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Abstract

The aim of this study was the physicochemical characterization of traditional cassava flours from Copioba Valley in Reconcavo
Baiano (Northeast Brazil). Samples were collected in flour houses and analyzed by official methods of proximate composition
and chromatography and spectroscopy for fatty acids and volatile compounds. Regardless of geographical origin (inside and
outside the Valley) and processing type (Copioba and Common flour), there were no significant differences in water activity,
ash, crude protein, starch, carbohydrates or acidity. By contrast, significant differences were observed in moisture, particle size,
total lipids, palmitic acid and volatile compounds, mainly nonanal. Discriminant classification by principal component analysis
according to origin and processing was obtained using this differentiation. These parameters are important for associations of
reputation, authenticity and differentiation with the Protected Geographical Indication of Copioba cassava flours.

Keywords: Manihot esculenta Crantz; fingerprint; lipid oxidation; headspace GC-MS; Copioba Valley; Reconcavo Baiano.

Practical Application: Physicochemical profiling to differentiate geographic origin of cassava flour.

1 Introduction

Processing methods such as roasting or drying, after
fermentation, have been developed to decrease the toxicity of
cassava and to produce safe foodstufts (Gleadow & Moller, 2014;
Rosales-Soto et al., 2016). In Brazil several processing systems for
cassava root are used producing, consequently, cassava flours with
different compositions/quality. This is the case of the traditional
cultivation performed by small farmers in semi-arid areas of
the Northeast or Amazon, and the large-scale cultivation in the
south (Olsen & Schaal, 1999; Dias & Leonel, 2006).

The Copioba Valley (CV) in the Reconcavo Baiano produces
a very reputable cassava flours, called “Copioba flour”, and are
considered as quality reference. The flours are produced manually
or on a small scale in flour mills called “flour houses” These
flours have a consumer’s widespread acceptance due to their
unique organoleptic characteristics (Brasil, 2013).

The geographical origin proof of foodstufts is a challenging
research area, particularly for traditional rural products. The
Protected Geographical Indication (PGI) allows market recognition
and add value to these products, ensuring quality for consumers
(Anderson & Smith, 2002; Melucci et al., 2016; Su et al., 2016).
Currently about 74 products are PGI registered with the Brazilian
INPI (Instituto Nacional de Propriedade Industrial), being 50%

granted in the last 7 years (Servi¢o Brasileiro de Apoio as Micro
e Pequenas Empresas, 2021).

Thus, the present study aimed to determine quality
parameters/identity specifications of cassava flours produced
by two different processing methodologies in the CV and
neighboring geographic areas from the Reconcavo Baiano
(Northeastern Brazil). Consequently, to contribute to the origin
certification of the product this study is based mainly on fatty
acid and volatile profiles.

2 Materials and methods

2.1 Sampling

This work is part of the project “Qualidade, identidade e
notoriedade da farinha de mandioca de Nazaré das Farinhas,
Bahia: uma contribuigio para indica¢do geografica” funded by
Fundagdo de Amparo a Pesquisa do Estado da Bahia. The cassava
flour samples were collected inside and outside of the CV, region
that crosses the municipalities of Sdo Felipe, Maragogipe and
Nazaré (latitude 13°01°34.4”-12°71°57.0”; longitude 039°17°58.3”-
038°80725.9”, Reconcavo Baiano, Northeastern Brazil) (Figure 1).
The processing steps were characterized. Samples were collected
in a randomized manner.
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Figure 1. Geographical origin of the cassava flour samples: a) Bahia State/Northeastern Brazil, b) Reconcavo Baiano and c¢) Copioba Valley

(Nazaré, Maragogipe and Sao Felipe).

2.2 Proximal composition and identity/quality parameters

The moisture (925.09), crude protein (Micro-Kjeldahl, 926.86,
N x 5.75), ash (923.03) contents and total acidity by titration
with NaOH were determined according to literature (Association
of Official Analytical Chemists, 2005). The total lipid content
(Bligh & Dyer, 1959) was esterified (Joseph & Ackman, 1992).
The total carbohydrate content was obtained by difference. The
water activity (a ) was determined using AquaLab Lite. Starch
was determined by acid hydrolysis followed by titration with
Fehling reagents (Instituto Adolfo Lutz, 2008). The particles size
distribution was determined of according to literature (Dias &
Leonel, 2006).

2.3 Fatty acid composition by GC-FID

The fatty acid methyl esters (FAMES) were separated on a
gas chromatograph (Varian, CP 3800) equipped with a CP-Wax
column (25 mx 0.25 mM x 0.20 um) and flame ionization detector
(GC-FID). The temperature was initially set at 150 °C (16 min)
and then increased at 2 °C/minute to 180 °C (maintained for 25
min), 5 °C/min to 210 °C (maintained for 10 min) and 10 °C/
min to 230 °C 16 min). The injector was set at 250 °C and the
detector at 280 °C. The carrier gas was Helium at a flow rate of
1.0 mL/min. The FAMEs were identified by retention times (t,)
comparison of the samples peaks with those of FAME standards
Sigma-Aldrich (USA). Assay carried out in triplicate.

2.4 Volatile compounds profile by headspace GC-MS

Flour samples (3.0 g) were stored in hermetically sealed
vials and analyzed in a Headspace injector (HS, model Perkin
Elmer Turbo Matrix 16) coupled to a GC-MS equipment (Perkin

Elmer, model Clarus 500 MS). The HS extraction was operated
at 100 °C/60 min with the needle and transfer line at 150 °C,
a pressurization time of 3 min and an injection time of 1 min.
The injection was performed at 150 °C in a splitless vaporization
chamber with a 2-mM internal diameter. The separation was
performed on an HP-FFAP column (50 m x 0.2 mM x 0.33 um) at
50 °C/20 min, followed by increments of 3 °C/min to 200 °C and
10 °C/min to 230 °C (maintained for 7 min), in a total of 80 min.
Helium at 1 mL/min was used as the carrier gas. The molecules
were fragmented by electron impact (EI 70 eV). The peaks of
volatiles present in the samples were identified by comparison
of their mass spectra with the spectra of the reference National
Institute of Standards and Technology (NIST) database and
results expressed as peak areas.

2.5 Treatment of data

Data from samples of 4 treatments were evaluated: reference
Copioba flour from the Copioba Valley; Copioba flour from the
Copioba Valley; Common flour from the Copioba Valley; and
Copioba flour from outside the Copioba Valley (neighboring
regions to the Valley). Data were submitted to descriptive statistics
test and analysis of variance. For the mean comparison between
the different treatments, the Kruskal-Wallis test (p < 0.05)
was applied, where the null hypothesis was that the samples
were from the same population, i.e., there are no differences
among the 4 treatments. For the rejected null hypotheses, the
Mann-Whitney test (p < 0.05) was used. Considering the small
sample number, the data set of the centesimal composition was
randomized 10,000 times to determine if a sample was random
or not (Manly, 2006). The Spearman’s rho correlation coeflicient
and coeflicients of determination (R?) were calculated to evaluate
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the possible correlations between quantitative variables. The
correlation coefficient greater than 0.8 was used as a criterion
for eliminating a variable from the principal component
analysis (PCA), this assay was performed using PAST software
(Hammer et al., 2001). For cluster analysis was used Ward’s
method of according to literature (Xu, et al., 2016).

3 Results and discussion

3.1 Composition and identity/quality parameters

Flour production in the CV uses a traditional process
that includes manual steps, with or without the use of electric
equipment, and has expanded throughout the Reconcavo Baiano.
Our research group conducted a data survey of the CV’s “flour
houses”, being identified 72 production units, of which 94% in
the Nazaré municipality. These production units are, in general,
family-run businesses, with production capacities between 100
and 1000 kg flour/day (Silva et al., 2017). Samples were collected
from 14 of these “flour houses” inside the CV. In general, the
traditional processing of both Copioba and Common flours has
10 steps, as follows: roots withdrawal from soil, their transport
and reception, peeling, triturating or milling to obtain a paste,
pressing, mass pulverizing, drying or roasting, sieving, packaging
and storage. This technological process of manufacture classifies
as “Seca” the identity of Copioba flour (Brasil, 2011).

After harvesting, the roots are peeled and ground using a
hammer mill. The pressing step eliminates a substantial part
of the water, increasing the surface exposed to hot air drying,
thus, the identity of cassava flours are characterized after drying.
This processing step is very important for the genuineness of
Copioba flour because it is responsible for the fermentation
process that increases the acidity of cassava flours from Valley
(Rosales-Soto et al., 2016). Some “flour houses” use manual ovens
for samples roasting, but in most of them motorized ovens with
constant rotation and controlled speed are used. Then flour is
sifted through sieves to determine the particle size. Packaging
is performed in 50 kg plastic bags for bulk distribution, without
individual packaging.

Small-scale flour processing is prevalent at the CV, where,
e.g., roots are peeled manually using knives. However, larger-
scale processing with scarifying equipment may be found outside
the CV. The processing of the “first-generation” cassava flour
was totally manual. A small number of families are call the
second-generation (Samples 1 and 2), because the production
of traditional Copioba flour in the Valley uses electric mills for
grating. Moreover, is mostly characterized by 3 consecutive cycles
of roasting performed in manually controlled wood-fired ovens
(artisanal), with gradual temperature increases, interleaved by 3
cycles of sieving. The traditional process is more time consuming
because it involves the manual spreading of the flour onto a
circular steel plate and requires 3 to 8 hours to dry a batch of
about 90 kg of flour. At most “flour houses” in and outside the
CV, manual ovens have been replaced by wood-fired ovens
with electric controls, it is call processing of “third-generation”
(Samples 3 to 20). However, in these wood-fired ovens, the
roasting temperature for Copioba flours initially tends to be lower
than than used for Common flours, but with a gradual increase.
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This difference may be one of the main factors responsible for
the lower ranges of moisture and a  contents of Copioba flours
(Table 1). In the third-generation processing sieving is performed
only once, following flour roasting that guarantees the ongoing
notoriety of the CV flour.

According to Table 1, different values were determined ina
(0.10 - 0.61), moisture (0.96 -8.42%), ash (0.83 - 1.21%), total lipid
(0.17 - 0.62%), crude protein (0.50 - 1.45%) and carbohydrate
contents (89.31 - 96.84%) of the flours tested. All values were in
accordance with Codex guidelines (2013) and with previously
reported values (Dias & Leonel, 2006; Food and Agriculture
Organization, 1989; Rosales-Soto et al., 2016). These differences
may also be justified by cassava genotype and environmental
conditions (Charles et al., 2005; Burns et al., 2012).

The moisture, ash and protein contents of cassava flours
produced at Reconcavo Baiano are the result of Legislation
(moisture < 13%, ash < 1.4% and protein < 1.2%) and are
classified as the dry group (Brasil, 2011). The moisture interval
is smaller than that of flours produced in other Brazilian regions
(1.45+0.07to 11.31 £ 0.16%) and is characteristic of small-scale
production without severe controls in the producing processes
(Dias & Leonel, 2006). The starch content interval ranged from
79.6 to 87.9%, which is lower than the one presented by flours
of the 31 cassava varieties from Ejura in the Ashanti Region that
ranged from 67.92 to 88.11% (Aryee et al., 2006).

However, there were no significant differences in proximal
parameters among the 4 treatments (p < 0.05), except for
moisture and total lipids (Table 1). The average moisture of
Samples 1 and 2 was significantly lower (p < 0.05) than that of
the other flour groups. This difference may be mostly related to
the traditional drying process (3 roasting cycles with manual
control and 3 sieving cycles), which results in the characteristic
crunchiness that defines the product’s identity. This parameter
and the characteristic color are used by consumers as the main
identity and notoriety parameters of Copioba flour from the
Copioba Valley. Variations in moisture and a , associated with
small changes in minor components, such as lipids, proteins
and ashes, result in large quality differences depending on the
type of processing used (Kulchan et al., 2010).

In the production of cassava flour in the dry group, in
most regions of Brazil, following the reception of roots, all
steps are performed without interruption (Dias & Leonel,
2006). However, interrupted production processes are used at
the “flour houses” in the CV and Reconcavo Baiano for both
Copioba and Common flours. The ground cassava roots are left
at room temperature for long periods, sometimes overnight,
especially during the pressing stage, resulting in spontaneous
fermentation and increased acidity. Most of the flours (95%)
were classified as higher acidity, with values ranging from 4.55
to 6.53 meq NaOH 0.1 N/100 g (> 3.0 meq NaOH 0.1 N/100 g;
Brasil, 2011), without significant differences (p < 0.05) among
the 4 treatments (Table 1).

In addition to the significant variations (p < 0.05) of the
moisture and total lipids, there also were observed in particle
size distribution (Figure 2), indicating that the flours did not
belong to the same population. The Copioba flours produced
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inside of the Valley (samples 1 to 10) showed similar average
particle size distributions. The flours produced in the Valley
presented higher percentages of smaller size particles (60 to 70%
between 0.075 and 0.250 mm) than the Copioba flours produced
outside the Valley (46% > 0.25 mm). All flours analyzed were
“Fine” because 86 to 100% of particles passed through the 0.425
mm mesh sieve (Brasil, 2011).

Differences in the moisture and distribution of particles
may affect texture because water migration is influenced by the
drying time, temperature and amylose content, among other
factors, which can be influencer the sensorial perception of
flour. During the drying process, a solid material is produced
by stabilization of the gelatinized starch matrix and water
evaporation. These phenomena determine the water amount
retained in the flour, which will affect the retrogradation speed
and the flour characteristics. A shorter drying time will produce
aviscous product with a higher amount of superficial water, due
to faster water migration. However, a longer drying time will
dehydrate the product, depending on the evaporation speed,
increasing crunchiness (Yao et al., 2003; Kojima et al., 2004;
Kulchan et al., 2010).

The differences in this step of production are dependent
of the time that the flour remains in contact with the drying
equipment (metal/ steel plaque), drying temperatures and
particles size, compared with Common flour. Water activity
higher than 0.5 may be considered critical to flour crispness
(Kulchan et al., 2010). The different particle sizes, associated
with small differences in a , moisture, total lipids and starch
contents (Table 1, Figure 2), may be the flour identity parameters,
explaining the consumer’s preference for Copioba cassava flour.
These flours are related to smaller particles with certain ranges of
a_and total lipid content. These characteristics may contribute
to decrease lipid oxidation, strengthening the gel structure,
increasing cohesion, producing crunchier.

50
—e— Copioba reference
0 —&— Copioba of Copioba Valley
—a— Common of Copioba Valley
30 4 —8— Copioba outside of the
Copioba Valey
ES
20
10 A
0 T T T T Y 2
0 02 04 06 08 1 1,2 14
mesh (mm)

The total lipid contents were significantly different (p <
0.05) of the flours in the 4 treatments analyzed. Thus, different
levels of lipid degradation may occur, especially if degradation is
associated with certain ranges of a . This variation could explain
the organoleptic characteristics of the different types of flour
and their higher or lower notoriety. Hydroperoxide formation
is catalyzed by metals and is promoted by high temperatures
and in the presence of oxygen, which are conditions present
at flour drying. Higher amounts of unsaturated lipid (%) were
associated with higher volatile percentages. The fatty acid
profiles were determined (Figure 3), where all flours presented
the same fatty acids. The unsaturated fatty acids were the more
abundant highlighting C18:1n9, C18:2n6 and C18:3n3 and
between the saturated fatty acids were C12:0, C14:0, C16:0 and
C18:0 being the palmitic acid the majority, where the flours from
outside the CV had a higher concentration. It was verified that
the total saturated and unsaturated fatty acids of the Copioba
flour produced outside the Copioba Valley were significantly
different from the other groups in study (p < 0.05). Common
flours presented the highest percentages of total lipids and the
highest unsaturated fatty acid percentages. This difference may
result in increased oxidation trends.

The Copioba cassava flours samples produced inside and
outside the Valley, especially the reference Copioba flours
(traditional production process), presented more process stable
values, suchasa_(0.27 - 0.41) and lower total lipids concentration
(0.19 - 0.46%). As lipid oxidation leads to the formation of oft-
flavors, it seems of utmost importance to evaluate the volatile
compounds when unstable polyunsaturated lipids are present.
The oxidation mechanisms in oils, fat and model systems are
known and are rather complex (Frankel et al., 1992; Jeong et al.,
2010). However, the oxidation mechanisms in dispersed phases
of structural matrixes with heterogeneous composition have not
yet been established (Partanen et al., 2008). If the components
of a product have discriminatory power, their concentrations
can form a characteristic pattern or fingerprint related to the

80
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20

Figure 2. Particle size distribution of cassava flour samples based on the percentages of particles.
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Figure 3. Levels of total lipids (x10) and saturated, unsaturated and
total individual lipids in different cassava flours.

product’s geographical or human origin (Zhao et al., 2012;
Meluccietal., 2016). Volatile compounds are decisive in this area.
The secondary products formed by hydroperoxide cleavage, such
as aldehydes, have profound impacts on sensory and functional
properties (Frankel et al., 1992; Jeong et al., 2010).

The difference between the volatile compound profiles
were essentially quantitative. Four aldehydes were identified
by Headspace-GC-MS in the volatile fractions of most samples,
indicating significant oxidation of the unsaturated fatty acids.
This is the case of 2-octenal and 2-decenal present, except in the
reference samples (1 and 2), whereas the area of nonanal and
decanal were lower than in the reference samples. Oleic acid
was also the predominant fatty acid detected in the analyzed
flours (Figure 3). These fatty acids have also been identified
in chestnut flours, for which soft heating for a relatively long
period under oxidizing conditions may be sufficient to induce
lipid peroxidation, followed by degradation into aldehydes and
ketones (Vasconcelos et al., 2007). All aldehydes in the cassava
flours were linear-chain aldehydes (Table 1), in accordance with
previous reports in the literature (Sayaslan et al., 2000; Rosales-
Soto et al., 2016). Aromatic aldehydes were not detected, likely
due to the low degradation of aromatic amino acids under the
drying conditions used. A wide range of secondary oxidation
products can be formed from hydroperoxides originating from
primary fatty acid oxidation, such as saturated and unsaturated
aldehydes, ketones and hydrocarbons, in addition to lactones,
alcohols, acids and esters (Frankel et al., 1992; Zhao et al., 2012).

The major MS-identified compounds in the volatile profiles
of the cassava flours were aldehydes (73.18 to 93.34% of the total
area), followed by 3,5-octadien-2-one (6.66 to 26.82%). Nonanal
was the major component of all analyzed samples (48.28 to 62.49%
of total volatiles), and intermediate percentages of 2-octenal
(9.03 t0 16.50%), decanal (11.04 to 12.67%) and 2-decenal (1.92
to 10.14%) were observed, depending on the treatment and
origin. The peak areas of volatile aldehydes were significantly
smaller (p < 0.05) for samples of the reference Copioba flour
produced in the Valley. This finding may be attributable to the
lower total lipid concentrations, in association with the average
a_ value of approximately 0.27 to 0.37 (Table 1), resulting from

the technological treatment. By contrast, the largest areas of the
total volatile peaks (38.24 to 68.69 x 10°) associated with higher
total lipid contents (0.53 t0 0.62%) and lower a , (0.1 to 0.2) were
observed for the Common flours (Table 1).

More volatile compounds may be removed during drying,
and the compounds that do not volatilize are those remaining
in the flour that are absorbed by the dry food. This process
has affects the flour flavor and modifies its nutritional and
physiological properties. The volatile compounds 2-octenal,
3,5-octadien-2-one, nonanal and 2-decenal are responsible
for green, fat, aldehyde and waxy flavors, respectively, in flour
(Cirlini etal., 2012). Aldehydes and ketones resulting from lipid
peroxidation degradation have also been identified in cassava
starch (Sayaslan et al., 2000; Cirlini et al., 2012). Pentanal, hexanal,
nonanal, 2-octenal, 2,4-heptadienal, 2-nonenal, 2,4-decadienal
and 2,4-nonadienal contribute to an unpleasant boiled potato
flavor (Petersen et al., 1999). In general, the flavors that develop
during drying processes are described as characteristic of fruit,
grass, buttery, burned, nut and fish, and oxidation of linoleic
acid increases the fish odor and decreases the fruit odor. Studies
have reported a strong correlation between oft-flavors and
higher concentrations of 2-pentenal, 2-hexenal, 2-heptenal,
2-pentylfuran and 2-decenal in products subjected to drying
(Blanda et al., 2010).

3.2 Correlations and multivariate analysis

The Spearman rho analysis of the correlations between
different volatile compounds revealed directly proportional
correlations greater than 0.8 between 24.4% of the volatiles.
Moreover, the peak areas of volatile compounds were correlated
with a  (Figure 4). The Common flours samples showed higher
amounts of volatile compounds and the a  value was less than
0.25. The correlations between the peaks areas of all or individual
volatile compounds and a  used a second-order polynomial
mathematic model typical of lipid oxidation, obtained R? values
greater than 0.6.

In general, lipid oxidation is lower at a_ values closer to the
water monolayer (0.2 - 0.3 for most foods), due to a decrease in
the catalytic effect of transition metals, free radical and o oxygen
extinction and a decrease in hydroperoxide decomposition.
However, lipid oxidation rates increase rapidly at a  values
higher or lower than the water monolayer (Jeong et al., 2010;
Kulchan et al., 2010; Zhao et al., 2012), especially during flour
processing and/or storage. The quality of cassava flours can be
greatly affected by small changes in a  over the range of 0.1 to 0.6
and, consequently, by oxidative stability and volatile formation,
with changes in flavor and the appearance of rancidity. The quality
of cassava flours and their differentiation or notoriety may be
related to fatty acid oxidation products, since volatile production
was lower at a_ values between 0.2 and 0.4, moderates at a_
values between 0.4 and 0.6 and higher at a_ values lower than
0.2. Considering that the volatile concentration depends on the
a_ of cassava flours, following a typical oxidation curve, a may
potentially indicate flour quality and be used as an indicator of
drying performance and process quality.
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The PCA analyzes were performed observing the recognition
of patterns associated with the geographical location of the
samples, using the same quantitative variables: a , total lipids,
particle size (up to 0.425 mm), C16:0. The PC1 explains 55.73%
of the data, while PC2 explains 25.40%, a total variance of 81.13%
(Figure 5A). Samples CCV1 and CCV2 (reference) were similar
in the main components showing pattern in the values of the
analyzed variables. Samples CCV3 to CCV 10 had characteristics
similar and close to the references, with moderate water activity
and low palmitic acid percentage. Samples CMCV1 to CMCV4
were grouped with characteristics of high percentage of total
lipids and high percentage of particle size less than 0.045 mm

in addition low percentage of palmitic acid and water activity.
The samples COCV 1 to COCV6 showed high concentrations
of palmitic acid and moderate a  values. This result suggests that
the study’s quantitative variables can be used as an index for
determining the geographic origin and processing of cassava flour.

In dendrogram, the samples were divided in four main
clusters using distance 10 (Figure 5). One cluster includes
reference Copioba cassava flours CCV1 and CCV2 and more
CCV4, CCV5,CCV7,CCVS8, CCV10 and one CMCV2. Other
cluster is formed by CCV3, CCV9, CMCV3, CMCV4 and
CMCV1 samples. These first two groups form a larger cluster if
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Figure 4. Two-dimensional scatter plot of quantitative variables a_ and volatile compound (peak area x 10° pA). TAV = Total Area of Volatiles.
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was considered a distance of 15. Finally, the other two clusters
involving COCV samples, with only one sample from CV, the
CCVe, that remained in this group. In general, the samples from
the same geographical origin showed greater similarity in the
analysis of the dendrogram.

Copioba cassava flours have greater notoriety because are
processed at lower temperatures and rotation speeds and feature
smaller-sized particles (up to 0.425 mm), less unsaturated lipids
(%) and total volatiles (%) and a  values between 0.27 and 0.41.
Small-scale drying and processing methods may be the best ways
of preparing Copioba flour. New drying methods should be tested
to replace the artisanal method with the goal of increasing the
production scale while maintaining quality.

Similar to many popular goods with their own unique
characteristics, Copioba flour has been copied, and forgeries
are common. Each “flour house” features unique aspects of
different stages of the production process due to differences in
knowledge and abilities transmitted over generations, although
they all use a production process that is common in the Copioba
Valley and Bahia’s Reconcavo. In this region, the most important
modification has been the introduction of electric equipment for
grating and drying to facilitate processing. Our results indicate
that “Copioba Valley” can be used as a geographical indication
for Copioba cassava flours produced in this region based on
their characteristic composition.

4 Conclusion

Reference Copioba cassava flours produced in the CV
were obtained using a traditional process, characterized by a
soft drying stage in 3 wood-fired ovens with manual controls,
followed by 3 consecutive alternating cycles of sieving. Copioba
flours produced both inside and outside the Copioba Valley,
although they include only 1 drying cycle in an electric oven
and 1 sieving cycle, use lower temperatures with a gradual
increase in temperature for longer periods of time. Higher total
and unsaturated lipid percentages were associated with higher
volatile percentages, mainly nonanal, which are products of fatty
acid oxidation. Copioba flours presented a lower area of total
volatiles, especially nonanal, compared with Common flours,
and this lower total volatile content was associated with lower
total lipid concentrations and a  values between 0.27 and 0.41,
arange over which oxidation is slower. The Common flours had
higher volatile and total lipid concentrations and a_values between
0.1 and 0.25, a range over which oxidation is faster. Therefore,
a_ is an important control factor in the production process and
in determining the characteristics and stability of Copioba
flours. The distribution according to geographic origin and type
of process was studied by PCA using significant quantitative
variables, namely: a , particle size (up to 0.425 mm), total lipids
and palmitic acid (C16:0). The differences are associated with
the different drying temperatures used in the 2 different flour
processing methods. These results should be further explored
not only for the commercial classification of the Copioba flour
but also to promote the product’s PGI registration.
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