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Bacteriocins as promising antimicrobial peptides, definition, classification,
and their potential applications in cheeses
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Abstract

There is increased importance to finding alternative solutions to antibiotic resistance which require more research, bacteriocins
are promising antimicrobial peptides with inhibitory and bactericidal activities that might be one of these solutions. Bacteriocins
are small antimicrobial peptides synthesized by bacterial ribosomes, active against the bacterial pathogen, multidrug-resistant
bacteria, and cancer therapy. Lactic acid bacteria (LAB) are one of the most used bacteria to produce bacteriocins and dairy
products (i.e. cheeses) consider rich sources of LAB isolates. Enterococcus faecalis, Lactobacillus fermentum, L. plantarum,
L. helveticus, L. pentosus, L. paracasei subsp. paracasei, L. rhamnosus I, and L. delbrueckii subsp. lactis are strong strains in
bacteriocins production. Several applications were applied to control bacterial pathogens spread in cheeses, one of them is using
bacteriocins and bacteriocins-like inhibitory substances (BLIS). To reduce foodborne pathogens and spoilage bacteria in cheese,
bacteriocins can be applied in several means such as inoculating cheese with bacteriocin-producer strain and adding purified
or semi-purified bacteriocin as a food additive. This review is focused on bacteriocins and BLIS classification, mechanism, and

applications in dairy products i.e. cheeses.
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Practical Application: Bacteriocins obtained from LAB have strong antimicrobial activity against bacterial pathogens, which

makes them a promising alternative to antibiotics.

1 Introduction

The antimicrobial activity of bacteriocins has promising
potential in inhibiting and killing bacterial pathogens (Pato et al.,
2022a). Bacteriocins are antimicrobial peptides synthesized by
bacterial ribosomes, with bacteriostatic or bactericidal effects
against pathogens (Simons et al., 2020). It could be produced
by gram-positive and gram-negative bacteria. They are mostly
used in the food industry as natural bio preservatives instead
of chemical preservatives to protect products from spoilage and
pathogenic bacteria (Todorov et al., 2019; Pato et al., 2022b;
Barboza et al., 2022). Bacteriocins-like inhibitory substances
(BLIS) are also ribosomally synthesized peptides that possess
abilities like bacteriocin but have not been yet characterized for
their amino acid sequence (Caulier et al., 2019). Nisin is the first
approved bacteriocin used as a food preservative (Khelissa et al.,
2021). Lactic acid bacteria (LAB) are one of the most used
bacteria to produce bacteriocins and BLIS (Tankoano et al.,
2019; Jawan et al., 2021; Tang et al., 2022).

Foodborne diseases are a real threat to consumer health,
especially in sensitive highly perishable dairy products such as
cheeses (Cheng et al., 2022). Since cheeses are rich in various nutrient
values which provide an optimum environment for pathogenic
bacteria that escape during the manufacturing process or survive
in retail stores (Kaur & Kaur, 2021). As a result of the widespread
of antibiotic-resistant bacteria due to the overuse of antibiotics,
there is a requirement for effective therapeutic approaches to
control the spread of resistance (Soltani et al., 2021).

LAB and their bacteriocins are considered safe and useful
food additives to control the growth of pathogens and spoilage
microorganisms in foods (Mokoena et al., 2021). Nisin, Pediocin
PA-1, and Micocin are the only FDA-approved bacteriocins to
use as food preservatives since they inhibit the growth of many
gram-positive bacteria and food-borne pathogens (Naskar &
Kim, 2021). Bacteriocin of lactobacillus plantarum isolated from a
Tulum cheese reduced the growth of Staphylococcus aureus during
production and ripening of white-brined cheeses (Taban et al.,
2019). L. Plantarum ST71KS isolated from Bulgarian goat milk
feta cheese was able to produce class Ila bacteriocin that had a
bactericidal effect on Listeria monocytogenes (Martinez et al.,
2013). Pediocin PA-1 gene was detected in pediococcus pentosaceus
isolated from ripened Minas cheese, an artisanal cheese made
with raw cow’s milk (Gutiérrez-Cortés et al., 2018). Several
applications were applied to control bacterial pathogens spread in
cheeses, one of them is using bacteriocins and bacteriocins-like
inhibitory substances (BLIS). This review is focus on bacteriocins
and BLIS classification, mechanism, and applications in dairy
products i.e. cheeses.

2 Bacteriocin and Bacteriocins Like Inhibitory
Substances (BLIS)

Bacteriocin is a small proteinaceous compound with low-
molecular-mass, consists of 30 to 60 amino acids synthesized
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by bacterial ribosomes, heat-stable at 100 °C for 10 min, and
extracellularly excreted to inhibit or kill other bacterial strains
(Mokoena, 2017; Raval et al., 2020; Moradi et al., 2021). Normally
not termed antibiotics to avoid confusion with therapeutic
antibiotics (Sen & Ray, 2019) rapidly digested by proteases in
the human digestive tract which is the difference between them
and most therapeutic antibiotics (Tkhruni et al., 2020).

Bacteriocins have a narrow or wide spectrum via inhibiting
taxonomically close bacteria, or a wide variety of bacteria
(Silva et al., 2018). Bacteriocins have a different spectrum of
activity, mode of action, molecular weight (MW), genetic origin,
and biochemical properties (Darbandi et al., 2022) BLIS are
antimicrobial peptides produced by LAB that possess bacteriocin
ability, but that have not yet been characterized for their amino
acid sequence (El-Gendy et al., 2021) Recently, BLIS gained interest
due to their potential use as natural antimicrobial peptides that
inhibit the growth of pathogenic and contaminant bacteria in
several applications such as food, clinical, veterinary, and others
(Agriopoulou et al., 2020; Hefzy et al., 2021; Hu et al., 2018).

BLIS activity can also be measured by various methods such
as agar well diffusion assay, spot-on-lawn assay, turbidimetric
assay, ELISA, radiometry, conductance measurements, and
bioassays based on self-induction skills (Sidek et al., 2018;
Zou et al., 2018; Arakawa, 2019). The most widely used assay is
the determination method that exhibits the growth inhibition
potential of a bacteriocin (Sidek et al., 2018). The physical and
chemical properties of BLIS are important, especially in the
food industry because of the complexity of food processing
(Yi et al., 2022).

3 Bacteriocins of Lactic Acid Bacteria (LAB)

LAB are non-spore-forming bacteria, gram-positive,
anaerobic but aerotolerant rods or cocci, catalase-negative, and
fastidious bacteria, with a high tolerance for low pH, ferment
carbohydrates to produce energy and lactic acid as the primary
product of fermentation (Gupta et al., 2018; Miranda et al,,
2021; Wang et al., 2021). Moreover, it is produced antimicrobial
substances such as bacteriocins, BLIS, hydrogen peroxide, organic
acids, diacetyl, acetoin, and antifungal peptides (Egan et al.,
2016). LAB produce a large number of bacteriocins from strains
like Lactobacillus, Pediococcus, Lactococcus, and Enterococcus
(Trejo-Gonzalez et al., 2021).

LAB bacteriocins are often active at various pH values,
resistant to high temperatures, and active against plenty of
food pathogenic and spoilage bacteria (Ahmad et al., 2017).
Furthermore, bacteriocins produced by LAB are sensitive to
digestive enzymes such as pancreatin complex, trypsin, and
chymotrypsin, and for this reason, has no impact negatively on
the gut microbiota (Egan et al., 2016) Lactobacillus and their
bacteriocins have been used in food preservation, and to control
human pathogens (Mokoena et al., 2021).

4 Bacteriocins classification

Based on the biosynthesis mechanism and biological activity
of bacteriocins, it’s classified into three major classes: Class I -
small post-translationally modified peptides with molecular

mass < 5 kDa, class II - unmodified peptides with molecular
mass 6-10 kDa and including or not stabilizing disulfide bridges
and class III - larger peptides [> 10 kDa, thermo-labile; Negash
& Tsehai (2020); Zimina et al. (2020)].

Class I Bacteriocins/Lantibiotics are heat-stable small peptides
(< 5kDa) and are subdivided into two types based on charge
difference (Negash & Tsehai, 2020). It is highly posttranslational
modified and contains characteristic polycyclic thioether amino
acids such as lanthionine, methyl-lanthionine (Veettil & Chitra,
2022), and unsaturated amino acids such as dehydroalanine and
2-amino isobutyric acid (Roy et al., 2018). Type A-lantibiotics
are flexible screw-shaped molecules with a positive charge of
2-4KkDa. Effect on the cell membrane by forming pores which lead
to depolarization of the target species cytoplasmic membranes
such as nisin and lacticin 3147 (Negash & Tsehai, 2020). Type
B-lantibiotics are globular peptides 2-3 kDa, without net charge
or negative charge, that interfere with cellular enzymatic reactions
of sensitive bacteria cell wall synthesis, such as Mersacidin
(Moravej et al., 2018)

Class II Bacteriocins are small heat-stable peptides (<
10kDa) with amphiphilic helical structures that allow them to
insert into the membrane of the target cell which leads to cell
depolarization and death (Negash & Tsehai, 2020). In addition,
itis non-lanthionine-containing peptides that are not modified
after translation beyond the elimination of a leader peptide
and the formation of a conserved N-terminal disulfide bridge
(Kozic etal., 2018). Subclass ITa peptides are monomers and have
an N-terminal consensus sequence Tyr-Gly-Asn-Gly-Val-Xaa-Cys.
They are active against L. monocytogenes such as pediocin PA-1
and sakacin A. Subclass IIb with two-component bacteriocins
in which two distinct peptides act synergistically to generate an
antimicrobial effect such as lactation F and lactococci G (Negash
& Tsehai, 2020). Subclass Ilc has circular bacteriocins carrying
two transmembrane segments that facilitate pore formation in
the target cell such as gassericin A, circularin A, and carnocyclin
A (Yaghoubi et al., 2020).

Class III Bacteriocins are peptides with high molecular
weight (> 30kDa), and heat-labile proteins (Yaghoubi et al.,
2020). In addition, it includes three groups bacteriolysins,
non-lytic bacteriocins, and tailocins. Bacteriolysins are large
Iytic polypeptides that target the peptidoglycan layer such as
lysostaphin, zoocin A, millericin B, and enterolisin A. Non-lytic
bacteriocins are large non-lytic polypeptides, their mechanism
of action is not based on cell wall lysis, it is believed that
blocking the absorption of glucose and its inclusion in cellular
macromolecules leads to carbohydrate starvation that kills the
target cell such as helveticin J and casecin 80. The last one are
tailocins which is multiprotein complex, with structure like a
phage tail that target the lipopolysaccharides such as diffocin
and monocin (Zimina et al., 2020).

5 Bacteriocins: mechanisms of action

Bacteriocins inhibit the growth of target organisms in different
mechanisms. There is a mechanism that can function primarily
on the cell envelope and other mechanisms are primarily active
in the cell by affecting gene expression and protein production
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(Negash & Tsehai, 2020). Bacteriocins have bactericidal effects that
may be accompanied with or without cell lysis (Qiao et al., 2021).
It produced from LAB mostly inhibits gram-positive bacteria
and exerts its antibacterial effect by targeting the cell envelope-
associated mechanisms (Rahmeh et al., 2020). Lantibiotics and
some class II of bacteriocins target lipid II and eliminate the
synthesis of peptidoglycan (Negash & Tsehai, 2020).

Other bacteriocins use lipid IT as a docking molecule to start
pore formation which resulted in variation of the cytoplasm
membrane potential and finally, cell death (Du et al., 2018). Nisin,
the most studied bacteriocin is capable of both mechanisms
(Kumariya etal., 2019). Lactococcin A is a class II bacteriocin that
targets the cell by binding to the pore-forming receptor mannose
phosphotransferase system [Man-PTS; Daba et al. (2018)].

Some bacteriocins show antimicrobial activity by their
enzymatic activities, such as colicin E2 showing DNase activity,
colicin E3 showing RNase activity, and megalin A-216 showing
phospholipase activity against the target organism (Negash &
Tsehai, 2020). Class II of peptides due to their structure can be
inserted into the membrane of the target cell, causing depolarization
and death. On the other hand, class III bacteriocins directly
function on the cell wall of gram-positive resulting in cell death-
like lysostaphin (Baindara et al., 2018; Negash & Tsehai, 2020).

The bactericidal mode of action of recombinant bacteriocin
BMP32r against gram-positive and gram-negative bacteria was
similar with slightly different. Cell damage was observed such
as cell membrane disruption, intracellular material outflow, and
even cell lysis in Escherichia coli after being treated with BMP32r
(Qiao et al., 2020). Several bacteriocins inhibit gram-negative
bacteria by interfering with their nucleic acids, and protein
metabolism. For example, MccJ25 inhibits RNA polymerase,
microcin B17 (MccB17) inhibits DNA gyrase, and MccC7-C51
inhibits aspartyl-tRNA synthetase. In addition, MccE492 as an
exception works by pore formation (Cotter et al., 2013).

6 Application of bacteriocins

Bacteriocins are promising antimicrobial peptides with
potential applications in different sectors such as food, clinical
health, and others.

6.1 Food industry

Bacteriocins got the attention as natural antimicrobial agents
to use in food as preservatives instead of chemical preservatives
(Gokoglu, 2019). Usually, their application includes the use of
bacteriocin-producer strain as inoculation of food, adding purified
or semi-purified bacteriocin as a food additive, and using a
previously fermented product with a bacteriocin-producing strain
during food processing as an ingredient (Barcenilla et al., 2022).

Nisin, Pediocin PA-1, and Micocin are the only FDA-approved
bacteriocins to use as food preservatives, by inhibiting the growth
of many gram-positive bacteria and food-borne pathogens such
as L. monocytogenes (Naskar & Kim, 2021). Applied mostly in
dairy products and canned food, especially in processed cheese
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protect the product from heat-resistant spore-forming bacteria
such as Bacillus and Clostridium (Anumudu et al., 2021).

Bacteriocins are colorless, odorless, and tasteless so, it is
a perfect solution for food products without changing their
properties (Negash & Tsehai, 2020). Moreover, they are stable at
high temperatures, low pH, and a wide range of salt concentrations
(Yang et al., 2018; Costa et al., 2019).

There are several advantages of using bacteriocins as food
preservatives included increase food shelf life, reducing the
transmission of risky foodborne pathogens via food, offering more
protection during thermal conditions, lowering the economic
losses due to food spoilage and outbreaks, and applying less severe
treatment to food during processing to keep nutrients values and
properties of food product without change (Reinseth et al., 2020).

Despite these advantages, we should keep in mind the
addition of specific bacteriocins to food products could be
limited by a narrow, limited spectrum of activity (Reinseth et al.,
2020) or to the hydrophobic nature of used bacteriocin which
may lead to the separation of organic fat within the food matrix
(Khelissa et al., 2021). In addition, uneven distribution or poor
solubility of bacteriocin may affect the antimicrobial activity of
these molecules. Using bacteriocins in combination with other
preservation methods may increase their antibacterial activity
(Soltani et al., 2021).

Due to the interaction with food components or inactivation
by proteolytic enzymes, nisin loses its activity easily, and to
overcome this problem encapsulation of nisin Z in liposomes
improves the inhibitory action and stability in the cheddar cheese
matrix (Kaur & Kaur, 2021). Also, encapsulation of nisin with
alginate/resistant starch increased its efficiency in cheddar cheese,
Clostridium tyrobutyricum count was reduced after one week
and inhibited completely after four weeks (Hassan et al., 2020).

7 Bacteriocins produced by LAB isolated from
cheeses

Bacteriocin production can be obtained by any type
of bacteria. Table 1 shows examples of several bacteriocins
produced from LAB isolated from cheeses and their activity
against foodborne pathogens. Five strains of LAB i.e. Lactococcus
lactis IMAU32258, L. garvieae JB2826472, Enterococcus durans
FMAS, E. faecium L3-23, E. faecium IMAU9421 were isolated
from Carpathian cheese as cell-free supernatant (CFS) without
any addition of hydrogen peroxide or adjusted pH value. The
antagonistic activity of the bacteriocins LAB against pathogenic
was studied by Musiy et al. (2020). They found that E. durans
FMAS had the highest activity against S. typhimurium PCM
2182, followed by L. monocytogenes PCM 2191, E. coli PCM
2208, and S. aureus PCM 458. Similarly, L. lactis IMAU32258
bacteriocins had the highest activity against S. typhimurium
PCM 2182, followed by E. coli PCM 2208, L. monocytogenes
PCM 2191, and S. aureus PCM 458. However, a bacteriocin
from L. garvieae showed the lowest antagonistic activity against
studied pathogenic bacteria. Surprisingly, the LAB cultures of
the isolates demonstrated higher antagonistic activity towards
these tested pathogens as compared to their bacteriocins.
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Moreover, Margalho et al. (2020) used different types of
cheese to isolate LAB bacteriocins. Among 27 isolates, five
isolates had a strong inhibitory effect (Table 1). L. plantarum
(1QB314) bacteriocin isolated from Colonial cheese showed
an ability to inhibit the growth of all tested pathogens (S.
aureus FRI S6, S. aureus FRI 361, L. monocytogenes ATCC
3968, and L. monocytogenes ATCC 3973). In addition, several
bacteriocins were also produced from Lb. plantarum 1QB77
(Minas artisanal cheeses), lactobacillus sp. 3QB167 (Manteiga
cheese), L.lactis 1QB167 (Manteiga cheese), and lactobacillus
sp. 1QB459 (Caipira cheese) which showed varied in their
inhibition activity. The treated bacteriocins with enzymes such
as protease, a-chymotrypsin, proteinase K, and trypsin showed
strong inhibition against tested pathogens with no zone of
inhibition were observed. E. faecalis KT'11 bacteriocin obtained
from traditional Karg: Tulum cheese was tested against several
pathogens and had the highest inhibition activity against the
growth of Serratia marcescens NRRL 2544, S. aureus ATCC
25923, M. luteus NRRL 1018, Bacillus subtilis NRRL NRS 744,
Enterobacter aerogenes ATCC 13048, L. monocytogenes LMG
13305 and Klebsiella pneumoniae ATCC 13883, respectively.
Moreover, bacteriocin treated with pepsin and a-amylase had
a significant (p< 0.05) inhibition activity against Pseudomonas
aeruginosa ATCC 2783, M. luteus NRRL 1018, and S. aureus
ATCC 25923. In contrast, P. aeruginosa ATCC 2783 and
M. luteus NRRL 1018 bacteriocins had similar inhibition
activity (16.0 £ 0.5 mm) when treated with catalase (Abanoz
& Kunduhoglu, 2018).

L. plantarum KLDS 1.0344 bacteriocins isolated from
Mongolian fermented cheese was tested against four pathogens,
three of them had an inhibition zone larger than 10 mm for E.
coli ATCC 43889, Salmonella typhimurium ATCC 14028, and
S. aureus ATCC 25923 (Muhammad et al., 2019). However, L.
monocytogenes ATCC 19115 had an inhibition zone between
5-10 mm. In addition, L. plantarum KLDS 1.0344 bacteriocins
were treated with several factors such as pH, temperature, and
enzymes (pepsin and protease). Bacteriocins treated with pepsin
and protease have antagonistic activity against S. aureus ATCC
25923 with inhibition zone 18.5 + 0.8 mm and 20.4 + 0.8 mm,
respectively whereas L. monocytogenes ATCC 19115 had the
lowest activity [12.7 £ 0.5 and 14.5 £ 0.5 mm, respectively;
Muhammad et al. (2019)]. All tested pathogens had the same
inhibition zone of 100.0 + 0.0 mm when treated with Mongolian
fermented cheese bacteriocin at different temperatures (80 °C
and 100 °C) and times (20, 30, and 40 min). In addition, the
authors reported that antagonistic activity of L. monocytogenes
was significantly (p < 0.05) enhanced when the temperature
increased to 120 °C for 20 and 40 min (85.0 + 0.7 and 61.2 £ 0.1
mm, respectively). On the other hand, lower activity towards
E. coli was noticed at 120 °C for 20 and 40 min (81.0 + 0.2
and 40.5 + 0.0 mm; respectively). Furthermore, bacteriocin’s
treated at different pH values had the highest inhibition zone
(p < 0.05) at pH 2 and the lowest at pH 6 against all tested
pathogens (Muhammad et al.,, 2019). Recently, Lactiplantibacillus
plantarum, L. rhamnosus, and Limosilactobacillus fermentum
bacteriocins isolated from traditional cheese samples were
found to have the highest inhibition zone activity against S.
typhimurium ATCC 14028 (93.30%), P. aeruginosa ATCC 9027
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(100%), and L. monocytogenes ATCC 7644 (100%); respectively
(Afshari etal., 2022). Mohammed & Con (2021) have investigated
five bacteriocins isolated from LAB of white cheese (E. faecium
S1113, E. durans S092, E. gallinarum S142, L. pentosus S056,
and E. durans S1121). Both E. faecium S1113 and E. durans
S092 had a positive effect on B. cereus NRRL B-3711 (> 20
mm) whereas E. durans S1121 affected significantly (p < 0.05)
on E. coli ATCC 25922. In addition, the antagonistic activity
against these two pathogens significantly improved when pH
ranged between 3 - 9.5 with an inhibition zone (0.5-10 mm).
All bacteriocins produced from the five isolates inhibited the
growth of the tested pathogens with zones ranging from 0.5 to
10 mm (Mohammed & Con, 2021).

8 Conclusion

Bacteriocins obtained from LAB have strong antimicrobial
activity against bacterial pathogens, which makes them a promising
alternative to antibiotics. Based on previously bacteriocins
research, several strains of LAB-producing bacteriocins isolated
from various types of cheese showed high inhibitory activity
towards foodborne bacteria such as L. monocytogenes, S. aureus,
E. coli, and others. L. plantarum bacteriocins were among the
most studied bacteriocins against both gram-positive and gram-
negative bacteria. More studies must be conducted to determine
the best type of cheese that produce the most effective bacteriocin.
Furthermore, bacteriocins differ in their inhibitory effect, so
there is a need to find more bacteriocins with a broad spectrum
against foodborne bacteria to be used as a food preservative to
eliminate the growth of undesirable bacteria in cheese.
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