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1 Introduction
The interaction between the gut microbiota and the host 

is crucial for maintaining homeostasis and body health (Jiang 
& Schnabl, 2020). Microbiota facilitates carbohydrate digestion 
(Makki et al., 2018), bile acid metabolism (Wang et al., 2020), 
maintenance of the integrity of gut barrier against pathogen infection 
(Mendes et al., 2019), and vitamin synthesis (Yatsunenko et al., 
2012). However, the gut microbiota is associated with the 
pathogenesis of many diseases, including Colon Cancer (Birt 
& Phillips, 2014), Cardiovascular (Scarmozzino  et  al., 2020) 
and liver diseases. The composition of the gut microbiota may 
be affected by many factors in the host, including physiology, 
pathology, living environment, immune system and lifestyle 
(Butel et al., 2018). Among them, diet plays a significant role 
(Steer et al., 2000). Foods are mainly digested and absorbed in 
the stomach and small intestine, but a substantial quantity of 
foods may enter the large intestine and alter the diversity of 
gut bacteria (van Hylckama Vlieg et al., 2011; Rist et al., 2013).

It has revealed that fiber- and vegetable-rich diets and physical 
activity may contribute to reduced incidences of many diseases. 
However, the consumptions of red and processed meat or alcoholic 
beverages are related to elevated incidences of many diseases (Birt 
& Phillips, 2014), such as colon cancer (Abu-Ghazaleh et al., 2021), 
inflammatory bowel disease (Li et al., 2020) and cardiovascular 
disease (Zhong et al., 2020). In humans, high consumption of 
red meat and reduced content of nondigestible carbohydrates in 
daily diet may increase the risks of inflammatory bowel disease 
and colorectal cancer (Hou eta al., 2011; Alexander & Cushing 

2011). It has been hypothesized that the reason may be due to 
the changes in colonic microflora (Ijssennagger  et  al., 2015; 
O’Keefe et al., 2015). Evidence shows that dietary intervention 
of the human gut microbiota is feasible and has been proven as 
efficacious in voluntary trials (Steer et al., 2000).

The relationship between microbiota and food is bidirectional. 
While the food in-take can alter the gut microbiota, the modified 
microbiota in turn produce a variety of metabolites, which could 
be beneficial or detrimental (Dey 2019). In mouse models of 
colitis, microbial colonization is required for the development of 
active inflammation (Hudcovic et al., 2001). Their composition 
and diversity will change with different diet (Wu et al., 2011). 
Therefore, it is possible to reduce the risk of developing colitis 
through controlled diet, which requires a profound understanding 
of the relationship between diet and the gut microbiota.

The Illumina instruments provide the highest yield and 
quality data currently (Zhang et al., 2018). Therefore, in this 
study, we aimed to evaluate the effect of red meat diet on gut 
microbiota in mice.

2 Materials and methods 
2.1 Samples

The protocols were approved by the institutional ethical 
committee of Xinjiang Medical University. Different proportions 
of red meat diets were obtained from the Animal Experimental 
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Center of Xinjiang Medical University. The proportions of red 
meat were 0%, 25%, 50%, and 75%, which were served as diets 
for control group, low-dose group, medium-dose group and 
high-dose group, respectively. All the specific configuration of 
red meat diet was shown in Table1.

A total of 24 healthy balb/c mice (aged 3 weeks; male and 
female each half; Certificate number, SCXK(XIN)2018-0002) 
were obtained from the Animal Experimental Center of Xinjiang 
Medical University (Xinjiang, China). The animals were housed 
in standard feeding environment. Mice were randomized into 
control group (mice number 1-1,1-2,1-3,1-4,1-5, and 1-6), 
low-dose group (mice number 2-1,2-2,2-3,2-4,2-5, and 2-6), 
medium-dose group (mice number 3-1,3-2,3-3,3-4,3-5, and 
3-6) and high-dose group (mice number 4-1,4-2,4-3,4-4,4-5, 
and 4-6). The mice were provided with water and fed with 
ad libitum. After 8 weeks, all mice were sacrificed by cervical 
dislocation. The flowchart was shown in Figure 1.

2.2 Sequencing

Fecal samples were collected aseptically from the ileum, cecum 
and distal colon. Intestinal contents were obtained for further 
microbial community analysis. DNA samples were extracted 
using the E.Z.N.A.® stool DNA Kit (Omega Bio-tek, Norcross, 
GA, U.S.) following the manufacturer’ s protocols. DNA samples 
were detected by 1% agarose gel electrophoresis. The V3-V4 region 
of the bacteria 16S ribosomal RNA gene were amplified by PCR. 
The reaction parameters of PCR are as follows: 95 °C for 5 min, 
followed by 27cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 
45 s and a final extension at 72 °C for 10 min. Specific primers are 
as follows. 341F 5’-barcode- CCTAYGGGRBGCASCAG-3’ and 
806R 5’- GGACTACNNGGGTATCTAAT-3’. PCR reactions were 
performed by TransStart Fastpfu DNA Polymerase (TransGen, 
China) using GeneAmp PCR System 9700 (ABI,U.S.). Amplicons 
were extracted from 2% agarose gels and purified using the AxyPrep 
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, 
U.S.) according to the manufacturer’s instructions. Amplicons were 
further quantified using QuantiFluor™ -ST (Promega, U.S.). The 
pooled DNA product was used to construct Illumina Pair-End 
library following Illumina’s genomic DNA library preparation 
procedure by using NEB NextUltra DNA Library Prep Kit for 
Illumina (NEB, USA). The library quality was assessed on the 
Qubit@ 2.0 Fluorometer (Thermo Scientific, CA, USA) and 
Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, 
USA). Then the amplicon library was paired-end sequenced (2 
× 250) on an Illumina MiSeq platform (MingkeBio (Hangzhou) 
Co., Ltd., Hangzhou, China) according to the standard protocols.

2.3 Bioinformatics analysis

Paired-end reads generated on Illumina platform were 
carried out with QuantiFluor™ -ST. Joined reads that have ≥97% 
proximity were assigned to OTUs. Prepare typical sequences of 
OTU and analyze the divergences of dominants. Alpha diversity 
was considered as Observed-species, Chao1, Shannon and 
Simpson. Beta diversity analysis was performed using UniFrac 
(Lozupone et al., 2011) to compare the results of the principal 
component analysis (PCA) with the community ecology package. 
R-forge (Vegan 2.0 package was used to generate a PCA figure. 

Venn diagrams were implemented by Venn Diagram software, 
while Mantel test, Redundancy analysis (RDA) and Heatmap 
figures were performed by R package vegan.

2.4 Statistical analysis

The quality control and sequence filtering of amplicons 
were performed according to the barcode matching and 
sequence overlapping with QIIME. OTUs were clustered with 
97% similarity cutoff using Usearch (version 10) and chimeric 
sequences were identified and removed using UCHIME. The 
phylogenetic affiliation of each 16S rRNA gene sequence was 
analyzed by RDP Classifier against the silva (SSU123)16S rRNA 
database using confidence threshold of 70% (Amato et al., 2013).

Community compositional was analyzed using linear 
discriminant analysis (LDA) and effect size (LEfSe) (Segata et al., 
2011). Differences between groups were analyzed by one-way 
analysis of variance (ANOVA) test followed by Student’s t-test. 

Table 1. The red meat diet in different groups.

Composition Control 
group

Low-dose 
group

Medium-dose 
group

High-dose 
group

tyrosine 20 20 0 0
red meat 0 25 50 75
corn starch 41.72 16.7 11.7 2.19
sucrose 10.95 10.95 10.95 10.95
sunflower seed 
oil

17.66 17.68 17.68 2.19

lard 2.55 2.55 2.55 2.55
Alpha-cellulose 2 2 2 2
L-cysteine 0.3 0.3 0.3 0.3
choline 0.17 0.17 0.17 0.17
mineral 3.5 3.5 3.5 3.5
vitamin 1 1 1 1
DL-methionine 0.15 0.15 0.15 0.15
Total 100 100 100 100

Figure 1. All the trimmed sequences length. X-axis is the sequence 
length and Y-axis is the sequence number.
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Data are presented as means ± standard deviation (SD). P < 0.05 
was considered significant. A P-value between 0.05 and 0.1 was 
considered a tendency. Statistical analysis was performed using 
SPSS 20 (International Business Machines, corp., Armonk, NY, 
USA).

3 Results and discussion
3.1 Statistics of trimmed sequences

Lengths of all the trimmed sequences were shown in Figure 1. 
The proportion of the high-quality sequence was more than 
95%. The sequence length was almost between 401 and 450 bp, 
with the average value of 414.15 bp..

3.2 Rarefaction curves

The species richness was evaluated as previous described 
(Schloss et al., 2011). As shown in Figure 2, the rarefaction curves 
of all the samples were common risen rapidly and then flattened. 
Only the 1-2 and 1-5 samples showed saturation. Similarly, they 
had the lower diversity and richness than others.

3.3 Distribution and accuracy of statistical analyses

As shown in Table  2, after filtering, entire 1,098,609 
quality sequences from enrichment samples were obtained, 
with an average of 44520 ± 9209 reads per sample. There were 
13960 OTUs with 97% similarity. The community diversity 
characteristics of the 4 reactors were also showed in Table 2. 
Chao index indicated the OTU richness The Chao, Shannon 
and Simpson indices suggested that the species diversity in the 
control group was decreased than red meat diet groups, and 
those in both medium-dose group and high-dose group were 
higher than other groups (Table 3). Samples in the control group 
can decrease the growth of specific microorganisms due to the 
lower OTU numbers (465 ± 28). Although most of the intestinal 
microbiota is the dominant flora, there are still harmful ones. 
Along with the increased proportion of red meat in diet, the 
number of dominant flora was decreased while the harmful 

Figure 2. The rarefaction curves of all the samples. X-axis is the number 
of readers sampled and Y-axis is rarefaction measure. Different colors 
represent mice in different groups.

flora was increased, which can lead to an elevated α-diversity 
of the intestinal flora.

3.4 Shannon-Wiener and rank-abundance curve analysis

Shannon-Wiener index is taken into account species 
richness and proportion of each species (Magwira et al., 2012). 
As shown in Figure 3a, the Shannon-Wiener curve of all samples 
monotonically climbed until reaching a plateau. Figure 3b showed 
the rank-abundance curves. The width reflected the abundance.

3.5 Venn diagram and principal coordinate analysis

There were 948, 1072, 1123 and 1030 OTUs in the control 
group, low-dose group, medium-dose group and high-dose 
group, respectively (Figure 4). Among the four groups, there 
were 603 common OTUs. 77 unique OTUs were found in the 
control group, which was the largest in the four groups. This 
could be a hint of the beneficial effect of diet.

Figure 3. Shannon-Wiener and rank-abundance curve analysis. (a) the 
Shannon-Wiener curve of all samples; X-axis is the number of readers 
sampled and Y-axis is rarefaction measure. (b) the rank-abundance 
curves of all samples. X-axis is the OUT Rank and Y-axis is relative 
abundance. The width of the curve reflects the species richness. Different 
colors represent mice in different groups.
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3.6 Community structure analysis

Table 4 showed that there were 21 phyla, 42 classes, 92 orders, 
140 families, 268 genera and 335 species in the communities of 
all samples. The dominant phyla of all groups were Firmicutes, 

Bacteroidetes, Proteobacteria and Actinobacteria, while the 
dominant classes of all groups were Clostridia, Bacteroidia, 
Deltaproteobacteria and Bacilli. At the phylum level, the most 
predominant phylum was Firmicutes that contributed 59.33%, 

Table 2. The community diversity characteristics of OTUs.

Sample ID Reads
0.97

OTU Chao Coverage Shannon Simpson
1-1 39378 438 566 0.997384 3.67 0.0674

-515,652 (3.66,3.69) (0.0661,0.0687)
1-2 30038 435 566 0.996172 4.35 0.0254

-516,647 (4.34,4.37) (0.0249,0.026)
1-3 55429 499 634 0.997835 4.34 0.0255

-583,715 (4.32,4.35) (0.0251,0.0259)
1-4 47981 448 509 0.998145 3.28 0.1119

-484,552 (3.26,3.3) (0.11,0.1138)
1-5 31901 480 641 0.996301 3.93 0.0828

-579,741 (3.91,3.95) (0.0803,0.0852)
1-6 40893 490 613 0.997066 4.32 0.0274

-567,687 (4.3,4.33) (0.0269,0.0278)
2-1 30734 514 640 0.99564 3.98 0.0468

-595,709 (3.96,4) (0.0457,0.0479)
2-2 53273 666 807 0.997222 4.38 0.0321

-759,881 (4.37,4.4) (0.0315,0.0327)
2-3 58219 608 768 0.997406 4.36 0.0246

-713,851 (4.34,4.37) (0.0243,0.025)
2-4 46163 564 706 0.997119 4.25 0.0302

-655,785 (4.24,4.26) (0.0297,0.0307)
2-5 52696 658 838 0.997153 4.45 0.0353

-776,934 (4.44,4.47) (0.0345,0.0361)
2-6 30820 577 698 0.996009 4.61 0.0242

-653,769 (4.59,4.63) (0.0236,0.0248)
3-1 36069 699 849 0.995259 4.47 0.0328

-800,920 (4.45,4.48) (0.032,0.0336)
3-2 53789 777 879 0.99749 5.08 0.013

-843,934 (5.06,5.09) (0.0127,0.0132)
3-3 36063 442 534 0.996867 3.72 0.062

-499,590 (3.7,3.74) (0.0607,0.0633)
3-4 57835 783 972 0.996767 4.58 0.027

-9,131,058 (4.56,4.59) (0.0265,0.0275)
3-5 48625 655 867 0.996319 4.15 0.0383

-799,969 (4.14,4.17) (0.0376,0.039)
3-6 44757 692 805 0.996805 4.45 0.0254

-766,864 (4.44,4.47) (0.025,0.0258)
4-1 55401 667 854 0.99722 4.3 0.0349

-790,952 (4.29,4.32) (0.0343,0.0356)
4-2 45717 599 762 0.99661 4.23 0.0307

-707,846 (4.22,4.25) (0.0302,0.0311)
4-3 43952 520 621 0.997361 4 0.0442

-583,682 (3.98,4.01) (0.0434,0.045)
4-4 49831 609 811 0.996789 4.18 0.0374

-742,915 (4.16,4.19) (0.0368,0.0381)
4-5 45657 594 764 0.996539 3.98 0.051

-707,850 (3.96,3.99) (0.0499,0.0521)
4-6 33257 546 732 0.995309 3.77 0.0819

-669,828 (3.75,3.79) (0.0797,0.084)
OTU, operational taxonomic unit; ID, identification.
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58.04%, 52.58% and 45.58% of the fecal microbiota in the control, 
low-dose, medium-dose and high-dose groups, respectively. The 
second predominant phylum was Bacteroidetes, contributing 
25.4%, 26.87%, 32.35% and 39.85%, respectively. There were 
increased proportion of Bacteroidetes (by 6.95% and 14.44%, 
respectively) in both medium-dose and high-dose groups. 
However, the proportion of Firmicutes was substantially reduced 
in these two groups (by 6.75% and 13.74%, respectively). The 
results were shown in Figure 5.

As shown in Table 5, it demonstrated that the dominant 
family of all groups were Lachnospiraceae, Ruminococcaceae, 
Muribaculaceae, Desulfovibrionaceae. Lachnospiraceae, 
Ruminococcaceae, Muribaculaceae, Burkholderiaceae, 
Erysipelotrichaceae, Lactobacillaceae, Marinifilaceae, 
Caulobacteraceae and Peptococcaceae were lower in the high-
dose group than those in the control group. Clostridiaceae 1, 
Enterococcaceae and Peptostreptococcaceae were significantly 
lower in the medium-dose and high-dose group than those in 
the control group (P < 0.01). Two family were notably higher in 
high-dose group than control group, including Bacteroidaceae (P 
< 0.01) and Family XIII (P < 0.01). Moreover, Desulfovibrionaceae, 
Rikenellaceae, Prevotellaceae and Helicobacteraceae were 
higher in the high-dose group than those in the control group. 
At genera levels, Parasutterella, Marvinbryantia, [Eubacterium] 
nodatum group, Bacteroides, Lachnospiraceae UCG-001, 
Adlercreutzia, Prevotellaceae UCG-001, Ruminococcaceae UCG-
013, Negativibacillus, Faecalitalea, Lachnospiraceae UCG-008 
and [Eubacterium] brachy group were higher in the high-dose 
group than those in the control group (P < 0.05) (Figures 6-8).

The gastrointestinal tracts in humans and other animals 
harbor a diverse array of microorganisms, which play 
fundamental-roles in health and disease. Imbalance in the gut 
microbiota, namely dysbiosis, can lead to various diseases, 
ranging from metabolic and cardiovascular disorders to cancer 
and gastrointestinal tract disorders. Approaches to improve gut 
dysbiosis, including dietary intervention, intake of probiotics 
and fecal microbiota transplantation, are emerging strategies to 

Table 3. Alpha diversity index of fecal samples of mice in each group.

Groups Chao index Coverage index Shannon index Simpson index
Control 588.17 ± 50.515 0.997150 ± 0.000799 3.9817 ± 0.44061 0.056733 ± 0.036481

Low-dose 742.83 ± 74.497* 0.996758 ± 0.000739 4.3383 ± 0.21198 0.0322 ± 0.008349
Medium-dose 817.67 ± 149.414** 0.996585 ± 0.000749 4.4083 ± 0.45314 0.033083 ± 0.016509

High-dose 757.33 ± 79.397** 0.996638 ± 0.000729 4.0767 ± 0.19664 0.046683 ± 0.018684
*P < 0.05; **P < 0.01 compared with the control group.

Figure 4. The Venn diagram. Red represents control group; green 
represents high-dose group; blue represents low-dose group and yellow 
represents middle-dose group.

Table 4. The community structures of the observed samples at phylum levels.

Phylum Control group Low-dose group Medium-dose group High-dose group
Firmicutes 59.33 ± 15.95 58.04 ± 15.4 52.58 ± 13.69 45.58 ± 8.72
Bacteroidetes 25.41 ± 18.01 26.87 ± 20.75 32.35 ± 12.98 39.85 ± 13.53
Proteobacteria 12.3 ± 15.1 9.82 ± 7.92 10.67 ± 5.66 7.69 ± 3.89
Actinobacteria 0.85 ± 0.68 2.98 ± 1.77* 1.95 ± 2.11 1.35 ± 2.09
Patescibacteria 0.58 ± 0.69 1.35 ± 0.53 1.77 ± 1.49* 1.56 ± 0.79
Verrucomicrobia 0.78 ± 1.28 0 ± 0 0.13 ± 0.17 0.63 ± 1.42
Epsilonbacteraeota 0.38 ± 0.28 0.16 ± 0.18 0.2 ± 0.2 2.52 ± 4.42
Deferribacteres 0.22 ± 0.22 0.01 ± 0.01* 0.05 ± 0.07 0.16 ± 0.24
Tenericutes 0.11 ± 0.11 0.33 ± 0.35 0.18 ± 0.17 0.6 ± 0.62
Cyanobacteria 0.02 ± 0.03 0.39 ± 0.79 0.04 ± 0.08 0.03 ± 0.05
Acidobacteria 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.01 ± 0.01
Chloroflexi 0 ± 0 0 ± 0 0.01 ± 0 0 ± 0
Gemmatimonadetes 0 ± 0.01 0 ± 0 0.01 ± 0.01 0 ± 0
Nitrospirae 0 ± 0 0.01 ± 0.01 0.02 ± 0.01* 0 ± 0.01
Unclassified 0 ± 0 0.01 ± 0.02 0.01 ± 0.01 0.01 ± 0.02
*P < 0.05 compared with the control group.
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treat diseases (Cheung et al., 2020). Diet can significantly reshape 
gut microbial composition (Brown et al., 2012). For instance, 
compared to European children, increased Bacteroidetes and 

decreased Firmicutes and Enterobacteriaceae in rural African 
children were mainly attributed to differences in dietary patterns 
between the two populations. This difference was probably 

Figure 5. The community structures at phylum levels. X-axis is the mice in different groups and Y-axis is proportions. Different colors represent 
different bacteria.

Table 5. The community structures of the observed samples at family levels.

Family Control group Low-dose group Middle-dose group High-dose group
Lachnospiraceae 34.1 ± 10.93 36.9 ± 14.16 32.84 ± 13.53 31.39 ± 9.22
Ruminococcaceae 15.57 ± 13.25 12.97 ± 3.54 13.32 ± 6.61 9.83 ± 4.42
Muribaculaceae 14 ± 8.9 19.78 ± 15.41 23.03 ± 13.78 11.62 ± 6.71
Desulfovibrionaceae 6.56 ± 4.1 5.9 ± 4.57 8.64 ± 4.83 6.84 ± 3.61
Rikenellaceae 5.02 ± 4.54 3.18 ± 2.82 2.7 ± 1.39 8.69 ± 3.24
Burkholderiaceae 4.73 ± 11.56 0.17 ± 0.17 1.69 ± 2.3 0.64 ± 0.55
Erysipelotrichaceae 2.54 ± 2.22 2.33 ± 1.8 0.36 ± 0.41 0.13 ± 0.1
Clostridiaceae 1 2.41 ± 5.6 0.01 ± 0.01* 0 ± 0** 0 ± 0**
Lactobacillaceae 2.18 ± 2.48 3.86 ± 3.68 4.74 ± 6.25 1.01 ± 1.11
Prevotellaceae 2.11 ± 2.85 0.2 ± 0.23 0.35 ± 0.53 2.57 ± 3.7
Marinifilaceae 2.11 ± 2.13 1.19 ± 1.36 0.83 ± 1.04 0.29 ± 0.1
Tannerellaceae 1.4 ± 2.22 0.39 ± 0.63 0.6 ± 0.54 1.85 ± 1.17
Bacteroidaceae 0.73 ± 0.88 2.11 ± 1.87 4.83 ± 6.15 14.82 ± 6.77**
Family XIII 0.23 ± 0.22 0.57 ± 0.35 0.67 ± 0.33 2.11 ± 1.12**
Caulobacteraceae 0.21 ± 0.34 1.97 ± 1.85* 0.11 ± 0.16 0.07 ± 0.06
Eggerthellaceae 0.73 ± 0.69 2.84 ± 1.64* 1.88 ± 2.06 1.33 ± 2.07
Enterococcaceae 0.12 ± 0.16 0 ± 0 0 ± 0** 0 ± 0.01
Helicobacteraceae 0.38 ± 0.28 0.16 ± 0.18 0.2 ± 0.2 2.51 ± 4.42
Mollicutes RF39_norank 0.05 ± 0.07 0.14 ± 0.12 0.1 ± 0.15 0.11 ± 0.12
Peptococcaceae 0.35 ± 0.24 0.21 ± 0.23 0.34 ± 0.34 0.13 ± 0.05
Peptostreptococcaceae 0.91 ± 1.42 0.75 ± 1.01 0.05 ± 0.07* 0 ± 0**
*P < 0.05; **P < 0.01 compared with the control group.
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Figure 6. The community structures at genera levels. X-axis is the mice in different groups and Y-axis is proportions. Different colors represent 
different bacteria.

Figure 7. Significantly different species were compared in the four groups.

Original Article



Food Sci. Technol, Campinas,      v42, e28321, 20228

Effects of red meat diet on gut microbiota in mice

rich in animal protein and fat, and low in fibre (Wu et al., 2011; 
David et al., 2014).

Compared to omnivores, vegetarians have significantly lower 
microbial counts of Bacteroides and Bifidobacterium specie, 
while the total cell numbers remain unchanged (Zimmer et al., 
2012). In this study, the contents of Bacteroidaceae and Family 
XIII were significantly higher in the high-dose group than the 
control group. The abundance of Lactobacillus was low in all 
groups, contributing 2.18%, 3.86%, 4.74% and 1.01%, respectively. 
It’s noteworthy that the lowest occurred in the high-dose group. 
Lactobacillus has been considered as a key player in host metabolic 
balance (Arora et al., 2012). It is a common probiotic that can 
inhibit pathogens by fermenting food to produce lactic acid, 
which lowers the pH value in the intestine environment.

explained by the higher red meat content of the food in Europe 
(De Filippo et al., 2010). In this study, at the phylum level, there 
were four major phyla (Firmicutes, Bacteroidetes, Proteobacteria 
and Actinobacteria) in all samples. We found that Firmicutes 
and Bacteroides were the most abundant flora in mice’ intestines. 
Bacteroidetes and Firmicutes are leading groups of bacteria 
involved in metabolizing undigested food (Parkar et al., 2013). 
Moreover, the abundance of Bacteroidetes in the high-dose group 
was higher than that in the control group (39.85% vs. 25.40%), 
while the abundance of Firmicutes in the high-dose group was 
lower than that in the control group (49.58% vs. 59.33%). This 
is consistent with those researches on humans. Both short- and 
long-term studies have shown a higher proportion of Bacteroides 
in fecal microbiota after the consumption of a “Western diet” 

Figure 8. Significantly different species were compared in the high-dose group than in the control group.
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acids. It is beneficial to intestinal epithelial cells (Kaoutari et al., 
2013). The Lachnospiraceae and Ruminococcaceae are two 
of the most abundant families from the order Clostridiales 
found in the mammalian gut environment, and they have been 
demonstrated to be associated with the maintenance of gut health 
(Zhang et al., 2018). In this study, we found that Clostridiaceae-1 
and Ruminococcaceae were significantly higher in the control 
and low-dose group compared with other groups. It further 
confirmed our hypothesis that less red meat intake might have 
a healthier gut flora.

4 Conclusions
Remarkably, the profiling of the gut microbiota communities 

with various diets in this investigation showed that administration 
of red meat diet for 8 weeks caused a reshaping of the intestinal 
bacteria composition towards an unhealthier microbial community. 
The red meat diet changed fecal microbiota content significantly 
by enriching harmful bacteria and/or depleting the beneficial 
ones. Therefore, it is necessary to continue the evaluation of the 
diet as a modulator of the gut microbiota, which could provide 
potential treatment strategies for diseases such as colitis and 
cancers.
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