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1 Introduction
During the past decade, fruit juice has gained remarkable 

interests in beverage market sector. Processing of fruits into 
juices has been a commercial way to diversify the usage of the 
fruits and to fulfill demands beyond harvest season. In addition, 
fruit juice has been viewed as a more convenient way to obtain 
comparable health benefits from the fruits to those from direct 
consumption. As the markets for fruit juice are approaching 
saturation, however, competitions among industries to attract 
consumers with their juice products are escalating. This condition 
requires industries to constantly innovate and introduce new 
products to the market. One approach that the beverage industry 
can use to win the competition is by introducing exotic fruit 
juice to the market.

Exotic fruits from tropical countries such as bignay (Antidesma 
bunius), Indian black plum or jamun (Syzygium cumini L), red 
mulberry (Morus rubra L.), and black mulberry (Morus nigra 
L.) have gained interests from researchers for their potential as 
sources of bioactive compounds and natural antioxidants. Studies 
on bignay fruits (Butkhup & Samappito, 2008; Hardinasinta et al., 
2020; Jorjong et al., 2015; Lim, 2012; Ngamlerst et al., 2019), black 
plum (Aqil et al., 2012; Banerjee et al., 2005; Singh et al., 2018), 
and mulberry (Isabelle et al., 2008; Kim et al., 2010; Zhang et al., 
2008) indicate that these fruits are rich in phenolic compounds 
such as flavonoids and athocyanins which have the potential 
to provide health benefits as reported by numerous authors 
(Aiyer  et  al., 2008; Basli  et  al., 2017; Chowtivannakul  et  al., 
2016; Mazza, 2007; Ngamlerst et al., 2019; Stoner et al., 2007; 
Timmers et al., 2015; Wang & Stoner, 2008). Bignay fruit is an 
exotic fruit which is mostly found in Southeast Asian countries 

such as Thailand and Indonesia. This fruit resembles berries with 
a purplish-black color and a sweet-sour taste when fully ripe. 
In addition, due to its chemical contents, this fruit can be used 
as a raw material for production of antioxidant-rich beverages 
(Chaikham et al., 2016; Sripakdee et al., 2015).

In production of drinks and beverages, microbial safety 
of the products is of paramount importance. This is usually 
achieved through thermal treatments such as pasteurization 
and sterilization or non-thermal treatments such as pulsed 
electric field processing and high-pressure processing. One of the 
negative impacts of heat treatments of foods is the degradation 
of quality attributes such as nutrient contents, texture, color, 
and bioactive compounds. To minimize these effects, thermal 
technologies which can provide rapid and uniform heating such 
as ohmic and microwave heating technologies and non-thermal 
technologies have been developed. In the case of ohmic heating, 
rapid and uniform heating have been shown both experimentally 
and through mathematical simulations (Cokgezme & Icier, 
2019; Icier & Ilicali, 2005; Kaur et al., 2016; Lascorz et al., 2016; 
Petruzzi  et  al., 2017; Priyadarshini  et  al., 2019; Qihua  et  al., 
1993; Salengke & Sastry, 2007a, b; Sastry & Salengke, 1998; 
Varghese et al., 2014).

The use of ohmic technology in heating and processing of 
various types of solid and liquid foods has been studied extensively 
(Abedelmaks et al., 2018; Achir et al., 2016; Athmaselvi et al., 
2017; Cappato et al., 2018a,b; Castro et al., 2004; Cokgezme & 
Icier, 2019; Darvishi et al., 2011, 2013; Farahnaky et al., 2012; 
Fattahi & Zamindar, 2020; Icier et al., 2017; Lascorz et al., 2016; 
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Liu et al., 2017; Olivera et al., 2013; Poojitha & Athmaselvi, 2018; 
Sabanci & Icier, 2017; Salengke & Sastry, 2007c; Sarang et al., 
2008; Sarkis et al., 2013; Torkian Boldaji et al., 2015; Yildiz et al., 
2010; Zell  et  al., 2009). Many of these studies were mainly 
conducted to evaluate the possibility of using ohmic heating in 
thermal treatments of food products.

In recent years, there are several new applications of ohmic 
heating that have recently been reported such as application in 
carrageenan extraction (Hasizah et al., 2018), cocoa and coffee 
beans fermentations (Supratomo et al., 2019; Salengke et al., 
2019), cheese production (Rocha et al., 2020a), whey beverages 
production (Ferreira  et  al., 2019a, b; Coimbra  et  al., 2020), 
dairy dessert and milk product production (Kuriya et al., 2020; 
Silva et al., 2020), and paraprobiotics production (Barros et al., 
2021). These studies indicate that ohmic heating can provide 
faster extraction and fermentation process (Hasizah  et  al., 
2018; Supratomo et al., 2019), better and consistent coffee bean 
quality (Salengke  et  al., 2019), better sensory attributes and 
consumer acceptance (Coimbra et al., 2020; Rocha et al., 2020a; 
Silva et al., 2020), and improved health benefits (Rocha et al., 
2020a, b; Barros et al., 2021). In addition, physical properties of 
beverage produced via ohmic heating can be tailored by varying 
ohmic heating parameters such as frequency and filed strength 
(Ferreira et al., 2019b).

Many studies on the effects of ohmic heating on degradation 
of phenolic compound and anthocyanin in processed foods 
have been reported (Brochier et al., 2019; Ferreira et al., 2019a; 
Hardinasinta et al., 2019; Loypimai et al., 2015; Makroo et al., 2017; 
Mercali et al., 2015, 2013; Sarkis et al., 2013, 2019; Yildiz et al., 
2009). Salari & Jafari (2020) conducted a review on the results of 
various studies and concluded that the effects of ohmic heating 
on the degradation of phenolic compounds and anthocyanin 
are not consistent since some researchers reported that ohmic 
heating resulted in higher degradation compared to conventional 
heating, while others reported that ohmic heating resulted in 
lower phenolic and anthocyanin degradation or similar to that 
of conventional heating.

Castro  et  al. (2004) reported that the magnitude of the 
electric field applied did not affect ascorbic acid degradation 
in the strawberry product. The same trend was reported by 
Mercali et al. (2015) for their study on jaboticaba juice. However, 
other studies reported that higher electric field resulted in higher 
degradation of anthocyanin in blackberry pulp (Sarkis et al., 2019) 
and ascorbic acid in tropical fruit pulp (Athmaselvi et al., 2017). 
The degradation kinetics of some bioactive compounds during 
ohmic heating also differ among products. The rate constant for 
anthocyanin from acerola pulp (Mercali et al., 2013) showed 
higher value compared to that of jaboticaba juice (Mercali et al., 
2015). These results indicate that the stability of anthocyanin is 
relatively different in different products. Therefore, it is important 
to determine the effect of ohmic heating process on the stability 
of bioactive compounds in the scarcely studied exotic fruits such 
as bignay fruit. This kind of study can form an important step 
towards the development of commercial processes at industrial 
scale. Therefore, the objectives of this study were: (1) to evaluate the 
effects of ohmic heating on antioxidant activity and degradation 
kinetics of phenolic, anthocyanin, and flavonoid compounds in 

bignay juice, and (2) to obtain electrical conductivity of bignay 
fruit juice during ohmic heating.

2 Materials and methods
2.1 Sample preparation

Freshly harvested bignay fruits were obtained from a local 
market in Makassar, South Sulawesi, Indonesia. The fruits were 
washed and sorted based on maturity level and fruits with good 
maturity, distinguished by their black-purplish color, were used 
in this study. The selected fruits were crushed using a commercial 
juicer (Philips HR1832) and then filtered to separate the pulp 
from the juice. The single strength juice obtained was stored at 
-20 °C until used.

2.2 Ohmic heating experiments

Ohmic heating experiment was conducted using a laboratory-
scale static ohmic heater as illustrated in our previous study 
(Hardinasinta et al., 2019). The experiment was conducted at 
three levels of temperature (70, 90, 110 °C) and 2 mL of sample 
was drawn from the ohmic heater at different heating time 
(0, 15, 30, 45 min). The prolonged heating time was used to 
bring about appreciable changes in the bioactive compounds 
in the juice samples so as to obtain an appropriate fit for the 
degradation kinetics model. During ohmic heating, temperature, 
electric field strength, and electric current were recorded using 
a data logger (CR1000 Campbell Scientific, Inc., Logan - Utah,).

2.3 Electrical conductivity measurement

The electrical conductivity of bignay juice during ohmic 
heating was determined using Equation 1,

  . L I
A V

σ =  (1)

where L is the distance between electrodes (m), A is the cross-
section area of the ohmic heating chamber (m2), I is current 
consumption (A), and V is applied voltage (V).

2.4 Chemical analysis

Chemical analysis were carried out to determine total phenolic, 
anthocyanin, and flavonoid contents as well as antioxidant 
activity. Chemicals used in the analysis were analytical grade 
and all measurements were carried out in triplicate.

2.5 Total phenolic content

Prior to analysis, stock solutions of control and ohmically 
treated juice samples were prepared by dilution of 0.1 mL of the 
samples with 10 mL of methanol/water (6:4, v/v) solution. The 
Folin-Ciocalteu method was used to determine total phenolic 
content of each sample based on the procedure described by 
Tezcan et al. (2009) with some modification. From the stock 
solution, 0.5 mL of aliquot was mixed with 1.5 mL of Folin 
Ciocalteu reagent (7.5%) and 1.2 mL of Na2CO3 (7.5%). 
Distilled water was then added to the mixture to reach a total 
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(Camag TLC 3 scanner, Switzerland) at the wavelength of 245 nm 
according to the spot reference from the standard solution. From 
the peak area of the standard spot, the calibrating curve of rutin 
was acquired and used to determine the flavonoid content of 
the juice samples.

2.8 Antioxidant activity

Antioxidant activity measurements were carried out using 
two different approaches, i.e. 2,2 Diphenyl-1-picrylhydrazyl 
(DPPH) assay and 2,20-azino-bis (3-ethylbenzthiazonline-6-
sulfonic acid) (ABTS) assay.

2.9 DPPH method

The DPPH radical-scavenging activity was determined 
based on the method described in Kenny  et  al. (2013) with 
several modifications. The DPPH solution was prepared by the 
dilution of 8 mg DPPH (Sigma-Aldrich) in 50 mL of methanol. 
Juice samples (5 mg) were diluted in 5 mL of methanol to obtain 
stock solution of the sample. A series of five different sample 
concentrations ranging from 75-375 ppm were prepared by 
pipetting 15, 30, 45, 60, and 75 μL of the stock solution across the 
96-well plate, followed by the addition of 75 μL DPPH solutions. 
Methanol was then added into the well to reach the final volume 
of 200 μL. The mixture was kept in the dark for 30 minutes at 
room temperature to allow optimum reaction to occur. The 
absorbance of each sample was measured at the wavelength of 
515 nm using ELISA plate reader (ELx808 BioTek, Vermont, 
USA). The results were expressed in IC50 value.

2.10 ABTS method

The ABTS assay was performed based on the method 
illustrated in Jorjong et al. (2015) with modifications. To obtain 
the ABTS reagent, a 7.4 mM ABTS solution and a 2.6 mM 
potassium persulfate solution were required. ABTS solution was 
prepared by diluting 0.018 g of ABTS in 5 mL of methanol while 
potassium persulfate solution was obtained by mixing 4.6 mg of 
potassium persulfate with 5 ml methanol. Both solutions were 
mixed with the ratio of 1:1 (v/v) and the final volume was made 
up to 25 mL with methanol. The reagent was incubated in the 
dark for 12-16 hours before use. Sample preparation procedure 
was similar to the DPPH method mentioned above, except for 
the volume of ABTS used (125 μL) and the wavelength at which 
the absorbance was measured (650 nm).

2.11 Degradation kinetic measurement

The rate constant for degradation of a compound due to 
heat treatments can be determined using first-order kinetic as 
represented in Equation 4.

 kt
oC C e−=  (4)

In the above equation, C0 (mg/L) is initial concentration 
of the compound, C is concertation at time t, and k is the rate 
constant. The time required to reduce the concentration of a 
compound to one-tenth of its initial concentration is denoted 

volume of 5 mL. The mixture was allowed to rest for 90 min 
at room temperature before measurement of absorbance was 
carried out. The absorbance of the samples was measured 
using UV-Vis Spectrophotometer (UV-1800, Shimadzu, Japan) 
at 760 nm and the results of measurements were expressed in 
gallic acid equivalent (GAE). Standard curve was prepared by 
diluting gallic acid in methanol/water (6:4, v/v) with five different 
concentrations ranging from 2-10 ppm and the absorbance of 
each solution was measured using the same wavelength (760 nm).

2.6 Anthocyanin content

Total monomeric anthocyanin was determined using the pH 
differential assay as described by Jiang et al. (2013). This method 
measures color difference of two samples obtained by reacting 
samples with a buffer solution at two different pH levels. The 
preparation of the samples was carried out as follow. Each of the 
control and ohmically treated juice sample was pipetted 50 μL 
into two glass vials. A 100-fold dilution was carried out for each 
sample by adding potassium chloride (0.025 M) buffer solution 
at pH 1.0 to one of the vial and sodium acetate (0.4 M) buffer 
solution at pH 4.5 to the other vial. The preparation of the buffer 
solution was based on the standard method by (Association of 
Official Analytical Chemists, 2005). The diluted samples were 
placed in a dark room for 20 min and the absorbance of each 
sample was measured using 520 and 700 nm wavelength. Total 
absorbance of the samples was calculated using Equation 2:

( ) ( ), ,   520 700 520 700pH 1 0 pH 4 5A A A A A= − − −  (2)

where A520 is the absorbance at the wavelength of 520 nm, 
and A700 is the absorbance at the wavelength of 700 nm. Total 
anthocyanin content was determined using Equation 3,

      
 

3mg A MW DF 10Anthocyanin
L lε

× × ×  =  × 
 (3)

where A is total absorbance, MW is the molecular weight of 
cyanidin-3-glucoside (445.2 g/mol) as the standard, DF is the 
dilution factor, ɛ is the molar absorption capacity (29,600 l/mol.cm), 
and l is the cuvette length (1 cm).

2.7 Flavonoid content

Analysis of flavonoid content was carried out using Thin 
Layer Chromatography (TLC) assay (Altemimi et al., 2015). A 
20 × 20 cm TLC plates pre-coated with silica gel 60 F254 (Merck, 
Germany) was divided into four pieces of equal size (5 × 20 cm) 
and then dried in an oven at 110 °C for 20-30 min before use. 
Standard solution was prepared using rutin (250 ppm). The 
mixture of ethyl acetate: formic acid: water (10:2:3 v/v/v) was 
used as solvent for the separation process. The chromatography 
chamber was filled with 10 mL solvent and allowed to saturate 
for 30-40 min before used. The standard solution was dotted on 
the TLC plate in five different volumes of 0.1, 0.5, 1.0, 2.0, and 
4.0 μL followed by 2 μL of samples with a distance of 1 cm each. 
The plate was placed inside the chamber in a straight horizontal 
position and then covered to allow the separation process. 
The reading of peak area was performed using a densitometer 
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This result is in accordance with the results reported by 
other researches which indicated that electrical conductivity 
increased linearly with temperature (Palaniappan & Sastry, 
1991; Srivastav & Roy, 2014).

The result obtained in this study is comparable to the results of 
previous studies conducted on blueberry and strawberry pulp with 
the electrical conductivity of 0.79-3.86 mS/cm (0.079-0.386 S/m) 
at 30-82 °C and 0.001-0.004 S/cm (0.1-0.4 S/m) at 20-100 °C, 
respectively (Castro et al., 2004; Mercali et al., 2011). The electrical 
conductivity of bignay juice can be considered optimum for 
ohmic heating processing since electrical conductivity in the 
range of 0.1-5 S/m is considered optimum for ohmic heating by 
several researchers (Proctor, 2018; Salari & Jafari, 2020). Beside 
temperature and ionic compounds, electrical conductivity also 
depends on the applied electric field, free water content, and 
solid content of the product (Castro et al., 2003; Icier & Ilicali, 
2004; Varghese et al., 2014).

3.2 Change in bioactive compounds during heating

Fresh bignay juice contained 1202.5 mg GAE/100 mL total 
phenolic, 426.6 mg/100 mL anthocyanin, and 3.78 mg/100 mL 
flavonoid. The total phenolic content obtained was comparable 
to the results reported in Butkhup & Samappito (2008), while 
anthocyanin content in this study was higher than the anthocyanin 
content of bignay juice described in Chaikham et al. (2016). On 
the contrary, a study conducted by Jorjong et al. (2015) reported 
higher flavonoid content compared to the result found in this 
study. The influence of temperature and time during ohmic heating 
was shown in Figure 2 below. Each type of compound possessed 
different behavior when exposed to both treatments. Statistical 
analysis was used to further determine the interaction between 
the observed bioactive compounds and the treatment used.

Total phenolic in bignay juice decreased during ohmic 
heating at all temperatures with the highest reduction occurred 
at 110 °C. Significant degradation was observed during heating 
from ambient temperature to the targeted treatment temperatures. 
During constant temperature period (up to 45 minutes holding 
time at treatment temperatures), we found insignificant change in 
phenolic content. Previous studies reported that degradation of 
phenolic content occurred during ohmic heating of watermelon 
juice (Makroo et al., 2017) and sugarcane juice (Brochier et al., 
2016). Ohmic heating of sugarcane juice at varying frequencies 
demonstrated no further degradation that occurred after time 
zero. The phenolic content of watermelon juice decreased 
significantly during the first 30 seconds of heating while the 
reduction of this compound became insignificant afterward. 
Another study which evaluate the effect of heating method on 
fruit juice indicated no significant difference between ohmic 
and conventional heating in terms of total phenolic content 
(Brochier et al., 2016; Yildiz et al., 2009). However, the study 
conducted for pomegranate juice reported that phenolic content 
increased after processing both with ohmic and conventional 
heating (Yildiz et al., 2009). An increase in phenolic compounds 
after thermal treatment was also observed in sajor-caju extract 
(Saad et al., 2014) and jambolana pulp (Branco et al., 2016). 
The different trends reported by various researchers can be due 
to varying processing conditions applied to the products. For 

as decimal reduction time (D-value). This value was determined 
using Equation 5. Another parameter that is often used to describe 
the rate of degradation of a compound is the half-time (t1/2) which 
represents the time needed to reduce the concentration of the 
compound to one-half of its initial concentration (Equation 6).

( ) 
ln 10

D
k

=  (5)

( )
/  1 2

ln 2
t

k
=  (6)

Temperature dependence of degradation rate of compounds can 
be derived from the Arrhenius equation as shown in Equation 7.

( )  a
0

Ek T k exp
RT

 = − 
 

 (7)

In the above equation, k is the degradation rate constant at 
temperature T (in K), Ea is the activation energy (kJ/mol), and 
R is the universal gas constant (8.314 x 10-3 kJ/mol.K).

2.12 Statistical analysis

The IC50 value was analyzed using the trial version of Prism 
8.0 (GraphPad Software, San Diego, CA-USA). Other statistical 
analyses were performed using R Studio software (RStudio PBC, 
Boston, MA-USA).

3 Results and discussions
3.1 Electrical conductivity of bignay juice

Electrical conductivity is a substantial aspect affecting the 
heat generation inside the product and consequently it can 
significantly influence the design process. Figure 1 shows the 
change in electrical conductivity of bignay fruit juice during ohmic 
heating. The electrical conductivity of bignay juice increased 
linearly from 0.128 to 0.390 S/m as temperature increased from 
32 °C to 110 °C. The relationship between temperature and 
electrical conductivity is given in Equation 8 with R2 > 0.9986.

.  .0 0034T 0 0111σ = +  (8)

Figure 1. Electrical conductivity of bignay fruit juice during ohmic 
heating.
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phenolic acid found in the form of ester, glycoside, and ester-
bound fractions decreased during heating.

Anthocyanin is known to be susceptible to several environmental 
factors such as temperature, pH, light, and oxygen (Loypimai et al., 
2016; Moreno et al., 2016). The same trend was observed in this 
study where anthocyanin in the treated bignay juice degraded 
significantly (p < 0.05). Ohmic heating at 70 °C for 45 minutes 
retained 93.7% of anthocyanin in the treated bignay juice, while 
heating at 90 °C and 110 °C for 45 minutes caused degradation 
in the order of 21% and 62% respectively. Similar trend was 
reported for blackberry pulp, where anthocyanin showed better 
retention at lower temperatures (70-75°C) compared to that at 
higher temperatures (80-90 °C) which showed degradation for 
up to 40% (Sarkis et al., 2019). Although anthocyanin content of 
bignay juice decreased during ohmic heating for 45 minutes, the 
reduction was statistically insignificant (p > 0.05). Degradation 
of anthocyanin also occurred during thermal treatment of plump 
juice (Turturicǎ et al., 2018), sour cherry concentrate (Zoric et al., 
2014), and jamun fruit juice (Shaheer et al., 2014). Sarkis et al. 
(2013) compared anthocyanin degradation due to ohmic and 
conventional heating of blueberry pulp and reported that ohmic 
heating at high voltage (200 and 240 V) caused higher degradation 
than conventional heating. Similar trend was also reported by 
Sarkis  et  al. (2019) who studied anthocyanin degradation in 
blackberry pulp. Meanwhile, ohmic heating conducted at lower 
voltages (25, 45, and 60 V) provided no significant difference 
in anthocyanin degradation compared to that of conventional 
heating (Ferreira et al., 2019a; Mercali et al., 2015).

In contrast to the phenolic and anthocyanin degradation, 
the degradation of flavonoid in bignay juice is more time-
dependent. The degradation of flavonoid was 36%, 51%, and 
60% after 45 min of heating at 70, 90, and 110°C, respectively. 
Prolong heating time significantly affected the destruction of 
flavonoid content (p<0.05), while the influence of temperature 
was not significant (p>0.05). Thermal treatment applied to 
two types of flavonoids (fisetin and quercetin) showed similar 
behavior where the concentration of both compounds decreased 
in a time-dependent manner (Wang & Zhao, 2016). The same 
time-dependent behavior was also reported from a study on 
flavonoid in white grape juice as affected by High Voltage 
Atmospheric Cold Plasma (Pankaj et al., 2017) except that the 
flavonoid content increased during the treatment.

3.3 Degradation kinetics of anthocyanin and flavonoid

The first-order kinetic models were used to describe the 
degradation kinetics of anthocyanin and flavonoid in bignay juice 
in terms of the k, t1/5, D, and Ea values and the results are shown 
in Table 1. These models have been applied widely in defining 
the kinetics of degradation of compounds for their mathematical 
simplicity. These models are widely used to obtain the degradation 
rate constants which are the main parameters that describe the 
time and temperature dependence of compounds’ stability during 
heating (Sarkis et al., 2019). Applications of first-order kinetics 
model to determine the thermal degradation of anthocyanin have 
been reported for black mulberry juice (Fazaeli et al., 2013), purple 
potato (Nayak et al., 2011), juçara and “Italia” grapes (Peron et al., 
2017), while modeling of flavonoid degradation with first-order 

Figure 2. Degradation of bioactive compounds during ohmic heating; 
(a) Phenolic content; (b) Anthocyanin content; (c) Flavonoid content

instance, Cappato et al. (2018a, b) described that the quality of 
whey acerola-flavored drink was highly affected by the voltage 
and electric frequency used during ohmic heating. In regard to 
phenolic compound, the worst operating condition was reported 
at 60 V - 60 Hz combination, while the highest retention was 
reported at 25 V - 1000 Hz combination (Cappato et al., 2018a). 
The types of phenolic compounds contained in the product also 
affect the change in the phenolic compound during heating. 
Xu et al. (2007), described that free phenolic acid fraction in 
citrus peel extract increased after thermal treatment while the 
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since its Ea value was about 3.5 times the Ea value of flavonoid. 
A closer examination to the data in Table 1 indicates that at 
70oC, the degradation rate constant for flavonoid was about 
6.7 times that of anthocyanin, while at 90 °C the value was about 
2.8. On the other hand, at 110oC, the degradation rate constant 
for flavonoid was about 0.98 that of anthocyanin. These values 
indicate that at the lower treatment temperature (70 and 90 °C), 
anthocyanin was much more stable that flavonoid while at the 
highest treatment temperature (110 °C) the degradation rate 
constants of the two compounds were almost identical. Therefore, 
overall, anthocyanin in bignay fruit juice is much more stable 
during ohmic heating compared to flavonoid. This trend can 
also be seen from the slopes of the curves in Figure 2. For the 
effect of temperature on anthocyanin degradation, results of 
statistical analysis indicate that degradation of anthocyanin in 
bignay fruit juice was significantly higher at 90 and 110 °C than 
that at 70 °C (p<0.05). The activation energy for degradation of 
anthocyanin found in this study was comparable to those reported 
for blackberry pulp (67 kJ/mol) and acerola pulp (74.83 kJ/mol) 
(Mercali et al., 2013; Sarkis et al., 2019).

It is interesting to note that the Ea value for degradation of 
flavonoid in bignay fruit juice during ohmic heating as found in 
this study as comparable to those reported previously for sour 
cherry marasca paste with Ea value of 18.1 kJ/mol (Zoric et al., 
2014), plump extract with Ea value of 18.0 ± 2.0 kJ/mol and black 
rice flour with Ea value of 15.80 ± 1.50 kJ/mol (Bolea et al., 2016; 
Turturicǎ et al., 2016). Another important bioactive compound 
that has been reported to have comparable Ea value was ascorbic 
acid in pineapple juice with Ea vaalues ranged from 14.22 to 
29.78 kJ/mol (Dhakal et al., 2018) and ascorbic acid in strawberry 
pulp with Ea value of 21.36 kJ/mol (Castro et al., 2004).

3.4 Changes in antioxidant activity

The antioxidant activity of bignay fruit juice is expressed 
as IC50 with lower value implies higher antioxidant activity. The 
IC50 value of bignay fruit juice ranged from 0.106-0.168 mg/mL 
for DPPH method and 0.131-0.161 mg/mL for ABTS method. 
Comparable range of antioxidant activity was reported for 
black plump (71.30 - 114.69 μg/mL) and Litchi chinensis fruit 
pulp (0.102 mg/mL) (Prakash et al., 2011; Baliga et al., 2011). 

kinetics equation can be found in studies on the effects of heat 
on plump extract (Turturicǎ et al., 2016), black rice flour extract 
(Bolea et al., 2016), and mandarin slices (Akdaş & Başlar, 2015).

The results shown in Table 1 indicate that the degradation rate 
constant (k-value) for anthocyanin in bignay fruit juice ranged 
from 0.0016 to 0.0213. Comparable values were reported from 
studies on anthocyanin degradation in blackberry (Sarkis et al., 
2019), jaboticaba (Mercali et al., 2015), and acerola fruit juice 
(Mercali  et al., 2013). The k-values reported in these studies 
ranged from 0.00155-0.0051 min-1 for blackberry pulp at 70-90 °C 
(Sarkis et al., 2019), from 0.0017-00075 min-1 for jaboticaba juice 
at 70-90 °C (Mercali et al., 2015), and from 0.0059-0.0197 min-1 
for acerola pulp processed at 75-90°C (Mercali  et  al., 2013). 
Contrary to anthocyanin, research evaluating the degradation 
kinetics of flavonoid compounds during ohmic heating is still 
limited. However, compared to the degradation rate constant of 
flavonoid in other products using other heating methods, the 
results obtained in this study provide lower degradation rate 
constant. For instance, microwave processing of York cabbage 
at 400-800 W resulted in k-values of 0.144-0.197 (Jaiswal & 
Abu-Ghannam, 2013) while the k-value for catechin (included 
in flavonoid group) under ultrasonic treatment at 28-135 kHz 
were in the range of 0.0099-0.0182 min-1 (Zhu  et  al., 2018). 
Comparable k-values (0.012 to 0.025 min-1) were reported 
for flavonoid in plump extract heated thermally at 70-110°C 
(Turturicǎ et al., 2016). The results shown in Table 1 also indicate 
that flavonoid degradation rates were relatively higher than those 
of anthocyanin. This finding was validated by the significantly 
smaller half time (t1/2) value for flavonoid which indicate that the 
time required to degrade 50% of flavonoid in bignay fruit juice 
is significantly shorter than that of anthocyanin. Comparable 
t1/2 values for anthocyanin (129-447 min) were reported in 
blackberry pulp treated by ohmic heating (Sarkis et al., 2019).

The effect of temperature on the degradation rate constant 
was significant as shown in Table 1. It can be observed that the 
k-value for anthocyanin degradation at 110 °C was more than 
10 times the k-value at 70 °C. On the other hand, the k-value 
for flavonoid degradation was only double as temperature was 
increased from 70 °C to 110 °C. Consequently, the activation 
energy (Ea) of anthocyanin degradation was significantly higher 
than that of flavonoid (Figure  3). Based on the Ea values, 
anthocyanin is much more thermally stable than flavonoid 

Table 1. Kinetics parameters of anthocyanin and flavonoid degradation 
in bignay juice during ohmic heating.

Temperature 
(oC) Degradation models k (min-1) D (min) Ea 

(kJ/mol)
Anthocyanin

70 y = 454.3e-0.002t; R2 = 0.904 0.0016 1151.29
90 y = 435.63e-0.005t; R2 = 0.959 0.005 460.517 63.88

110 y = 452.01e-0.021t; R2 = 0.998 0.0213 109.647
Flavonoid

70 y = 3.9686e-0.0107t; R2 = 0.980 0.0107 215.195
90 y = 4.9925e-0.0142t; R2 = 0.975 0.0142 162.154 18.21

110 y = 4.5207e-0.0209t; R2 = 0.992 0.0209 110.172
Note: k = degradation rate constant; D= decimal reduction time; Ea = activation energy.

Figure 3. Arrhenius plot of ln k vs. 1/T for the kinetic degradation of 
anthocyanin and flavonoid in bignay fruit juice.
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proposed for this trend such as the disruption of chemical bonds, 
formation of chemical reaction products that provide scavenging 
activity, and inactivation of oxidative enzymes (Keenan et al., 
2010; Kusznierewicz et al., 2008; Mannozzi et al., 2019; Nayik & 
Nanda, 2016; Sharma et al., 2015).

4 Conclusions
The present study demonstrates that an insignificant change 

in total phenol occurred during ohmic heating of bignay juice, 
while anthocyanin and flavonoid contents tended to decrease. 
Activation energy for the degradation of anthocyanin was much 
higher than that of flavonoid which suggests that anthocyanin in 
bignay fruit juice is much more stable during heating compared 
to flavonoid. The degradation rate constants at 70 and 90 °C 
for the two compounds indicate that anthocyanin is much 
more stable at the lower temperature treatment (70 and 90 °C) 
but these compounds have almost the same destruction rate 
constant at 110 °C. Antioxidant activity of bignay fruit juice 
showed a significant increase after undergoing ohmic heating 
even though the natural bioactive compounds contained in the 
juice decreased during ohmic heating.
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