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1. Introduction
Plants are continuously exposed to a variety of adversely 

changing environmental conditions such as heat, cold, drought, 
light, increasing acidity or alkalinity and metal damage, which affect 
plant growth, distribution and productivity (Ahmad et al., 2008; 
Jeong et al., 2018). These stressful conditions are associated with 
great losses in the productivity of many of the agriculturally 
important crops and hence, affect on the economic returns of 
many countries. Thus, concerted efforts are exerted to understand 
the mechanisms of plant resistance against the different stresses.

Temperature stress is one of the most important abiotic factors 
that limit the plant production (Kumar et al., 2010; Gaur et al., 2015). 
Crops are exposed to a wide range of fluctuations in temperature 
under natural growth conditions. Temperature instabilities can 
be experienced by crops at macro or micro-environment levels, 
but both of them can have significant implications on normal 
growth and production. Climatic hazards are possible to increase 
in the near future and plants will face lethal temperature degrees 
which lead to a pragmatic shift in temperature zones, differential 
patterns of rainfall and agricultural production belts.

There are several natural ways of self-defense mechanisms 
in plants to cope the stressful conditions: they can induce 
several regulatory or functional genes (Bartels & Sunkar, 2005) 
or can make different biochemical or physiological changes. 
The accumulation of some osmolytes, such as sugars, alkaloids, 

amino acids and protective proteins, is an important element 
of the biochemical and physiological response of plants to 
the stressful conditions (Liu et al., 2007; Ahmad et al., 2011; 
Osman et al., 2015). In addition to these responses by the plants 
to the different environmental stresses, molecules known as 
polyamines have also been known to have an important role in 
response of plants to different stresses (Bouchereau et al., 1999; 
Chen et al., 2019).

Polyamines (putrescine, spermine, spermidine and cadaverine), 
are the widely distributed nitrogen containing organic substances. 
They were discovered more than 100 years ago. In plants, polyamines 
have been associated with regulating many physiological processes, 
such as embryogenesis, organogenesis, floral initiation and 
development, leaf senescence, fruit development and ripening, 
and biotic and abiotic plant stress responses (Kumar et al., 1997; 
Bagni & Tassoni, 2001; Kusano et al., 2008).

2. Materials and methods
Seeds of Trigonella foenum-graecum were obtained from 

Sakha Research Institute, Sakha, Egypt. During the growth 
season (November and December), the seeds were sterilized 
by immersing them in 0.01% HgCl2 for 1 minute then washed 
several times with distilled water. The seeds were divided into 
two sets. The first was soaked in distilled water and the second 
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Practical Application: This work clarified the role of natural and safe compound (putrescine) in inducing an important 
primary and secondary metabolites in Trigonella plant growing under optimum temperature and also under temperature stress. 
Trigonella is a winter plant, it is an important medicinal plant and has a great therapeutic effect; it is natural antioxidant source 
acts as anticancer, decreases serum total lipids and serum cholesterol, enhances insulin sensitivity, and has antidiabetic effect.
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was soaked in 5mM putrescine for 2 hours. Each set of seeds was 
divided into two groups. The first group of each set was sown in 
pots (5 seeds / pot) containing clay-sandy soil (2:1). The second 
group of each set was germinated for 5 days and then the seedlings 
were exposed to 15 °C, 35 °C or 40 °C for 4 hours. The plants 
were left to grow till the end of the season and irrigated with 
tap water under greenhouse conditions. A completely random 
design was used and each treatment was replicated 5 times. 
At the end of the growth season (120 days old), plants were 
collected and the following measurements were carried out: (1) 
Yield parameters (number of pods per plant, number of seeds 
per pod, weight of pod with seeds and weight of 1000 seeds). 
(2) Biochemical analysis: carbohydrates, proteins, amino acids, 
phenols, fatty acids and isozymes in the harvested seeds.

2.1 Estimation of carbohydrates

Extraction and clarification of the carbohydrates from the 
dried seeds was performed according to Naguib et al. (1968).

a) Determination of direct reducing value (DRV).

Monosaccharides were estimated in seeds of Trigonella 
colorimetrically using a modified Nelson reagent (Naguib, 1964). 
The monosaccharides concentration was calculated as 
mg glucose / g dry wt.

b) Determination of total reducing value (TRV).

Invertase enzyme was used in hydrolysis of sucrose. 
After hydrolysis, the produced monosaccharides were estimated 
as DRV. The difference between TRV and DRV is used as an 
estimation of sucrose as mg glucose / g dry wt.

c) Extraction and estimation of polysaccharides

Extraction and estimation of polysaccharides were carried 
out according to the procedures adopted by Naguib (1963). 
The concentration of sugars was calculated as mg glucose / 
g dry wt.

2.2 Estimation of total soluble proteins.

Total soluble proteins in dry seeds were assayed quantitatively 
in the borate buffer extract using the method described by 
Bradford (1976). The content of proteins in seeds was calculated 
as mg / g dry wt. using a calibration curve of Bovine Serum 
Albumin protein.

2.3 Determination of amino acids

Amino acids content was estimated by Ninhydrin assays 
using the method described by Lee & Takahashi (1966). The 
amino acids content was calculated as mg / g dry wt. using a 
prepared calibration curve by glycine.

2.4 Estimation of total phenolic compounds

Total phenolic content in Trigonella seeds was determined 
quantitatively using the method described by Jindal and Singh 

(1975). A standard curve was made using gallic acid and used 
for the determination of phenolic compounds as mg / g dry wt.

2.5 Estimation of fatty acids

Transmethylation of lipids and extraction of fatty acids methyl 
esters was carried out as described by Garces & Mancha (1993). 
Fatty acids methyl esters were analysed using gas chromatography 
(GC, Hewlett Packer D, HP 6890, series).

2.6 Isozymes analysis

The plant samples were ground and extracted on ice with 
0.1 M Tris-HCl buffer, pH 7.5 containing 0.01 M EDTA, 0.01 M 
potassium chloride, 0.01 M magnesium chloride hexahydrate, 
0.1 M D.T.T (di-thioteritol), 4% P.V.P (poly vinyl pyrolidone) 
and 10% sucrose (Gottlieb, 1981). The extracts were centrifuged 
at 18000 rpm for 20 minutes, at 4 °C and then stored in a deep 
freezer at -80 °C until use. The extracts were separated on 10% 
PAGE polyacrylamide (Laemmli, 1970; Pasteur et al., 1988).

2.7 Esterase, EST (β-naphthyl acetate)

Gels were incubated in 100 ml 0.05 M phosphate buffer (pH 7.2) 
containing 50 mg Fast Red TR and 10 mg β-naphthylacetate dissolved 
in 1 ml of acetone, in the dark at 37 °C until bands appeared. The 
gels were washed in water and fixed in 3% acetic acid. For reduction 
of nonspecific background, 2 to 5 mL of 4% formaldehyde was 
added to the staining solution (Manchenko, 1994).

2.8 Statistical analysis

The obtained results were statistically analysed using the 
analysis of variance test (ANOVA) described by Bishop (1983).

3. Results and discussion
Temperature extremes, both low (cold stress) and high (heat 

stress), are injurious to plants at all stages of growth, resulting 
in severe loss in productivity of crops (Bhandari et al., 2017). 
The results of this investigation revealed that the increase (35 °C 
and 40  °C) or decrease (15  °C) in temperature beyond the 
optimum temperature (25 °C) caused a significant reduction in 
the measured yield parameters (number of pods / plant, number 
of seeds / pod, weight of pod with seeds and weight of 1000 seeds) 
(Figure 1). Plants subjected to 40 °C heat stress were severely 
affected. Their were a decrease in number of seeds per pod by 
75% and in weight of pod with seeds by 74.1% when subjected 
to 40 °C compared with control at 25 °C. These results are in 
accordance with those obtained by Prasad et al. (2008), who found 
that high temperature decreased Sorghum height, seed set, seed 
yield, seed numbers and seed size. Also, Barutcular et al. (2017) 
proved that warm environment (heat stress) caused a significant 
reduction in grain yield and physiological parameters of wheat 
plant by about 54% and 32% in 2007-2008 and 2008-2009 growth 
seasons respectively. Treatment of Trigonella seeds with 5mM 
putrescine before exposing to temperature stress degrees 
removed the harmful effects induced by temperature stress on the 
measured yield parameters (Figure 1). Exogenous application of 
polyamines stimulates tolerance to high or low temperatures in 
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various crop plants (Perez-Amador et al., 2002; Tajti et al., 2018). 
It was found that putrescine improves the yield and quality of bell 
pepper (Mahmood et al., 2017) and broccoli (Zheng et al., 2019). 
The exogenous application of putrescine led to accumulation 
of endogenous polyamine contents in plants (Kubis et al., 1991; 
He et al., 2002) and this may alleviate the harmful effects induced 
by temperature stress.

The results showed that, all the temperature stress degrees 
(15  °C, 35  °C and 40  °C) caused a significant reduction in 
monosaccharides and disaccharides contents of Trigonella 
seeds. Monosaccharides were severely affected at 40  °C and 
decreased by about 89.5% compared with control at 25  °C. 
Polysaccharides slightly decreased at 35°C and 40 °C compared 
with control samples at 25  °C (Figure 2). These reductions 
in sugar contents may be attributed to the highly significant 
decrease in photosynthetic pigments caused by 15 °C and 35 °C 
in Trigonella leaves (Osman et al., 2015). In this connection, 
Wolf et al. (1982) found that sucrose concentration was decreased 
by 56% in soybean seeds subjected to cold stress (15  °C). 
Putrescine  alleviated the deleterious effects of temperature 

stress on carbohydrate contents of Trigonella seeds (Figure2). 
Putrescine improves photosynthesis process and regulates the 
carbohydrate metabolism (Yinghui et al., 2015). In this connection, 
Palma et al. (2016) showed that putrescine treatment alleviates 
chilling injury through modulating the carbohydrate content 
and this response could be due to the degradation of putrescine 
and the induction of amino butyric acid shunt pathway.

Proteins in general are very sensitive to any change in 
temperature. The protein content of Trigonella seeds (Figure 3) 
was significantly decreased by 50% at 15  °C, 27.8% at 35  °C 
and 69.4% at 40 °C respectively comparing to control samples. 
Treatment with putrescine caused a significant increase in 
protein content over those of the corresponding plants exposed 
to temperature stress alone. In this respect, Yadav et al. (2017) 
found that high temperature stress led to disruption of cellular 
membranes by increasing cell membrane injury, lipid peroxidation 
and H2O2 contents. This led to decrease in total chlorophyll and 
soluble proteins. Foliar application of putrescine ameliorated 
heat-induced damages in maize plant.

Figure 1. Effect of Putrescine on yield parameters of 120 days old Trigonella foenum-garcum plant under temperature stress.
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Amino acids in general and specifically proline are 
accumulated in plants in response to different abiotic stresses. 
In this study, we found a significant increase in total amino 
acids of Trigonella seeds when subjected to different stress 
temperature degrees (15 °C, 35 °C and 40 °C) compared with 
control (25 °C). This increase was magnified by application of 
putrescine (Figure 4). The increase in amino acids contents may be 
considered as acclimation mechanism of plant against temperature 
stress. Among the different amino acids, proline protects plant 

tissues against different abiotic stresses by acting as osmotically 
active solute, nitrogen storage compound and protectant for 
enzymes and other cellular structures (Chai et al., 2012). In this 
respect, Wolf et al., (1982) stated that, amino acids composition 
in soybean seed in response to temperature stress was generally 
stable; however, there was an increase in methionine content.

The secondary metabolism is essential for the fitness of 
plants, many secondary metabolites play an important roles 
as chemical defense compounds against different stresses 

Figure 2. Effect of Putrescine on carbohydrates content (mg/g dry wt.) of 120 days old Trigonella foenum-garcum seeds under temperature stress.

Figure 3. Effect of Putrescine on protein content (mg/g dry wt.) of 120 
days old Trigonella foenum-garcum seeds under temperature stress.

Figure 4. Effect of Putrescine on total amino acids content (mg/g dry wt.) 
of 120 days old Trigonella foenum-garcum seeds under temperature stress.
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(Wink, 1997). The results showed that, phenolic compounds 
were accumulated in Trigonella seeds subjected to different 
temperature stress degrees (15 °C, 35 °C and 40 °C) compared 
with control. Treatment with putrescine seemed to have no 
significant effect on phenol contents of seeds under temperature 
stress (Figure 5). In accordance with our results, Rivero et al. 
(2001) indicated that thermal stress induces the accumulation 
of phenolic compounds in tomato and watermelon plants. It has 
been demonstrated that thermal stress induces the synthesis of 
phenolic compounds, such as phenyl propanoids and flavonoids 
(Bharti & Khurana, 1997). Phenylalanine ammonia-lyase (PAL) 
is considered to be the main enzyme in the phenylpropanoid 
pathway (Kacperska, 1993) catalyzing the transformation, by 
deamination, of L-phenylalanine into trans-cinnamic acid, 
which is the prime intermediary in the biosynthesis of phenolic 
compounds (Dixon et al., 1992; Levine et al., 1994). The activity 
of this enzyme increases in response to thermal stress and 

is considered by many authors to be one of the main lines 
of cell acclimation against stress in plants (Kacperska, 1993; 
Levine et al., 1994; Leyva et al., 1995).

Fatty acids are important components of cellular membranes, 
cutin, waxes and suberin (Beisson et al., 2007). They participate 
in making stress resistance through the remodeling of membrane 
fluidity (Iba, 2002; Upchurch, 2008), the release, through lipase 
activity of α-linolenic acid (Grechkin, 1998). Free linolenic acid 
is considered a stress signal and the precursor for phyto-oxylipin 
biosynthesis (Blée, 2002). Our results indicated an increase 
in the total unsaturated fatty acids in plant seeds subjected 
to 15 °C and 35 °C compared with control at 25 °C (Table 1). 
This increase was mainly due to large amounts of both α-linolenic 
acid (C18:3) and oleic acid (C18:1). In this respect, Iba (2002) 
found that trienoic fatty acids (TAs) such as linolenic acid are 
the major polyunsaturated fatty acids in membrane lipids. 
Increasing TAs in chloroplast membranes has been shown 
to enhance low temperature tolerance in plants. The effects 
of elevated temperature degrees on fatty acids composition of 
storage lipids have been tested extensively in developing seeds. 
For example, the changes in soybean seed lipid composition 
under high temperatures (Wilson, 2004; Rajcan  et  al.,  2005; 
Hou et al., 2006). Treatment with putrescine had resulted in 
a remarkable increase in palmitoleic acid (C16:1) compared 
with control untreated seeds at 25 °C. The induction of C16:1 
fatty acid in the yielded seeds of Trigonella may be attributed to 
the enhancement of desaturase activity which may desaturate 
C16:0 to C16:1. Replacement of C16:0 with C16:1 is presumably 
to maintain membrane fluidity and integrity. Application  of 
putrescine to temperature stressed plants at 35  °C had a 
pronounced increase in the total unsaturated fatty acids 76.85% 

Figure 5. Effect of Putrescine on phenol content (mg/g dry wt.) of 120 
days old Trigonella foenum-garcum seeds under temperature stress.

Table 1. Effect of Putrescine treatment on percentage of fatty acids of 120 days old Trigonella foenum-garcum seeds under temperature stress.

Fatty acids 25 °C putrescine 15 °C 15 °C+ 
putrescine 35 °C 35 °C+ 

putrescine

Valeric acid C5:0 1.85 2.52 1.90 5.25 2.30 3.05

Caproic acid C6:0 - - 1.50 1.50 - -

Capric acid C10:0 1.72 1.95 1.75 2.70 2.02 2.60

Undecylic acid C11:0 1.85 2.35 4.20 2.50 - -

Lauric acid C12:0 2.19 2.00 1.65 3.30 2.10 2.80

Myristic acid C14:0 3.85 2.25 3.90 3.25 2.00 2.55

Myristoleic acid C14:1 - 4.00 7.30 - 2.40 9.50

Palmitic acid C16:0 2.07 7.40 10.60 4.00 3.60 4.10

Palmitoleic acid C16:1 10.30 35.65 4.00 42.30 27.20 26.50

Margaric acid C17:0 2.53 2.35 2.30 5.85 3.35 3.40

Heptadecenoic acid C17:1 15.20 - - - 5.00 7.50

Stearic acid C18:0 26.30 12.45 4.35 4.85 18.00 4.65

Oleic acid C18:1 3.25 8.00 19.80 6.80 8.00 10.80

Linoleic acid C18:2 24.15 12.48 30.20 2.00 11.03 12.05

αLinolenic acid C18:3 3.24 4.35 4.00 11.20 10.30 10.50

Behenic acid C22:0 1.50 2.25 2.55 4.50 2.70 -

Total saturated fatty acids 43.86 35.52 34.7 37.7 36.07 23.15

Total unsaturated fatty acids 56.14 64.48 65.3 62.3 63.93 76.85
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