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1 Introduction
Food science is a discipline covering a wide range of fields. 

It integrates basic subject theories, including applied biology, 
chemistry, physics, medicine, and engineering, to study the nature 
of food, the cause of deterioration, the principles of processing, 
and the transformation of food. Foods are particularly complex 
matrices containing thousands of ingredients, which is the result 
of metabolic processes during plant growth and food processing. 
To make matters more complicated, the composition of food is 
also related to genetic and geographical sources, environmental 
and climatic conditions, and differences in farming types, feeding 
and processing methods (Consonni & Cagliani, 2019). The 
main components include water, lipids, proteins, carbohydrates, 
phenols, amino acids and minerals (Hatzakis, 2019). These 
ingredients determine the nutrition, taste, color and quality of 
food, while chemical reactions may also occur during storage, 
transportation, and processing, as well as the addition of flavoring 
agents to change the composition of food (Kim et al., 2016). As 
the basic physiological and biochemical energy source of human 
beings, in recent years, the nutrition and quality of food have 
received more attention, including flavor and taste, shelf life, type, 
origin, year and so on. Therefore, it is becoming increasingly 
important in the food industry to choose appropriate methods 
to analyze the composition of food, monitor changes in the 
internal composition of food after multiple processing and 
transportation steps, and predict the shelf life of food.

Nuclear magnetic resonance (NMR) is a spectroscopic 
method used to determine the molecular structure and physical 
properties of substances. NMR was initially applied in the field 
of physical science and then widely used in chemistry, biology, 
medicine and other fields. NMR was employed in food science 
as early as 1957, when low-field NMR was used to measure 

water in food (Alberti et al., 2002). Due to immature technical 
theory, low sensitivity and high equipment expenses, NMR 
was not widely used in food analysis before the 1980s. With the 
application of Fourier transform spectroscopy, the appearance 
of superconducting magnets, the progress of probe technology 
and the continuous development of high-throughput technology, 
NMR has achieved good results in the evaluation and analysis of 
various foods, including oil, vegetables, wine and dairy products 
(Dais & Hatzakis, 2013).

High-resolution NMR is mainly used to obtain frequency 
domain spectra to record the structural information of compounds. 
Low-resolution NMR, also known as low-field NMR (LF-NMR), 
mainly reflects the motion properties of specific protons in 
the sample by measuring relaxation time T1/T2 and diffusion 
coefficient D and provides information about the physical and 
chemical environment of the sample. MRI is based on changes 
in relaxation time and water distribution and mobility in 
food (Hills et al., 2005; Bertocchi & Paci, 2008; Li et al., 2014; 
Ebrahimnejad et al., 2018).

In addition, the development of multivariate statistical analysis 
methods provides an irreplaceable role for the application of 
NMR in food, and stoichiometry has made NMR a very powerful 
tool for comprehensive and impartial assessment. Principal 
component analysis (PCA) in unsupervised pattern recognition 
technology uses a small number of variables to explain most of 
the variation. Partial least squares discriminant analysis (PLS-
DA) is used to purposefully investigate the established categories 
of specific variables in the discrimination calibration set. Linear 
discriminant analysis (LDA), artificial neural networks (ANNs) 
and independent component analysis (ICA) also have great 
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development potential in food assessment (Trygg et al., 2007; 
Rohman & Windarsih, 2020).

In this review, we present the progress of the application 
of NMR in food science, mainly focusing on research utilizing 
some specific foods in the past decade, such as wine, olive oil, 
honey, etc., including the origin, variety and year identification 
of food, as well as the quality.

2 Edible oil
Fats and oils are widely found in nature and play a very 

important role in daily life. The main nutritional components 
of edible oil are fatty acids, mainly composed of unsaturated 
oleic acid, linoleic acid, linolenic acid, saturated palmitic acid 
and stearic acid (Yang et al., 2013). The different compositions of 
edible oil lead to variations in health benefits, aroma and taste, 
which also easily cause adulteration (Buckland & Gonzalez, 2015). 
NMR has been widely used in the analysis of edible oil, playing 
an important role in identifying the origin of fats, monitoring the 
oxidation process, determining the oil content of foods or oils, 
monitoring the quality of frying oil, and identifying adulteration 

of edible fats (Gómez-Alonso et al., 2007; Girelli et al., 2016; 
Ferreiro-González et al., 2017).

3 Geographic and plant origin
In the past few years, studies have explored the sources of 

olive oil through multivariate analysis based on NMR data. 13C 
NMR provides valuable insights into the location distribution of 
fatty acids in glycerol and the stereochemistry of unsaturation. 1H 
NMR provides useful information about fatty acid composition, 
degree of unsaturation, lipid category and various minor 
compounds (sterols, squalene, terpenes, VCs, etc.) (Figure 1) 
(Lioupi et al., 2020).

In Domenico Rongai’s research, 1H NMR spectroscopy 
was used to analyze a collection of extra virgin olive oil from 
different geographical areas. PCA and OPLS-DA revealed the 
main differences between Italian and Tunisian virgin olive oil 
samples. Tunisian oil can be characterized by a relatively high 
content of polyunsaturated fatty acids (such as linolenic acid) 
(Rongai et al., 2017). The results indicated that the metabolic map 
based on NMR may be used to predict the geographic origin of 
olive oil and evaluate the possible correlation with climate data.

Figure 1. 600.13 MHz 1H NMR spectra assignment of extra virgin olive oil. Peaks: 1, hexanal; 2, trans-2-hexenal; 3-6, terpene; 7, methylenic 
protons inR-glycerol moiety ofsn-1,3-diglycerides (3.988 ppm); 8, methylenic protons in R-glycerol moiety of sn-1,2-diglycerides; 9, 15, protons 
of linolenic fatty chains; 10, 16, protons of linoleic fatty chain; 11, squalene; 12, methylenic protons of all unsaturated fatty chains; 13, methylenic 
protons of palmitic and stearic fatty chains; 14, wax; 17, methyl-18 of β-sitosterol; A, reference peak due to methylenic protons bound to C2 
normalized to 1000 (D’Imperio et al., 2010) with reprint permission from American Chemical Society.
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Euroun and OK et al. used ANOVA to analyze the 1H MRI 
signal intensity of olive oil. Different percentage compositions 
of linoleoyl groups were found in olive oil samples from five 
distinct geographical regions in Turkey (Ok, 2014). The fatty 
acyl content of olive oil samples from three regions of Turkey 
(Marmara, Aegean, and Mediterranean) was also screened. 
Analysis of variance showed that the three samples could be 
clearly distinguished, and the best discriminant parameter was 
the 1H signal of oleoyl content. These results indicated that some 
compounds may distinguish oil based on geographic origin on 
a regional level (Ün & Ok, 2018).

The fatty acids in olive oil contribute to the features of olive 
oil sources, while NMR spectra of phenolic extracts can provide 
very interesting information about the geographical origin of 
the samples (Laincer et al., 2016). Alexia et al. used 1H and 31P 
NMR to chemically analyze olive oil samples from four districts 
in Greece. The results showed that the distribution of phenolic 
compounds in olive oils from different varieties and production 
areas was quite different. Nine phenolic compounds and 2 fatty 
acids (linolenic acid and linoleic acid) were the most important 
predictors (Agiomyrgianaki et al., 2012).

Different plant sources of edible oil have similar compositions 
but unique characteristics. The combination of NMR and 
multivariate statistical analysis provides good feasibility for 
identifying the source of vegetable oil. The ultrahigh-speed 
2D NMR method applied by Gouilleux on a 43 MHz low-field 
NMR spectrometer was used for the identification of edible 
oils. PCA highlighted the obvious differences among olive oil, 
hazelnut oil, sesame oil, rapeseed oil, corn oil and sunflower 
oil. The experiment compared the effectiveness of 2D and 1D 
spectra in the classification of vegetable oils. It was obvious that 
the 2D spectrum avoids the overlap of peaks, the peak intensity 
of unsaturated fatty acids was enhanced, and it could even be 
distinguished by visual comparison (Gouilleux et al., 2018).

Ting Shi et al. established a method for the simultaneous 
determination of squalene and various sterols in different 
vegetable oils (including camellia oil, corn oil, soybean oil, 
rapeseed oil, extra virgin olive oil and sunflower oil) based on 
1H NMR spectroscopy combined with the PLS method. The 
signal intensity of the secondary components (diglycerides, 
squalene and sterols) in the 1H NMR spectrum was different 
in various vegetable oils. The high accuracy of the PLS model 
of phasostanol and stigmasterol was similar to that of GC-MS 
analysis (Shi et al., 2019).

1H and 13C NMR have been successfully applied to analyze 
refined edible oils from seven plant sources, including sunflower 
seeds, rapeseed, sesame, soybeans, peanuts, corn and olive oil. 
Various fatty acids, such as oleic acid, linoleic acid and linolenic 
acid, in edible oil and their iodine values could be accurately 
quantified, and their plant sources were identified by PCA 
(Zhang et al., 2018).

4 Monitoring oil oxidation
The fats in vegetable oils, especially unsaturated fatty acids, 

can decompose into different oxidation byproducts over time, 
thereby affecting the safety, nutritional value and sensory properties 

of the oil (Alberdi-Cedeño et al., 2019). NMR has been used to 
identify these oxidation products, including primary oxidation 
products such as hydrogen peroxide and conjugated dienes 
and secondary products such as aldehydes, ketones, epoxides, 
alcohols, dimers, polymers and their derivatives (Hwang, 2017). 
The process of storage, packaging and transportation of edible 
oil is usually carried out at storage temperatures, and the rates 
of oxidative degradation and yield are very low. In general, only 
primary oxidation occurs, and the concentration of the primary 
oxidation product can be used to measure the oxidation of 
grease (Gray, 1978).

Zhu used 1H NMR to assess the oxidation process of cold-
pressed tea oil, commercial refined tea oil, and extra virgin 
olive oil (EVOO) stored at room temperature for a one-year 
period. As the storage time increases, the signal intensity of 
the conjugated diene ion increases, while the signal of the 
unsaturated acyl group decreases, indicating that the oxidation 
effect gradually increases. The order of the degree of oxidation 
of the three oils is refined camellia oil > cold pressed camellia 
oil > EVOO. A characteristic aldehyde signal was not detected 
in all samples, which indicated that no secondary oxidation 
process occurred after storage at room temperature and natural 
light for more than 12 months (Zhu  et  al., 2020). Rosa also 
studied the stability of virgin olive oil (VOO). During 3 years and 
7 months, the 1H NMR signal only slightly changed, indicating 
that VOO began to undergo certain oxidation and hydrolysis 
degradation after one year, but no secondary degradation 
occurred (Alonso-Salces et al., 2011). These results confirm that 
VOO has high oxidation stability at room temperature, and 1H 
NMR spectroscopy can accurately predict the shelf life index 
of vegetable oils (Tanno et al., 2020). For refined vegetable oils, 
antioxidants such as tocopherols, phytosterols, and polyphenols 
are removed or degraded through several steps of degumming, 
neutralization, bleaching and deodorization, and the antioxidant 
capacity is reduced (Fine et al., 2016).

Fried food tastes good and is popular, but high-temperature 
frying more easily destroys the nutritional value and forms 
harmful substances than other cooking methods. The peroxide 
formed by the oxidation of unsaturated fatty acids is easier to 
decompose into other secondary oxidation products at high 
temperatures, especially carbonyl compounds, which can cause 
rancidity.

Jiang et al. used NMR to quickly determine the degree of 
deterioration of soybean oil during frying. After 28 h of frying, 
1H NMR results showed that the content of linolenic acid and 
linoleic acid decreased, while the unsaturated fatty acids were 
easily oxidized during frying (Aladedunye & Przybylski, 2014). The 
content of hydrogen peroxide first increases and then decreases, 
forming secondary oxidation products such as aldehydes and 
ketones. There is a high correlation between the formation of 
aldehydes (normal alkanes, (E)-2-olefins, (E, E)-2,4-olefins) 
and total polar compounds; therefore, 1H NMR can be used to 
monitor soybean oil for deterioration in the bombing process 
(Jiang et al., 2018).

In another study, Hwang  et  al. analyzed various signal 
changes during heating and frying at 180 °C. The content of 
linoleic acid and linolenic acid decreased greatly, and no signal 
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of hydroperoxides was detected, while the signal corresponding 
to various aldehydes was observed. The signal changes of 
protons of alkene (RAO), diallyl acid (RAB = RAD) and allyl 
group (RAA) relative to those of fat have been determined. 
These results are highly correlated with conventional analytical 
methods, indicating that the NMR method can be used as an 
effective tool for evaluating lipid oxidation (Hwang et al., 2017).

5 Adulteration
Unqualified edible oil will inevitably introduce various 

harmful substances in the process of recycling and refining. 
When this oil is mixed into qualified oil or illegal additives are 
added, it will seriously affect the health of consumers. Quality 
indicators such as water content, hydroxyl value and acid value 
can be used to identify unqualified edible oils. Another method of 
adulteration is to mix pure edible oil with lower-cost alternatives 
or vegetable oils from different origins; for example, sesame oil 
is mixed with rapeseed oil, and olive oil is mixed with hazelnut 
oil (Agiomyrgianaki et al., 2010).

Recently, a MATLAB script expert system was established 
based on the NMR characteristic peak data of various pure edible 
oils. The available quality parameters include the contents of 
linolenic acid, linoleic acid, oleic acid, saturated fatty acid (SFA) 
and iodine values, acid values, hydroxyl values and carbonyl 
values. According to the relevant quality parameters, the accuracy 
rates of the origin identification of the pure and mixed edible oil 
are 95.83% and 89.58%, and the recovered edible oil and frying 
oil have been correctly screened and identified. Therefore, the 
expert system based on 1H NMR is a faster, more accurate and 
convenient tool, which has great potential for identifying the 
adulteration of edible oil (Cai et al., 2019).

LF-NMR and support vector machines (SVMs) can be used 
as new methods for the rapid screening of pure and mixed olive 
oil. LF-NMR detects the difference in edible oil based on the T2 
distribution, and the oleic acid content and viscosity will affect 
the decay behavior. According to the variation of the decay 
curve with the mixing ratio, the SVM is used to establish the 
identification and classification model. The results show that pure 
EVOOs and mixed EVOOs can be distinguished well. When 
the doping rate is above 10%, the classification accuracy rate 
reaches 84.92%. This method is also applied to the prediction 
of seed oil grade and type (Wang et al., 2020).

Daniel studied the effectiveness of high-field and low-field 
NMR techniques in the identification of binary adulteration in 
cold pressed rapeseed oil (CPRO). The region of a specific fatty 
acid group can be clearly identified in the 400 MHz spectrum, 
while in the 60 MHz spectrum, it is less obvious. PLS showed that 
the classification accuracy of 400 MHz NMR was 100% and 93% 
in the case of single and multiple dopants, respectively. 60 MHz 
NMR has a low classification rate, but it can still classify CPRO 
that may be adulterated (McDowell et al., 2019).

6 Wine
Wine is a very popular fermented alcoholic beverage that 

is mainly composed of water, ethanol, glycerin, sugar, amino 
acids, organic acids and bases and inorganic ions (Table  1) 

(Nilsson  et  al., 2004; Du  et  al., 2007). The above chemical 
components directly affect the quality and flavor of wine. 
According to a metabolomics research report, wine metabolites 
are mainly affected by climate, soil, viticulture methods, grape 
varieties and winemaking processes (Amargianitaki & Spyros, 
2017). The chemical analysis of complex mixtures such as wine 
and other beverages is becoming very important. NMR is used 
qualitatively and quantitatively to characterize these chemical 
components, distinguishing wine based on grape variety, 
geographic origin and year of production.

7 Variety and origin
The minor components of wine play an important role in 

identification, but the signals of water and ethanol in the 1H 
NMR spectrum must be eliminated, which can be achieved 
by freeze-drying or preconcentration with inert gas flow or by 
various multiple suppression NMR techniques (Esslinger et al., 
2015). Therefore, enhancing the detection of NMR signals of 
minor compounds present in wine promotes their identification.

Samples of Cabernet Sauvignon and Shiraz red wine brewed 
in 2016 in Shanxi were studied by NMR. The metabolites of the 
two varieties were significantly different for the components 
proline, tartaric acid, glycerin, lactic acid, choline, succinic 
acid and gallate acid. Combining PLS-DA could successfully 
distinguish these two kinds of wines, with more accurate 
prediction (Zhu et al., 2018). PLS-DA was also used together 
with 1H NMR spectroscopy to analyze several protected design 
of origin (PDO) lamblucco wines. The results showed that 
Sobala wine was different from other types of wine, and the key 
discriminators were 2,3-butanediol, lactic acid, succinic acid, 
threonine and malic acid (Papotti et al., 2013).

Recently, a study conducted NMR analysis on Czech 
wines. In the chemical shift range from 0.8 to 4.0 ppm, peaks 
of alcohols, aliphatic organic acids and amino acids could be 
observed. The region 4.0-6.0 ppm is considered to be the signal 
of carbohydrate protons, and 6.0-8.5 ppm is the aromatic signal. 
The combination of proton spectrum and multivariate statistics 
can simultaneously classify each wine type and wine grape 

Table 1. 1H NMR of main components in wines (Son et al., 2008).

Compound 1H Chemical shift (ppm)
Organic acid and 
Diol

2,3-butanediol 1.13, 3.61
Acetic acid 2.08
Citric acid 2.79, 2.91
Glycerol 3.56, 3.76, 3.78

Gallic acid 7.15
Lactic acid 1.38, 4.29
Malic acid 2.73, 2.86, 4.46

Succinic acid 2.64
Tartaric acid 4.51

Amino acid Alanine 1.48, 3.80
Proline 2.0, 2.07, 2.35, 3.33, 3.41, 4.12
valine 0.87, 0.93

Sugar α-Glucose 4.64
β-Glucose 5.23
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variety with high accuracy (Mascellani et al., 2021). Dana et al. 
developed a method in which buffer was added to wine samples 
to perform similar pH adjustments to preserve the 1H NMR 
spectrum of individual wines as much as possible. It was found 
that the spectral region of 5.1-9.8 ppm had the highest potential 
for geographical and variety resolution and was also the most 
effective indicator (Magdas et al., 2019).

1H NMR spectrum analysis combined with multiple steps 
of multivariate statistical analysis was used to distinguish the 
highly predictable grape varieties in five wine-producing regions 
of Germany. The accuracy of the classification prediction for the 
year was 97% in 2008 and 96% in 2009. The quality of wine was 
also strongly affected by the geographical area where the grapes 
were grown. Multivariate statistical analysis could reach an 
accuracy of 89% for the prediction of wines from different regions 
(Godelmann et al., 2013). Gougeon et al. established an NMR-
based metabolomics method that can quantify 33 metabolites, 
including sugars, amino acids, organic acids, alcohols, and 
phenolic compounds. The contents of proline, phenylethyl 
alcohol, gallic acid or succinic acid may be related to the variety. 
Soil and cultivation measures also play an important role. For 
wines from different production areas, the classification rate 
ranged from 71% to 100%. The results showed that NMR-based 
metabolomics combined with multivariate statistical analysis 
could distinguish wines according to terrain, variety and year 
(Gougeon et al., 2019a; Xu et al., 2021).

8 Fermentation and aging
Although grapes provide the basic chemical components of 

wine, most chemicals found in wine are produced by the metabolic 
activities of yeast and lactic acid bacteria during the winemaking 
process (Hong., 2011). The transformation of histidine and 
malic acid fermentation during wine alcohol fermentation were 
monitored by NMR. Histidine was transformed into histamine 
alcohol during alcohol fermentation, and histamine was converted 
into histamine during malic acid lactic acid fermentation. 
However, histamine production can be avoided by using lactic 
acid bacteria in the malic acid lactic acid fermentation process 
(López-Rituerto et al., 2013).

Mazzei  et  al. used 1H NMR spectroscopy to analyze the 
differences in wine metabolites caused by commercially available 
yeast starters and selected self-produced Saccharomyces cerevisiae 
starters, which can accurately and effectively distinguish wines 
fermented with different yeast starters (Mazzei  et  al., 2013). 
Nardi et al. studied the effects of nonyeast bacteria and different 
malolactic fermentation management methods on the quality of 
Barbera red wine in alcohol fermentation. 1H NMR spectroscopy 
combined with multivariate statistical analysis determined the 
main changes in metabolites in the AF and MLF processes. The 
combined use of nonyeast bacteria will not interfere with the 
fermentation of alcohol and malolactic acid and can produce 
wines with richer flavor and richness (Nardi et al., 2019).

Another study used 1H NMR and metabonomics studies to 
identify organic and biodynamic wines. The chemical shift region 
at 0.8-4.0 ppm was related to amino acids and organic acids, and 
phenols were in the special spectral region of 5.5-8.5 ppm. The 

organic brewing scheme had a high concentration of tyrosine 
and resveratrol and a low content of trans-caffeic acid. The 
results showed that the production year and winemaking plan 
have a greater impact on the metabolic characteristics of wine 
(Laghi et al., 2014).

Wine aging refers to the beginning of winemaking, after 
bottling, and continuing until drinking. In addition to the color 
change, this process also improves the sensory (smell and taste) 
characteristics of the wine. The polyphenols in wine cause their 
different tastes and colors. During the aging process of wine, 
slow condensation and oxidation reactions will occur, leading 
to the conversion and precipitation of polyphenols, forming 
oligomeric and polymeric derivatives (Saucier et al., 1998).

Solid-state NMR was used to quantitatively evaluate the 
precipitates obtained in Bordeaux wine from 2012 and 2013 
at - 4 °C or 4 °C for 2-6 days, and the change in the sediment 
within one year was monitored. At low temperatures, vintage 
2012 produced much more precipitation than 2013. The sediment 
mainly contained potassium tartrate, polyphenols, a small 
amount of polysaccharides, organic acids and free amino acids, 
and tartaric acid plays an important role in the stability of wine. 
This might indicate that the amount of precipitation obtained 
depends on the year, temperature and grape variety and has little 
to do with the degree of aging (Prakash et al., 2016).

Analysis of 10 different wines after being bottled for 3 
months and stored at 12 °C for 48 months showed that 1H NMR 
spectrum combined with statistical analysis can distinguish the 
samples in the two aging stages. Wine aging could also cause 
subtle changes in metabolites. Organic acids such as lactic acid, 
succinic acid and tartaric acid were observed to decrease during 
the aging process, while ethyl acetate and ethyl lactate increased. 
The content of catechin and epicatechin in polyphenols was 
reduced, while gallic acid was increased in almost all red wines, 
which might be due to the hydrolysis of tannins (Cassino et al., 
2019). Although the sensitivity of NMR metabolic analysis is 
lower than that of other analytical methods, it is helpful to 
comprehensively describe the evolution of wine.

9 Adulteration
Adulteration refers to all kinds of fraudulent behaviors, 

such as diluting wine with water, adding alcohol, pigment and 
seasoning, mixing or replacing wine with low-quality wine, 
and mislabeling, that is, fraudulently distorting varieties and 
geographical sources (Versari et al., 2014).

In a real case of wine certification, a multitechnical method 
and q-NMR method were used to compare authentic wine and 
suspicious wine. The contents of succinic acid, acetaldehyde, 
inositol and isoamyl alcohol were different in sample B, while 
methanol, gallic acid, glucose and threonine were different in 
sample C. Fake wine and genuine wine did not seem to come 
from the same grape variety (Gougeon et al., 2019b).

NMR was used to characterize single binary mixed wine. 
LDA gave a good separation effect for several kinds of mixed 
wine. On the other hand, a single-layer artificial neural network 
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was used to predict the relative content of liquor in the mixture, 
and the accuracy was approximately 10% (Imparato et al., 2011).

Kubala and his team analyzed suspected liquor samples from 
Russia and Kenya by 1H NMR and compared them with authentic 
liquor samples. The results showed that the counterfeit products 
in Russia were added with some flavorings and colorants on the 
basis of diluted alcohol. In fake vogat, the content of methanol 
was 16 times higher than that of genuine vogat. In the Kenyan 
sample analysis, the counterfeit product added sweetener glycerin 
and a small amount of higher alcohol (Kuballa et al., 2018).

The structures of various compounds in Scotch whisky 
were characterized by 1D and 2D NMR, and the Scotch whisky 
was classified by PCA and OPLS-DA. Blend and malt whisky 
were classified correctly, and 3-methylbutanol was the key to 
classification. In the test of the genuine and fake whisky, the 
fake whisky contained glycerol and sugar, and the content of 
vanillin was too high. These substances are used as discriminant 
quantities to successfully distinguish genuine and fake whisky 
samples (Kew et al., 2019).

As the world’s leading provider of analytical technology, 
Bruker launched the FoodScreener™ innovation platform based 
on NMR technology. The Wine-Profiling™ module database 
on the NMR FoodScreener™ platform contains nearly 26,000 
samples, including 22 grape varieties from countries such as 
France, Italy and Spain. By comparing the spectral fingerprints 
of each sample with those of a large database of authentic wine 
samples, questions about composition, geographic origin, grape 
variety and vintage can be answered. In addition, the platform 
can quickly and accurately determine the authenticity of products 
such as honey, wine and fruit juice, and other related solutions 
such as olive oil are being developed (Bruker, 2020).

10 Honey
Honey, derived from various plant secretions, is a highly 

praised natural product produced by bees that possesses 
very high nutritional value and rich bioactive compounds 
(Consonni et al., 2019). Sugar is the main component of honey, 
accounting for approximately 95% of the dry weight of honey. 
The composition of sugar determines the physical and chemical 
properties of honey. A large amount of fructose and glucose 
results in sweetness similar to granular sugar (Cavia et al., 2002; 
Ball, 2007). However, there are also some minor components, 
such as proteins and enzymes, amino acids, minerals, vitamins 
and polyphenols, that contribute to the sensory and biological 
properties of honey (Zheng et al., 2016; Consonni et al., 2019). 
The taste, aroma and nutritional value of honey are also closely 
related to their plant and geographic origin. Honey is a food that 
is often adulterated. Therefore, the control and characterization 
of honey quality and source is of great significance in beekeeping.

11 Plant source
The composition of honey is diverse and closely related to 

its plant origin. Sugar accounts for approximately 60-80% of 
the total honey quality, and there are no significant differences 
among different varieties of honey. However, the content of 
secondary components in honey varies greatly from one flower 

source to another. Ren et al. distinguished the botanical sources 
of single-flower honey based on the nonsugar components 
(NSCs) present in honey. The NSCs in 50 honey samples were 
determined and compared. Among them, jujube honey has the 
highest NSC content, followed by acacia honey, and the lowest 
is pure honey (Ren et al., 2019).

The 1H NMR fingerprint can accurately distinguish three 
different single-flower honey samples. In addition, this method has 
been proven to identify other typical botanical origins in China. 
The application of chemometrics to 1H NMR spectroscopy can 
distinguish eucalyptus, citrus and wildflower honey produced 
in Sao Paulo and characterize specific identification signals. 
Eucalyptus honey contained more lactic acid, wild flower honey 
had higher phenylalanine and tyrosine contents, and citrus 
honey contained more sucrose. KNN, SIMCA and PLS-DA 
pattern recognition models were used to correctly classify all 
samples (Boffo et al., 2012).

In addition, the main source of phenolic compounds in honey 
is plants, and phenolic compounds have been proven to be an 
effective method for studying honey flowers. Salgueiro and his 
partners used XAD-4 resin to prepare 53 kinds of honey extracts 
rich in polyphenols. 1H NMR spectra and multivariate analysis 
were used to detect possible flower sources. Samples of eucalyptus 
honey, citrus honey and campal honey were successfully identified 
(Salgueiro  et  al., 2016). Myricetin, cephalotaxine, luteolin, 
quercetin, kaempferol and other benzoic acid derivatives were 
considered flower markers of eucalyptus honey, while quercetin, 
hesperidin and chrysin were described as potential markers for 
citrus honey (Kaškonienė & Venskutonis, 2010).

Schievano and his team established an OPLS-DA classification 
model based on the NMR spectra of chloroform extracts from 
different plant samples. Due to the special characteristics of the 
chloroform spectrum, these characteristics showed the diagnostic 
resonance of almost every botanical source (Schievano et al., 
2016). The markers of Acacia honey were chrysin and pineal 
membrane protein. The six resonances of the orange honey model 
were all derived from caffeine and 8-hydroxylinalool. The signal 
for identifying eucalyptus honey comes from dehydroemetic 
leaf alcohol, and all seven signals of chestnut honey fall in the 
region of 7.90-8.50 ppm (Schievano et al., 2012). This technique 
successfully predicted the primary and secondary flower origins 
in honey samples and verified the authenticity of single flower 
honey.

12 Geographical origin
The composition of honey varies naturally depending 

on different climate and environmental conditions. Several 
compounds have been found and used to determine their 
geographical and botanical sources. A new method for the 
simultaneous quantification of 13 metabolites in honey, including 
acids, amino acids, sugars, ethanol and hydroxymethylfurfural, 
has been proposed (Campo et al., 2016).

The organic extract of honey contains specific markers of 
each plant origin, which can usually be identified by simple visual 
inspection of NMR spectroscopy. Schievano’s research proposed a 
method based on the NMR metabolic analysis of organic extracts 
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to identify Acacia honey geographically. The NMR spectrum 
of this extract successfully achieved a geographical distinction 
between Italian and Eastern European Acacia honey, with an 
overall correct classification rate of 100% (Schievano et al., 2019).

Based on NMR and HPLC, the geographical identification 
of honey from pine and fir trees produced in Greece was carried 
out. The sugar, free amino acid and organic acid contents, as 
well as the water and sugar ratios or sugar/water ratios in honey, 
provided useful information about geographical origin. The two 
discriminant functions could distinguish honey from different 
regions in Greece, and the prediction accuracy was 76.9% and 
80.6%, respectively (Karabagias et al., 2018).

Consonni  et  al. applied OPLS-DA to selected spectral 
regions in the 1H NMR spectrum to geographically identify 
honey from three different flower sources based on the sugar 
content. The results showed that honey from China, Hungary, 
Italy and South America demonstrated surprising variance 
(Consonni et al., 2013).

13 Adulteration
Due to its health and unique flavor characteristics, the 

increased demand for honey has led to the adulteration of different 
syrups. Various cheaper sweeteners, such as refined sucrose, 
beet sugar, HFCS (high fructose corn syrup) and maltose syrup, 
were added. It has become very common to adulterate honey 
by feeding bees sugar or syrup. Mistaken labeling of honey of 
botanical or geographical origin also occurred (Guler et al., 2014).

Pure honey and honey with different proportions of corn 
syrup with high fructose were studied by low-field NMR and 
physicochemical analysis. There were obvious differences between 
adulterated and pure nectar in water, pH, water activity, ash 
content and color. The concentration of dopant in pure honey 
significantly affected the relaxation time. The higher the fructose 
syrup concentration was, the shorter the relaxation time was. 
Therefore, LF-1H-NMR can distinguish different proportions 
of adulteration (Ribeiro et al., 2014).

Recently, due to the similar appearance and taste of rice syrup 
and honey, adulteration in the honey market has increased rapidly. 
The 1H NMR spectra of honey and brown rice syrup (BRS) were 
studied by PCA. It was found that there was a characteristic peak 
at 5.39 ppm to identify BRS. The quantitative determination of 
BRS in two commercial honey samples was successfully carried 
out by using 1H q-NMR. The detection accuracy was 22.3% and 
37.3%, and the precision was 0.1-1%. This method has sufficient 
accuracy and precision within the estimated concentration range 
and is faster and simpler (Musharraf et al., 2016).

Spiteri et al. used proton NMR analysis to solve the problem 
of adulteration and quality deviation in honey. Combined with 
appropriate quantitative procedures and statistical models, 
when the labeled peak was present in the adulterants, the results 
showed that the lowest detection limit was approximately 10% 
(Spiteri et al., 2015). According to the spectrum, Manuka honey 
could be distinguished from other flower types according to 
methylglyoxal and dihydroxyacetone, and “pure manuka” and 
mixture could also be distinguished (Spiteri et al., 2017).

In another study, high-resolution NMR technology was 
used to identify and quantitatively analyze 65 components in 
honey. Combined with multivariate statistical analysis methods, 
the accuracy of the identification of adulterated honey and 
genuine honey was 97.6%. Proline, xylobiose, uridine, β-glucose, 
maltose, furanose and lysine have a significant contribution to 
the identification of adulterated honey (He et al., 2020).

Recently, a new NMR method based on CSSF-TOCSY 
experiments was proposed. The method, without pretreatment, 
quantifies 22 common sugars in water-soluble raw honey samples. 
In the detection of chestnut honey, there was a large difference 
between normal honey (black trace) and honey supplemented 
with raffinose (red trace) (Figure 2). Unlike 1H NMR, the CSSF-
TOCSY spectra could clearly observe the additional signal 
of raffinose, making it easier to identify honey adulteration 
(Schievano et al., 2017).

Bruker introduced the latest version of the NMR Honey-
Profiling™ module for advanced detection of changing honey 
adulteration patterns. The new module expands the growing 
database to 28,000 honey reference samples, covering more than 
50 countries, 100 single-flower species and many multiflower 
species. Based on Honey NMR fingerprints obtained by Bruker 
NMR Honey-Profiling™, the Worker Bee Honey Co project is 
working to generate a Honey NMR database for all parts of 
British Columbia, Canada. By comparing the NMR spectrum 
of the honey sample with the database, the matching of the real 
honey pattern can be confirmed (Bruker, 2021a).

14 Milk
Milk is popular among consumers because of its sensory 

quality and high nutritional value. The main components of 
milk are polysaccharides, proteins, phospholipids and minerals, 

Figure 2. Top: conventional 1H spectra of chestnut honey. Bottom: 
CSSF-TOCSY spectra of chestnut honey resulting from excitation at the 
frequency indicated. The black and the red traces refer to the genuine 
and the raffinose-spiked samples, respectively (Schievano et al., 2017) 
with reprint permission from American Chemical Society.
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which contain a large number of fat particles, resulting in the 
emulsion of the sample, affecting the magnetic field uniformity 
and reducing the resolution of the spectrum. As early as 1999, 
a review described the application of NMR in dairy products, 
including the physical and chemical properties of milk and other 
dairy products, and analyzed the properties and conformation of 
specific milk proteins (Belloque & Ramos, 1999; Markoska et al., 
2020). In recent years, NMR has been widely used to study the 
metabolite spectra of milk and various dairy products, including 
animal health, milk quality, geographical origin and other 
aspects (Harnly et al., 2018; Cui et al., 2019; Scano et al., 2019; 
Markoska et al., 2020; Balthazar et al., 2021).

15 Feeding mode
NMR was used to compare the metabolites in the fat 

composition of organic milk from Cyprus and ordinary milk. 
Compared with conventional samples, the contents of conjugated 
(9-cis, 11-trans) 18:2 linoleic acid (CLA), α-linolenic acid, linoleic 
acid, allyl protons and total unsaturated fatty acids (UFAs) in 
organic samples increased significantly. Organic milk can improve 
the nutritional quality of milk by increasing the composition 
of fatty acids, which is closely related to the forage and feeding 
methods (Tsiafoulis et al., 2019).

Refinement of multinuclear NMR results through PCA can 
determine the metabolome of buffalo milk and distinguish buffalo 
milk from conventional feed milk or biological feed milk (CFM 
and BFM, respectively) at the same time. The T2-edited spectra 
showed that the BFM sample contained more lactose than the 
CFM sample, and the BFM milk showed more monounsaturated 
and polyunsaturated fat in the 1H diffusion-edited spectra and 
13C spectra. Biological feeding patterns affect the composition 
and sensory and nutritional properties of buffalo milk (Mazzei 
& Piccolo, 2018). TD-NMR, a low-cost alternative to high-field 
NMR, has been used to study the molecular mobility of water 
in solidified and heat-treated whole milk and goat milk during 
rennet and dehydration, with significant relaxation differences, 
possibly due to protein-modification interactions associated 
with heat treatment (Curti et al., 2019).

NMR can also be used to evaluate the metabolic state and 
nutritional value of milk cows. 1H NMR was used to analyze 
dichloromethane-extracted samples to obtain better spectra of 
two important metabolites, β-hydroxybutyric acid and creatine. 
This provides important information for the diagnosis of bovine 
ketosis and various neurological symptoms (Tenori et al., 2018). 
In addition, the 1H NMR spectrum of metabolites can distinguish 
between healthy cows and mastitis cows. Mayuree identified 
alanine, pentanoic acid and N-acetyl glucosamine and 46 other 
metabolites in milk, in addition to the published biomarkers for 
the diagnosis of mastitis (Luangwilai et al., 2021).

Tomassin et al. used the 1H NMR method to detect changes 
in the metabolic spectrum of milk during lactation. Combined 
with PLS-DA analysis, it can distinguish between Friesian milk 
and native milk secreted for 200-300 days. From 200 to 300 days 
of milk lactation sampling, N-acetyl-X2 P, galactose, and glucose-
1-1-P decreased significantly, while N-acetyl-X4 increased. 
The results showed that the difference in milk composition in 

different RACES was closely related to the late lactation period 
(Tomassini et al., 2019).

16 Dairy
The chemical components of milk powder products are 

lactose, protein, minerals and fats, as well as vitamins A, B and 
D. TD-NMR and stoichiometry were used to determine the 
fat content of several milk powder samples without solvent 
(Nascimento  et  al., 2017). Based on the multivariate model 
of T2 decay, the fat percentage (g/100 g) in solid milk powder 
was measured to be 0.75%~26%, and the moisture content 
was measured to be 1.9%~3.9%. Sanchez  et  al. conducted a 
comprehensive characterization of whole fat goat milk powder 
(GMP), identifying 44 metabolites from fat, sugar, and aromatic 
regions based on NMR. The main signals of aliphatic (0.5-3.5 ppm) 
and aromatic (6.0-9.5 ppm) groups correspond to metabolites 
such as creatine, carnitine, lactose, galactose, lecithin and sucrose. 
The metabolites corresponding to weak signals, such as lactic 
acid and equuric acid, were strongly associated with breast 
infection. These metabolites are very important in identifying 
GMP quality and characteristics (Sanchez et al., 2021).

Segato et al. used 1H NMR to identify the water-soluble 
metabolomics of Alpine Asiago cheese at three maturation times. 
Lactic acids contributed to the main signals in the 1H NMR 
spectra, in addition to some other strong signals, including acetic 
acid, glycerol, hydrophobic amino acids, ethanol and citric acid. 
2,3-Butanediol is one of the hallmarks of ranch cheese because 
its content disappears with maturity. Lysine was associated with 
a medium to short ripening period of cheese, and phenylalanine 
was one of the main indicators of long mature cheese. The results 
showed that 1H NMR was an effective method to identify cheese 
samples with the shortest ripening period (Segato et al., 2019).

17 Adulteration
NMR is a powerful tool to detect the adulteration of dairy 

products (Mafra et al., 2022). Li et al. used NMR to distinguish 
cow milk, goat milk and soy milk and to detect the addition of 
soy milk to the milk samples. Eleven metabolites were identified 
according to 1D and 2D NMR spectra. Ten metabolites (carnitine, 
N-acetyl carbohydrate, acetic acid, choline, ethanolamine, 
citric acid, creatine, lecithin, D-sucrose and D-lactose) were 
selected as characteristic variables and could be used for PCA 
classification. In addition, adulteration can meet the needs of 
daily testing; the LOQ value of adulteration in milk is 2% (v/v), 
the relative standard deviation of adulteration in soy milk is 2% 
(v/v), and the adulteration concentration in goat milk is 5% 
(v/v) (Li et al., 2017).

Santos et al. innovated a method for evaluating milk quality 
using 1H TD-NMR. Whey, urea, hydrogen peroxide, synthetic 
urine and synthetic milk were added to milk at 5%, 15%, 25%, 
35% and 50% (v/v), respectively. The analysis of the dispersion 
index of 1H TD-NMR relaxation attenuation showed that the 
milk sample contained only water, and the T2 relaxation time 
was significantly different with the change in doping amount 
(Santos et al., 2016).
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High-field 1H NMR spectroscopy and conformance 
index analysis can clearly distinguish genuine and adulterated 
skimmed milk powder. For samples containing nitrogen-rich 
small molecules (melamine and dicyandiamide), the detection 
threshold was ≥ 0.005-0.05% (w/w). The lowest concentration 
of milk metabolites for the detection of urea, sucrose and 
maltodextrin was ≥ 0.5% (w/w). At 5% w/w, the matrix effect 
of milk metabolites could indirectly indicate adulteration 
(Bergana et al., 2019). The above results were consistent with the 
analysis of adulterated milk powder by Harnly and colleagues 
using proton NMR, which also illustrated the potential of NMR 
technology in detecting adulterated milk powder.

18 Fruits and vegetables
NMR spectroscopy has been widely used in the characterization 

of fruits and vegetables (Table 2). All fruits and vegetables have 
specific components that are closely related to their nutritional 
value, aroma, taste and biological activity.

18.1 Composition and metabolic changes
1H NMR and 2D NMR spectroscopy were used to study 

pomegranates in different regions of Iran to improve the ecotype 
of pomegranates. In the spectrum of pomegranate juice, glucose, 
sucrose and glucoside were the main components. The main 
organic acids, citric acid and malic acid, could be used to identify 
different habitats, which may be related to climate and topography. 
The amino acid and sugar spectra of pomegranate juice from 
Pakistan, Fordoss and Kashma are similar, but the total phenol 
content is obviously different. Phenolic compounds can be used 
to distinguish the three producing areas (Hasanpour et al., 2020).

Amino acids are the main metabolites involved in cell 
functions and provide valuable information for distinguishing 
the plant origin of fruits. Botoran’s team identified ten types 
of amino acids that showed significant differences in different 
varieties of juice, except for glutamic acid. Based on the amino 
acid profile, stoichiometric methods (PCA, LDA) can correctly 
classify juices from different plant sources (Botoran et al., 2019).

The metabolite spectrum of Piemonte Apple was studied 
by NMR. Fructose seems to be the most abundant among all 
apple varieties, and the relative contents of glucose and sucrose 
are highly variable. Piemonte varieties are usually characterized 
by high content of chlorogenic acid. Di unsaturated fatty acids 
are the main fatty acids, followed by saturated fatty acids. The 

contents of phloridin/phloridin, rhamnol and citric acid have 
great advantages in identifying apple varieties (Matteo et al., 2021).

NMR is also used to detect the changes in metabolites 
during fruit ripening. It was used to characterize and explain the 
changes in major metabolites at the four different stages of fruit 
ripening. During the maturation process, most organic acids used 
as respiratory substrates to produce ATP were reduced, amino 
acids were consumed, and starch or sucrose might degrade to 
fructose and glucose. Phenolic compounds such as vanillin and 
epicatechin are closely related to the biological activity of black 
raspberry. NMR provides a very important reference for the 
medicinal value of black raspberry (Kim et al., 2011).

The 1D and 2D NMR spectra combined with PCA showed 
the changes in metabolites at five different maturation stages of 
banana. Sugar, amino acids, organic acids and fatty acids were 
the main metabolites. The metabolism of carbohydrates and 
amino acids occurred in five aging stages and affected the quality 
of bananas. Obviously, the third and fourth stages had better 
quality. In the fifth stage, dopamine converted to salbutamol, 
which was also a sign of banana aging (Yuan et al., 2017). NMR 
spectral data provide objective standards for fruit ripening and 
senescence.

18.2 Water activity

The water activity of food determines its stability, and the 
measurement of water activity is crucial in food, especially 
during the drying process. Fruits and vegetables contain a 
large amount of water, which affects metabolism and growth. 
Measuring the dynamic changes in water helps to elucidate the 
growth, storage and deterioration of fruits and vegetables from 
a microscopic perspective. Recently, Lv innovated a microwave 
vacuum drying (MVD)-low field nuclear magnetic resonance 
(NMR) device to evaluate the moisture status of vegetables. 
Signal amplitude T2 was used to reflect the state of water. Each 
vegetable had a different water distribution, among which free 
water was the main water type lost during MVD. Although the 
signal amplitudes of bonded water, fixed water, free water and 
whole water (A2) in different drying stages are greatly correlated 
with the water content, only A2 can be used to determine the 
end time of drying by a linear fitting model (Lv et al., 2017).

LF-NMR spectroscopy was used to monitor the changes in 
the water state during the drying process of several fruits and 
vegetables. Drying led to a decrease in water activity and a shift 

Table 2. Key applications of NMR in analysis and structural characterization of fruits and vegetables.

Food Research objective NMR method Multivariate analysis Reference
Apple antioxidant capacity of dehydrated apple 1H NMR ANOVA, PCA Francini et al., 2017
Banana changes of metabolites during banana 

senescence after harvest
1H NMR, COSY, JRES, 

HSQC,
PCA Yuan et al., 2017

Mango analyze the authenticity of Alphonso mango 1H NMR local outlier factor Strecker & Ara, 2022
Tomatoes distinguish Organic Tomato from 

conventional tomato
1H NMR PCA, LDA Hohmann et al., 2014

Celery biomarkers of celery metabolites and 
geographical sources

1H NMR PCA, PLS-DA Lau et al., 2020

Sweet 
orange

identify the components and geographical 
indications of Chinese sweet orange

1H NMR PCA, PLS-DA, CV-ANOVA Lin et al., 2021
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of the T2 peak to the left. The T2 values of simple dried samples 
and sugar-treated samples were similar, showing a downward 
trend, which may be due to the change in sugar state in the drying 
process to reduce shrinkage. However, salt-treated samples lead 
to tissue damage, and the T2 relaxation time becomes longer. The 
water activity of the samples treated with sugar and salt both 
decreased, but the effect on T2 relaxation time was completely 
different (Chitrakar et al., 2019).

Francini studied the antioxidant capacity and polyphenol 
content of dried and fresh apples. The contents of total polyphenols 
in the six kinds of fresh apples were different. The oxygen radical 
absorbance capacity decreased after dehydration but still had 
high antioxidant activity. The results showed that antioxidant 
activity was highly dependent on the content of phenol, and the 
correlation coefficient was 0.842 (P < 0.001) (Francini et al., 2017).

Spin-generated fingerprint profiling (SGF-Profile) is a fruit 
juice analysis method developed jointly by Bruker and SGF 
International. The database currently collects spectra of more 
than 3,000 reference juices, including more than 30 different types 
of fruit from more than 50 countries. Based on the automatic 
execution data analysis and report of the SGF-PROFILE system, 
the main sugars, amino acids, organic acids, acetyl groups, 
arbutin, benzaldehyde, hydroxymethyl furfural, acetaldehyde, 
methanol, ethanol and 29 other compounds in apple juice were 
quantitatively analyzed. In addition, depending on the model 
used, it can predict the differentiation of fruit and product type, 
adulteration of added sugar or acid, origin and fruit mixture 
(Bruker, 2021b).

19 Conclusions
NMR spectroscopy is an important analytical method 

for the characterization of chemical composition, molecular 
structure and change of compounds. It is promoting a deeper 
understanding of food. Its application covers the origin, quality, 
safety and authenticity of food. NMR is a fast and simple analytical 
method that has the advantages of accurate measurement and 
high repeatability and can be applied to all kinds of food. The 
analysis of NMR data is specialized and complex. Compared 
with other technologies, the sensitivity of NMR is low, which 
limits the application of NMR in food detection. Sensitivity 
depends on the instrument, and the type of probe, magnetic field 
strength, type of experiment and sample properties all affect the 
spectral resolution. NMR spectrum databases of certain kinds 
of food can be very important for data analysis and application. 
With the further improvement of NMR technology, it will have 
broader prospects in the field of food science.
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