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1 Introduction
The world experienced the outbreak of coronavirus disease 

2019 (COVID-19) recently, posing an enormous threat to 
global public health and economies (Ugur & Buruklar, 2022). 
Consumers are looking for natural immune ingredients from 
daily supplements and foods.

Chitooligosaccharide (COS), an oligomer of β-(1, 4)-linked 
D -glucosamine, can be prepared from the chitin or chitosan 
polymers, inside, the chitin is rarer and must be extracted from the 
exoskeletons of arthropods, such as shrimp and crab, and insects 
and the cell walls of fungi. The molecular weights (MW) of COS 
is highly related to its biological activity, and its polymerization 
degree (DP) is 2~10. Therefore, COS can be dissolved in water, 
is non-cytotoxic, can be readily absorbed through the intestines 
and excreted in urine (Muanprasat & Chatsudthipong, 2017). 
The reduced MW couples with different degree of deacetylation 
(DD) and DP, makes COS a strongly viable option for a variety 
of applications in daily supplements, food, cosmetics, animal 
nutrition and agriculture industries (Tabassum  et  al., 2021; 
Ngoc et al., 2022; Okutan & Boran, 2022). It has been applied 
to the food industry around the world as a prebiotic: a substrate 
that is selectively utilized by host microorganisms conferring 
a health benefit (Gibson et al., 2017). In USA, COS has been 

applied as a supplement’s ingredient. It has been added into 
daily foods and beverages in Japan and Canada. In Europe, COS 
appeared in meal capsules.

Modern biomedical research largely focuses on significant 
immunoregulation effects of COS. The present review 
briefly summarizes the key roles of COS in the treatment of 
immunoregulation, with a focus on the functions of COS in 
intestinal and tumor immunity regulation, and describes recent 
clinical and pre-clinical trials investigating the potential of COS 
in immunoregulation therapy.

2 Preparation process of COS
Since the chitin from marine raw materials is a complex of 

calcium carbonate, protein, and small amounts of lipids, it must 
be further processed for industrial applications. After shredding 
and cleaning the crustacean shell waste, minerals and proteins 
need to be removed (Arnold et al., 2020). Due to the high MW 
and degree of polymerization (DP), the water solubility of these 
polymers is limited. Furthermore, the industrial applicability 
of chitin and Chitosan is also restricted. However, there are 
converted into soluble and more biologically active forms, COS 
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and GlcNAc, and these problems are effectively solved (Qin & 
Zhao, 2019). COS can be prepared by enzymatic hydrolysis 
methods using specific enzymes or non-specific enzymes, physical 
methods such as ultrasonic, ultraviolet or microwave treatment, 
and chemical methods such as acid or alkali hydrolysis. Specific 
enzymes is chitosanases,meanwhile, non specific enzymes include 
cellulose, protease, amylase, etc. Preparation methods of COS 
are shown as Table 1.

The COS obtained by enzymatic hydrolysis also has three 
types of reactive functional groups. In addition to the amino/
acetamido group at C-2, namely the primary and secondary 
hydroxyl groups at the C-3 and C-6 positions. The existence of 
these functional groups makes COS possess various biological 
activities.

3 Intestinal flora regulation of COS
The intestinal flora is divided into probiotics, pathogenic 

bacteria and conditional pathogens. The occurrence of many 
diseases is related to the imbalance of intestinal flora (Yan et al., 
2021; Zhang et al., 2021). COS have been extensively researched 
for their prebiotic activities. which can promote the proliferation 
of probiotics while inhibiting the growth of pathogenic bacteria 
(Ying et al., 2002; Koppová et al., 2012). The effect methods have 
been summarized:

1) COS directly acts on microorganisms

0.1% COS can directly destroy the morphology of 
Actinomycetes (Choi et al., 2001). It has been reported that COS 
can rupture the cells of Gram-positive pathogenic, Bacillus cereus, 
and dissolve solute. Furthermore, it can inhibit the growth of 
Gram-negative bacteria, Escherichia coli, by blocking nutrient 
absorption (Kim et al., 2003).

At present, researchers thought that the main mechanisms 
of COS against pathogenic bacteria are as follows:

The high concentration of amino groups of COS enables 
them to bind and adsorb readily on the negative microbial cell 

membrane. These results in the formation of an impermeable 
layer on the cell surface. So as to prevent nutrients from entering 
the cell and interfere with the normal physiological metabolism 
of bacteria (Tsai et al., 2002; Kim & Rajapakse, 2005). COS could 
chelate heavy metals and nutrients (Naveed et al., 2019). COS can 
polymerize with the cell wall components of Gram-positive 
pathogenic bacteria to form positive ion precipitation, exposing 
the cell membrane to osmotic pressure, dissolving the cytoplasm, 
and lysing the cell (Lee et al., 2002). COS penetrates into the 
cells of pathogenic bacteria and flocculates with negatively 
charged solutes, and disrupts cell metabolism (Zhang, 2019) 
and DNA synthesis of pathogenic bacteria, and blocks RNA 
transcription (Figure 1).

The main mechanisms of COS promote probiotics proliferation 
are as follows:

The macromolecule COS cannot be absorbed into the blood 
(Zeng et al., 2008), and enters the back part of the small intestine 
to play a role (Chen et al., 2020), and finally is degraded in the 
intestine (Fernandes et al., 2008). However, the fully deacetylated 
COS cannot be digested by biological enzymes, thus increasing 
the applicability of COS to probiotics (Nurhayati et al., 2016), 
thereby promoting the growth of probiotics.

2) COS indirectly acts on microorganisms

COS could reduce the susceptibility to pathogenic bacteria 
by improving the immune activity of the body (Li et al., 2019). 
COS absorbed into the blood can cause a series of biological 
reactions (Chae et al., 2005; Fernandes et al., 2008), and promote 
the growth of probiotics, increase the secretion of short-chain fatty 
acids (SCFA) and lactic acid, and reduce the number of pathogenic 
bacteria (Selenius et al., 2018). COS improves the integrity of 
intestinal structure: increase the height of intestinal villi, improve 
intestinal structure, and effectively improve the absorption of 
nutrients in the small intestine. Increase CLDN3 expression, 
reduce DAO and endotoxin levels, and maintain the integrity 
of the intestinal barrier (Vishu Kumar et al., 2005), promote 
healthy intestinal environment.

The current research on the effect of COS on the regulation 
of intestinal flora, the molecular weight is mainly focused on the 
COS with a molecular weight of <3000 Da, and 0.01-0.5% COS 
in vitro experiments can exert the effect of inhibiting pathogenic 
bacteria (Table 2). In vivo experiments among them, the working 
concentration of COS is 30-500 mg/kg (0.003%~0.05%), which 
can regulate animal intestinal flora.

4 Direct effects of COS on immunity
In addition to acting on the intestinal flora and the way of 

immune response, COS can also regulate the body’s immunity 
by entering the blood. Immune cells include T\B lymphocytes, 
natural killer (NK) cells, and mononuclear phagocytes. The immune 
response mainly includes humoral immunity, phagocytosis and 
cellular immunity. Non-specific immunity mainly includes the 
phagocytosis and elimination of pathogens by macrophages 
and white blood cells. Macrophages and dendritic cells play 
a key role in the immune system, activating the immune 

Table 1. Advantages and disadvantages for preparation methods.

Methods Advantage Disadvantage
Chemical 
method

Easy operation 1. difficulty products 
separation
2. serious environmental 
pollution

Physical 
method

Easy purification Low yield

Non-specific 
enzymatic 
hydrolysis 
method

1. Friendly environment Lower degradability and 
productivity2. Higher efficiency

3. Controllable operation 
and monitoring

Chitosanase 
hydrolysis 
method

Directly produce the 
desired degradation 
products without 
degrading other groups of 
the substrate

1. Limited sources of 
enzymes

2. Limited volume-
produce

Source: Aam et al. (2010); Liang et al. (2018); Zhou et al. (2020).
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response through cytokine release, phagocytosis, and antigen 
presentation. The activation of macrophages is the key to promote 
immune activity. Stimulated macrophages release a variety of 
pro-inflammatory mediators and cytokines, including nitric 
oxide (NO), tumor necrosis factor-a (TNF-a), prostaglandin 
E2 (PGE2), interleukin-1β (IL- 1β), Interleukin-6 (IL-6) 
(Shi et al., 2022) . COS can be recognized by immune cells and 
exert immunostimulatory properties, thereby improving the 
body’s immunity (Table 3), and resisting diseases.

The current researches have revealed that COS mainly 
improves the body’s immunity through the following ways:

COS activates AMP-activated protein kinase (AMPK) through 
calcium-sensing receptor (CaSR) to enhance tight junction in 
epithelial cells (Muanprasat & Chatsudthipong, 2017), increasing 
the production of intestinal SCFA and enhancing the ability of 
SCFA to bind to G-coupled protein receptors on leukocytes.

COS interacts with carbohydrate receptors on intestinal 
epithelial cells and immune cells (Muanprasat & Chatsudthipong, 
2017). and produces IFN-γ through intestinal epithelial cells, 
activate macrophages (Deng et al., 2008) and improve the activity 
of NK cells (Zhai et al., 2018). Promoting humoral immunity 
and releasing antibody production such as IgA, IgM and IgG 
(Kong et al., 2018) to enhance the body’s resistance.

In immune cells, COS inhibits the suppression of P38 MAPK, 
extracellular signal-regulated kinase (ERK1/2) and C-Jun 
N-terminal kinase (JNK1/2) in mitogen-activated protein kinase 
(MAPK)-dependent pathways to block the nuclear translocation 
of activator protein 1 (AP-1). And COS promotes inhibitory 
kappa B (IƘB) degradation in the nuclear factor-kappa B (NF-ƘB) 
pathways. As a result, the pro-inflammatory mediators, such as 
tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), inducible 
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), 
prostaglandin E 2 (PGE 2) and nitric oxide (NO), has been 
inhibited (Muanprasat & Chatsudthipong, 2017) (Figure 2).

5 Direct effects of COS on tumor growth inhibition
Immune cells play important roles in either anti-tumor or 

pro-tumor responses. The balance of immune cell is related to 
tumor progression and recurrence. A large number of immune 
cells produce various interactions between the interaction and 
the activation and inhibition of anti-tumor response.

Figure 1. The mechanisms of COS againsts pathogenic bacteria. COS enables bind and adsorb readily on the negative microbial cell membrane 
to interfere normal physiological metabolism of bacteria. COS penetrates into the cells of pathogenic bacteria and disrupts cell metabolism and 
DNA synthesis, blocking RNA transcription.

Table 2. Inhibition and Promotional effect of COS on Pathogenic 
Bacteria and Probiotics.

MW/DP Content Effect strain
2000-3000Da 0.1% Actinomycetes

— 0.1% Streptococcus mutans
<3000Da 0.25% Staphylococcus aureus
<1500Da 0.5% Escherichia coli

Lactobacillus rhamnosus
DP=2~6 0.3% Bacillus cereus
<1000Da 5 mg/mL (0.5%) Listeria monocytogenes
DP=4~5 100 mg/mL (0.01%) Bacillus subtilis

Staphylococcus aureus
Escherichia coli

DP=2~8 0.1% Lactobacillus brevis
Lactobacillus casei

<1000 Da 100mg/kg (0.01%) Bifidobacterium
Source: Ying et al. (2002); Koppová et al. (2012); Zhang (2019); Li et al. (2019); Chae et al. 
(2005); Sánchez et al. (2017); Wu et al. (2013); Wan et al. (2017).
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Tumor metastasis is one of the main complications of 
cancer (Nam et al., 2007). NO promotes metastasis by inducing 
angiogenesis and inhibiting platelet aggregation. Inhibition of 
iNOS can help anti-inflammatory and inhibit tumor metastasis. 
In addition, matrix metalloproteinase MMPS is also involved 
in tumor growth and invasion. And apoptosis is caused by 
the complex synergy of multiple genes and multiple proteins 
(Han et al., 2016). A wide range of studies revealed that COS 

can effectively inhibit tumor cell metastasis and growth, and 
promote tumor cell apoptosis (Shen et al., 2009).

The current researches on the anti-tumor effect of COS 
mainly focuses on the following aspects (Figure 3):

1) Tumor cell’s glycolysis and energy will be inhibited by 
COS through the inhibition of tumor-specific variant of 
pyruvate kinases;

Table 3. COS improves the immune function of the body.

MW/DP Content Model Item
1000 Da 0.04 g/kg Immunodeficient mice NK cell activity

Immune organ index
Phagocytic index

DP=3~7 0.6 g/kg Mouse Serum IgG content
DP=4~11 0.25, 0.5, 1 g/kg Cy-treated mice IL-2

IL-12
IFN-γ
IL-10
Immune organ indices
DTH reaction, Footpad thickness
Phagocytic activity
ACP activities
LDH activities

1000 Da, 3000 Da 
and 8000 Da

0.8 g/kg Tilapia Phagocytic activity of leucocytes, Phagocytic 
index of leucocytes

_ 0.1, 0.2, 0.3 g/kg mice genital tract infected by Chlamydia 
trachomatis

IgG, IL-11,spleen and thymus indexes

DP=3~5 0.1, 1, 10, and 100 µg/mL, RAW 264.7 Macrophage phagocytosis capacity assay
0.1, 1, 10, or 100 µg/mL Mouse splenic lymphocyte Splenic lymphocyte proliferation

Splenic natural killer cell NK cells activity

33, 100 and 333 mg/kg Rats
Thickness of the paw, Spleen and thymus 
indices, Mononuclear phagocytic system (MPS) 
function

Source: Zhai et al. (2018); Kong et al. (2018); Mei et al. (2013); Guan et al. (2019); Xing et al. (2017).

Figure 2. The mechanisms of COS improve immunity. COS activates AMPK through CaSR to enhance tight junction in epithelial cells, inhibits 
the suppression of MAPK and NF-ƘB pathways to inhibit secrete pro-inflammatory mediator.
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2) Inhibition of DNA synthesis in cancer cells.

COS can inhibit DNA synthesis and metastasis in cancer cells 
by increasing the expression of p21, reducing the expression of 
cyclin A, cdk2 and PCNA, and inhibiting the action of ornithine 
decarboxylases (Nam et al., 2007).

3) Start apoptotic factors to promote cancer cell apoptosis.

Activate the apoptotic promoter Caspase-3, successfully 
block cancer cell proliferation and Gz/M phase arrest (Xing et al., 
2017), up-regulate pro-apoptotic gene Bax, down-regulate pro-
apoptosis the expression of gene Bcl-2 (Beerheide et al., 2000; 
Tsujimoto & Shimizu, 2000), increase the radiosensitivity of 
cancer cells and promotes cancer cell apoptosis.

4) Inhibit the synthesis of genes and proteins related to tumor 
metastasis and block tumor metastasis.

COS can inhibit CD147, MMP-9 (Van Ta  et  al., 2006), 
MMP-2 by inhibiting the CD147/MMP-2 pathway activation, 

thereby inhibiting the expression of matrix protease MMPS, 
inhibiting the metastasis and invasion of cancer cells (Nam & 
Shon, 2009).

There are many studies on the use of low-molecular-weight 
COS for anti-tumor, which may be related to the ability of 
low-molecular-weight COS to be absorbed into the blood. 
The research results show that COS has a good inhibitory effect 
on many tumors (Table 4).

6 Safety profile of COS
In order to fully understand the potential therapeutic 

applications of COS, many studies have used in vitro and in vivo 
models to investigate the safety of COS, especially its mutagenicity, 
cytotoxicity and systemic toxicity have been evaluated (Table 5).

Mutagenicity is the ability of a substance to induce mutations, 
which can cause alterations in cell function and promote the 
development of diseases, especially cancer. It has been proved 
that COS has no mutagenic potential in both in vitro and in 
vivo models.

Figure 3. The mechanisms of COS anti-tumor effect. COS inhibits tumor cell’s glycolysis and energy, DNA synthesis, and blocks tumor metastasis. 
In addition, COS promotes cancer cell apoptosis also.

Table 4. Anti-tumor effects of COS.

MW Content Model Item
1000~3000Da 500 µg/mL HT1080 cell MMP-9

— 1, 2, 3, 4 and 5 mg/mL SW480 cell Inhibition rate
DP=2~6 100 pg/mL ECs cell IL-8

1000~3000Da 0.1, 0.5, 1, 3, 5 mg/mL MDA-MB-231 cell Invasive inhibition rate
1000~3000Da 0.1, 0.5, 1, 3, 5 mg/mL HT-29 cell NO inhibition rate

DP=3~8 500 mg/kg Llc mice Rate of lung metastases
Source: Van Ta et al. (2006); Han et al. (2016); Liu et al. (2011); Nam & Shon (2009); Nam et al. (2007); Shen et al. (2009).
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Further research is needed to determine the types of COS/
constituents that induce dermal reactions, and subchronic and 
chronic toxicity of COS are necessary.

7 Conclusions and perspectives
Our studies have concluded advantages and disadvantages 

of different preparation methods for COS. We described how 
COS exerts its function on immune support through intestinal, 
humoral and cellular immunity, and how it plays an anti-cancer 
effect. The oral safety range of COS has been provided by 
numerous studies. In view of the 2-20 DP for COS, each DP of 
COS has its unique biological activity. Therefore, the biological 
activities of COS can be dozens of times that of chitosan. As an 
immunostimulatory agent, COS dues in part to their lower MW 
and easy absorption characteristics. We speculated that COS 
may have a certain application as a food ingredient in food, 
supplement products and pet nutrition to support daily health. 
Its biological activity and its molecular mechanism need to be 
confirmed by further studies. Clarifying the way of action of 
COS will promote the widely use in dietary supplements, food 
and medicine.
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