium graminearium and Fusarium 
culmorum found in various host plant-soil debris worldwide, 
causing hyperestrogenism and related toxicoses in farm animals 
and humans. ZEN is present as a contaminant in cereals such 
as maize, barley, wheat, rice, oats, rye, and sorghum (Pittet, 
1998; Tanaka et al., 1988), as well as in processed cereal-based 
food such as flakes and bread (Betina, 1989; Aziz et al., 1997), 
corn pancakes (Groves et al., 1999), and beer (Martin & Keen, 
1978; Okoye, 1987).

ZEN is a resorcyclic acid lactone chemically described as 
6-[10-hydroxy-6-oxo- trans-1-undecenyl]-B-resorcyclic acid 
lactone. ZEN was assigned the trivial name zearalenone as a 
combination of Gibberella zeae, resorcylic acid lactone, -ene (for 
the presence of the C-1’ to C-2’ double bond) and –one for the 
C-6’ketone content (Urry et al., 1966).

The Food and Agriculture Organization (FAO) estimates 
that at least 25% of cereal production worldwide is contaminated 
with mycotoxins (Dowling, 1997). ZEN is the major Fusarium 
mycotoxin that occurs in cereal grains, animal feeds, and forages 
worldwide. Spontaneous outbreaks of Fusarium mycotoxins 
have been reported in Europe, Asia, New Zealand, and South 
America (D’Mello et al., 1999).

The Joint FAO/WHO Expert Committee on Food Additive 
(JECFA) has established a provisional maximum tolerable daily 
intake (PMTDI) for ZEN and its metabolites of 0.5 μg/kg of 
body weight per day (Joint FAO/WHO Expert Committee on 
Food Additives, 2000). ZEN intoxication exhibits the highest 
risk for farm animals owing to the frequency of its occurrence 
in cereals. Therefore, six countries (Austria, Brazil, France, 
Romania, Russia, and Uruguay) have set guidelines or maximum 
tolerable levels of ZEN at 30-1000 μg/kg in some foods. ZEN 
has been reported in wheat at 11-860 μg/kg (Schneweis, 
I. et al, 2002). Cyprus, Hungary, and the Netherlands have 
set a maximum tolerated concentration for all mycotoxins at 
0-0.05 μg/kg in some foods. In China, the maximum limits for 
ZEN are 60 μg/kg in wheat and corn and 500 μg/kg in animal 
feed (Zhang et al., 2011).

Chicken seems to exhibit high tolerance to ZEN. A study 
found that diets containing up to 800 mg/kg feed for 7 d induced 
no signs of toxicity nor impaired the reproductive performance 
of mature chickens (Chi et al., 1980). High levels of ZEN may 
cause the swelling of the vent and an increase in the size of the 
oviduct (Allen et al., 1981). A hyper androgenic response was 
observed in male turkeys fed with 800 μg of ZEN for 2 weeks 
(Olsen et al., 1986).
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Numerous strategies for cost-effective detoxification 
of ZEN-contaminated feedstuff have been explored, but 
these methods have rarely succeeded. The most widely 
used method of protection against ZEN is the addition of 
nonnutritive adsorptive materials to the feeds of livestock 
animals to reduce the bioavailability of ZEN in the 
gastrointestinal tract.

Biodegradation of ZEN by yeasts in beer and wine or by 
yeast involved in fermentation or spoilage of food and feeds was 
investigated by Böswald et al. (1995). Apart from being reduced 
to ZEN, this toxin is also conjugated to glucose (Chakrabarti & 
Ghosal, 1986; Engelhardt et al., 1999; Kamimura, 1986), which 
is not determined using routine ZEN analytical techniques. 
Some of these conjugates and natural derivatives are considered 
more potent estrogens than the parent compound. They may 
also enter the food chain in animal products such as meat and 
milk. Studies have been conducted to determine the extent of 
this secondary source of contamination.

Owing to their effects on the economy as well as livestock 
and human health, mycotoxins have drawn considerable interest. 
In the United States and Canada, the cost associated with the 
impact of mycotoxins on the feed and livestock industry is 
approximately US $5 billion. Although food contamination 
does not present a challenge in developed countries, mycotoxin 
contamination largely affects the agricultural economy as well as 
animal and human health in poorer countries (Fokunang et al., 
2006). Supplementation of Fusarium mycotoxin-contaminated 
grains with yeast cell walls failed to prevent mycotoxin-induced 
reduction in feed intake and poor growth performance in pigs 
(Dänicke et al., 2007; Díaz-Llano & Smith, 2007; Swamy et al., 2002, 
2003). To counter the effects of some mycotoxins, aluminosilicate 
clays have been successfully used as adsorbents and binders 
for small water-soluble mycotoxins such as aflatoxins in the 
animal feed industry (Abbès et al., 2006; Chestnut et al., 1992; 
Daković et al., 2005, 2007; Dixon et al., 2008).

Previous attempts to prevent the effects of ZEN in livestock 
by using adsorbents have mostly been ineffective. The current 
study aimed to evaluate the degradative effect of adding different 
types of adsorbents to complete ZEN-contaminated chicken 
feed by in vitro simulated digestion.

2 Materials and methods

2.1 Chemicals and adsorbents

Purified ZEN was purchased from Fermentek (Jerusalem, 
Israel). WEKLOU was purchased from HAWEPUS (Germany). 
The main components are calcium propionate, propionic acid; 
acetic acid, benzoic acid, sorbic acid, buffer. and carriers. KLX 
mainly composed of yeast cell wall polysaccharide and carriers 
(hydrated aluminosilicate) was purchased from Angel Yeast Co., 
Ltd. (Yichang Hubei, China). Medical stone mostly composed 
of inorganic silicate was supplied by Shen Shi Medical Stone 
Artware Co., Ltd. (Qiqihar Heilongjiang, China). ZEN and 
three types of adsorbents were homogenously mixed into 
complete feed.

2.2 Preparation of ZEN-contaminated complete feed

ZEN was added to the complete feed as a ZEN premix 
prepared by dissolving purified ZEN in a methanol solution 
(≥99.5%). The solution was left overnight to allow methanol 
evaporation, and the feed was mixed thoroughly. The feed was 
prepared in one batch, which was stored in covered containers 
prior to the test.

2.3 Diets and treatments

The complete feed for the layers was prepared using corn, 
soybean meal, bran, mountain flour, and Premix. The percentage 
of components was measured in accordance with GB/T 5916-
2008 (Standardization Administration of China, 2008).

Treatments were prepared: 1) Complete feed + 30 mg/kg 
of ZEN; 2) Control + 2 g/kg of KLX + 30 mg/kg of ZEN; 3) 
Complete feed + 3 g/kg of WEKLOU + 30 mg/kg of ZEN. 4) 
Complete feed + 5 g/kg medical stone + 30 mg/kg of ZEN.

2.4 In vitro bionic digestion

The in vitro bionic digestion system used in this study was 
invented by Feng et al. (2009). The system comprises three 
compartments simulating the stomach, small intestine forepart, 
and small intestine posterior segment. A schematic of the 
monogastric in vitro bionic digestion system is presented in 
Figure 1. The optimal hydrolysis time for the stages of simulated 
digestion in a bionic digestion system designed for poultry 
was determined (Yu-tian et al, 2010). During the experiments, 
the temperature was kept at 41 °C. Gastric, small intestine 
forepart, and small intestine posterior segment were simulated. 
The digestion process was conducted for 1 h. During the first 
4 h, the gastric content was digested using a simulated gastric 
fluid. The digested product was then washed with distilled 
water at 1500 mL/time for 40 min/time, repeated three times. 
The subsequent stage was the intestinal phase, which was the 
average, divided into the “small intestine forepart” and the “small 
intestine posterior segment”. The duration of each phase was 
7.5 h. Finally, the digested product of the intestine was washed 
with distilled water at 1500 mL/time, 40 min/time, repeated six 
times. The specific parameters are presented in Table 1. Products 
of digestion and solution were absorbed from the stomach and 
intestine by pumping dialysate via hollow fiber membranes with 
a molecular weight cut-off of approximately 14000 Dalton. ZEN 
released from the feed matrix during digestion could be either 
absorbed via the semipermeable membrane systems or bound 
to the adsorbents.

2.5 Digestive solution of gastric and intestine

A gastric electrolyte solution was prepared with 1.085 g/L 
NaCl and 0.785 g/L KCl; 2 mol/L HCl was used to adjust pH 
to 2.0 under 41 °C.

The small intestine forepart solution was prepared with 
4.675 g/L Na2HPO4, 20.045 g/L NaH2PO4, 5.565 g/L NaCl, 
1.545 g/L KCl, and 0.8 million U penicillin; 1 mol/L H3PO4 or 
1 mol/L NaOH is used to adjust pH to 6.5 at 41 °C.
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were dissolved in 25 mL deionized water, stirred to dissolve, 
and added to 110.40 kU amylase (Sigma A3306).

2.6 Sample collection for bionic digestion analysis

Samples collected from the monogastric animal bionic 
digestive system (gastric plus small intestine forepart and 
small intestine posterior segment digestive fluids and the final 
chyme), which consisted of a liquid phase and an undigested 

The small intestine posterior segment solution was prepared 
using 24.385 g/L Na2HPO4, 3.385 g/L NaH2PO4, 5.015 g/L NaCl, 
1.395 g/L KCl, and 0.8 million U. Subsequently, 1 mol/L H3PO4 
or 1 mol/L NaOH is used to adjust the pH to 7.99 at 41 °C.

The simulated gastric fluid consisting of 387.5 kU of pepsin (Sigma 
P7000) was dissolved in 250 mL HCl (adjusted to pH 2.0 at 41 °C).

The simulated intestinal fluid containing 13.55 kU trypsin 
(Amresco 0785) and 3.11 kU chymotrypsin (Amresco 0164) 

Figure 1. Monogastric animal bionic digestive system. 1-9, reagent bottle; 10, computer, 11, programmable controller, 12, bionic digester, P1-
P4, peristaltic pump; V1-V11, electromagnetic valve. Bottles 1, stomach buffer solution; Bottle 4, small intestine buffer solution; Bottle 5, large 
intestine buffer solution; Bottle 2, cleaning solution; Bottle 3, distilled water; Bottles 6 and 7, waste liquid; Bottle 8, small intestine digestive 
solution; and Bottle 9, large intestine digestive solution.

Table 1. Parameters and conditions for the bionic digestive system.

Bionic digestive system in stomach stage Bionic digestive system in small intestine stage

Digestive parameter indicator Digestive parameter indicator

temperature 41 °C temperature 41 °C

Flow rate of buffer solution 120 mL/min Flow rate of buffer solution 120 mL/min

Digestive time 4 h Digestive time Forepart 7.5 h+ posterior segment 7.5 h

Cleaning fluid 1500 mL/time Cleaning fluid 1500 mL/time

Cleaning frequency 4 times Cleaning frequency 4 times

Cleaning time 40 min/time Cleaning time 40 min/time

Pepsin 387.5 KU Amylase 110.40 KU

- - Trypsin 13.55 KU

- - Chymotrypsin 3.11 KU
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duration of passage via the stomach and the gut of a monogastric 
animal. Details on the parameter and condition of the bionic 
digestive system are listed in Table 1.

3.3 Residues of ZEN in different digestive fluids with three 
kinds of adsorbents

In this study, a 1 kg batch of artificially contaminated complete 
feed was used to feed the bionic digestion system. The feed was 
homogeneously distributed with ZEN at a concentration of 
30 mg/kg. ZEN from spiked dialysate samples (stomach digestive 
fluids, small intestine forepart, and small intestine posterior 
segment digestive fluids) had recovery rates of 93% ± 2%.

ZEN adsorption was assessed by ELISA of the unbound 
fraction in incubation filtrates from three individual experiments 
using binders with varying concentrations: 2 g/kg of KLX, 3 g/kg 
WEKLOU, and 5 g/kg medical stone. Table 3 lists the ZEN 
adsorption levels exhibited by calcium propionate, propionic 
acid, and so on, in addition to the yeast cell wall material and 
inorganic silicate. KLX was determined as the most effective 
compound and yeast cell was as the main component.

The amounts of ZEN (expressed as a percentage of the intake) 
in the samples collected after gastrointestinal digestion of the 
control and test meals for 0-19 h are listed in Table 3. ZEN was 
diffused via dialysis membranes from both stomach and small 
intestine compartments. When no sequestering materials were 
added to the meal (control), the total stomach absorption of ZEN 
was 71% of the intake, and the total small intestine absorption 
of ZEN (corresponding to the amount of ZEN in small intestine 
forepart + posterior segment dialysate fluids) was 24% of the 
intake (Table 3). Most of the ZEN absorbed came from the 
small intestine forepart (16%), and the remaining amount came 
from the posterior segment (9%). In the liquid fraction of the 
stomach + duodenum residues, only 4% of the initial ZEN was 
found, indicating that at the end of the digestion process, ZEN 
was almost entirely delivered from the gastric and duodenal 
compartments into the jejunum and ileum. ZEN thus became 
potentially available for absorption. In the chyme residues, 4% 
of the ZEN intake was found, suggesting that part of the toxin 
was bound to feed particles within the dialysis units, the dialysis 
membrane, or both.

solid feed material, were centrifuged. After the solid residue was 
discarded, supernatant aliquots were used for ZEN analysis. The 
digestive fluid samples we obtained were filtered via a dialysis 
tube (MEMBRA-CEL MD34-14, Viskase Int. Ltd, USA).

2.7 Determination and analysis of ZEN

ZEN extract from the digestive product was mixed with PBS 
at equal volumes (0.01M), and 100 uL of the extract was taken for 
testing by indirect competitive enzyme-linked immunosorbent 
assay (ELISA) by using prepared monoclonal antibodies (Pei et al., 
2013). Standard curves were obtained by plotting the ZEN 
standard values against the optical density at A450.

2.8 Calculation and statistical analysis of data

Statistical analyses were performed by one-way ANOVA 
and Tukey-Kramer multiple comparisons test, with differences 
considered significant at P<0.05.

The percentage of ZEN residues calculated in the stomach 
digestive fluids, small intestine forepart, and small intestine 
posterior segment fluid indicated the fraction of free ZEN 
not absorbed from the chyme. The solid residues of samples 
collected from the bionic digestion system, analyzed for ZEN, 
comprised the amount of ZEN for absorption and degradation 
by two different adsorbents.

3 Results

3.1 Diet manufacturing

The complete feed for layers was manufactured in accordance 
with GB/T 5916-2008 (Standardization Administration of China, 
2008). All nutrient concentrations were formulated to meet or 
exceed minimal requirements (Table 2).

3.2 Operating the bionic digestive system

The effective procedures for the bionic digestion of layers 
were determined after several preliminary tests. The ZEN-binding 
capacity of the adsorbents and the in vitro system designed to 
mimic the temperature were assessed based on the pH and the 

Table 2. Ingredients and components of the complete feed.

Ingredients Percentage (%) Nutrients Analyzed values

Corn 63.0 Crude protein (%) 16.5

Soybean meal 23.0 Lysine (%) 0.76

Bran 4.0 Methionine + Cysteine (%) 0.65

Mountain flour 5.0 Calcium (%) 3.50

Premixa 5.0 Total phosphorus (%) 0.60

Available phosphorus (%) 0.33

Metabolic energy (kcal/kg) 2650
aSupplied per kg of diet: vitamin A, 200 000 IU; vitamin D3, 76 000 IU; vitamin E, 650 IU; vitamin K3, 58 mg; vitamin B1, 45 mg; vitamin B2, 180 mg; vitamin B6, 30 mg; vitamin B12, 
4.0 mg; nicotinic acid, 800 mg; pantothenic acid, 400 mg; folic acid, 12 mg; biotin, 1.8 mg; choline chloride, 9 g; Fe, 1 600 mg; Cu, 165 mg; Zn, 1 400 mg; Mn, 2 000 mg; I, 10 mg; Se, 
7 mg; Ca, 120 g; P, 25 g.
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4 Discussion
Prevention as a complementary strategy to mycotoxin 

decontamination is an important issue. Any approach generally 
aimed to reduce the toxic and economic effects of mycotoxins 
should respond to as many of the following requisites as possible: 
(1) prevents, destroys, removes, or detoxifies mycotoxins in 
foods and feeds; (2) does not produce or leave toxic and/or 

A significant reduction in the stomach and intestinal 
absorption of ZEN (P<0.05) was observed after KLX, WEKLOU, 
and medical stone at all inclusion levels (from low to high) were 
added. KLX exhibited a more pronounced effect than those of 
WEKLOU and medical stone. With the addition of low to high 
percentage levels of KLX or WEKLOU and medical stone, ZEN 
absorption was reduced by 47-85% or 30-51% and 43-74%, 
respectively, relative to that of the control (Figure 2).

Three kinds of adsorbents effectively sequestered ZEN from 
chyme residues. The ZEN reductions in the ileal deliveries, 
stomach + duodenum residues, and jejunum + ileum residues 
were 88%, 87%, and 69%, respectively, with activated carbon 
and 83%, 60%, and 59% with cholestyramine. This finding 
showed that when ZEN was in the soluble phase of chyme, it 
was strongly sequestered by KLX, WEKLOU, and medical stone 
(Table 3). The dialysate samples taken at different times (0-4, 
4-11.5, 11.5-19 h) showed that ZEN was adsorbed at different 
rates during digestion in the presence of KLX, WEKLOU, and 
medical stone (Figure 3). In the absence of adsorbent materials, 
the amounts of ZEN measured in the dialysate fluid samples 
collected over different periods were 72% (0-4 h), 17% (4-11.5 h), 
and 8% (11.5-19 h) of the residue. The maximum amount of ZEN 
was measured in the stomach digestive fluids collected during 
the 0-4 h period when almost 75% of the gastric content was 
delivered into the small intestine and was potentially available 
for digestion and absorption. When 0.4% of KLX or 0.6% of 
WEKLOU or 1% of medical stone was included in the feed, 
strong ZEN-binding occurred during the initial period of 4 h 
and was persistent for the remaining period of the experiment.

Among the three inclusion levels tested in this study, 0.2% 
of KLX and 0.6% of WEKLOU and 0.5% of medical stone 
exerted the maximum significant effect on the prevention of 
ZEN absorption in the intestine (P<0.05).

Table 3. Mean (± SEM; n=4) of zearalenone in samples collected from the vitro bionic digestion of ZEN-contaminated feed without (control) 
and with KLX, WEKLOU, and medical stone at different inclusion levels.

Amount of zearalenone as a percentage of the residue (Mean ± SEM)

Stomach digestive fluids Small intestine forepart 
digestive fluids

Small intestinal 
posterior segment 

digestive fluids
Chyme residuesAdditive amount

KLX 0% (Control) 71.6 ± 1.2a 16.1 ± 0.3a 9.2 ± 0.4a 2.5 ± 1.5a

0.1% 40.8 ± 1.0b 8.4 ± 0.6b 3.4 ± 0.2b 44.8 ± 1.2b

0.2% 13.0 ± 0.8c 2.8 ± 0.3c 1.2 ± 0.2c 80.3 ± 1.7c

0.4% 11.5 ± 0.6c 2.4 ± 0.2c 0.8 ± 0.2c 83.5 ± 0.9c
WEKLOU 0% (Control) 74.2 ± 1.9a 17.1 ± 1.5a 7.4 ± 0.3a 0.7 ± 1.2a

0.15% 50.8 ± 1.3b 13.4 ± 0.5b 5.5 ± 0.5b 28.9 ± 1.4b

0.3% 45.1 ± 2.6c 10.2 ± 0.9c 3.2 ± 0.3c 40.7 ± 3.4c

0.6% 38.4 ± 2.1d 7.4 ± 0.2d 2.8 ± 0.3d 49.9 ± 3.0d
Medical Stone 0% (Control) 71.3 ± 0.8a 19.2 ± 0.5a 8.3 ± 0.3a 0.8 ± 0.6a

0.25% 44.6 ± 0.6b 8.9 ± 0.7b 2.9 ± 0.2b 42.9 ± 1.2b

0.5% 24.1 ± 1.1c 6.7 ± 0.4c 2.1 ± 0.2c 65.3 ± 1.5c

1% 18.4 ± 0.5d 5.4 ± 0.2d 1.8 ± 0.1c 72.8 ± 1.4d

Values in columns followed by the same letters are not significantly different.

Figure 2. Mean ( ± SEM; n=4) percentage of ZEN residue in stomach 
and small intestine dialysate fluids collected from the bionic digestive 
system during digestion of a ZEN-contaminated feed with KLX, 
WEKLOU, and medical stone at different inclusion levels for 19 h. 
Control (100%) represents the amount of ZEN recovered under the 
same experimental conditions without adsorbent additives.
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screening of mycotoxin/sorbent combinations before testing on 
animals has been suggested (Lemke et al., 2001).

5 Conclusion
KLX, WEKLOU, and medical stone are good candidates for 

ZEN detoxification and can be used as feed additives to prevent 
hyperestrogenism in monogastric animals.

These absorbent materials can also be potentially used as 
multi-mycotoxin binding agents.

Further studies need to be proved, either using the bionic 
digestive system or in vivo experiments. The effectiveness of 
these adsorbent materials in reducing the toxic effects of ZEN 
without affecting the regular use of essential nutrients, such as 
vitamins and minerals.
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