Acessibilidade / Reportar erro

The role of organic anion transport protein 1a4 in drug delivery and diseases: a review

Abstract

OATP1A4 is an important member of the family of organic anion transporting polypeptides (OATPs), which is generally thought to mediate cellular uptake of endogenous and exogenous substances, such as bile acids, drugs and environmental toxins. Recent studies have found that Oatp1a4 plays an important role in drug passage through the blood-brain barrier and is expected to be an important target for drugs used to treat central diseases. Oatp1a4 has also been associated with various diseases such as cholestasis. differences in Oatp1a4 across age and sex have also become an area of concern for precision drug administration. Therefore, this paper presents a systematic review of Oatp1a4 expression in drug transport and various physiopathological states.

Keywords:
organic anion transporting polypeptides; OATP1A4; cholestasis; drug delivery

1 Introduction

Currently, foods have gained more attention in terms of their health support and disease-controlling ability(Kesika et al., 2022Kesika, P., Sivamaruthi, B. S., & Chaiyasut, C. (2022). Health promoting effects of fermented foods against cancer: an updated concise review. Food Science and Technology (Campinas), 42, e18220. http://dx.doi.org/10.1590/fst.18220.
http://dx.doi.org/10.1590/fst.18220...
). Moreover, the study of organic anion transporters is becoming more and more important (Ji et al., 2022Ji, W., Zhang, C., Song, C., & Ji, H. (2022). Three DPP-IV inhibitory peptides from Antarctic krill protein hydrolysate improve glucose levels in the zebrafish model of diabetes. Food Science and Technology (Campinas), 42, e58920. http://dx.doi.org/10.1590/fst.58920.
http://dx.doi.org/10.1590/fst.58920...
; Tan et al., 2022Tan, D. P., Cui, J., Qin, L., Chen, L., Wang, Y. H., Zhang, Q. R., & He, Y. Q. (2022). The role of OATP1A1 in cholestasis and drug-induced toxicity: a systematic review. Food Science and Technology (Campinas), 42, e70722. http://dx.doi.org/10.1590/fst.70722.
http://dx.doi.org/10.1590/fst.70722...
; Tao et al., 2023Tao, L., He, M., Lu, Y., Zheng, J., & Ye, Y. (2023). Expression of sclerostin and bone morphogenetic protein-7 (BMP-7) in serum of patients with chronic kidney disease-mineral and bone disorder (CKD-MBD) and their correlation with calcium and phosphorus metabolism. Food Science and Technology (Campinas), 43, e48822. http://dx.doi.org/10.1590/fst.48822.
http://dx.doi.org/10.1590/fst.48822...
). Membrane transporters play an important role in the absorption, distribution and elimination of endogenous and xenobiotics, such as bile acids and drugs. Organic anion transporting polypeptides (OATPs) are a class of membrane transporters belonging to the solute carrier (SLC) family that mediate the uptake of a large number of substrates including bile acids, hormones and many drugs (Hagenbuch & Stieger, 2013Hagenbuch, B., & Stieger, B. (2013). The SLCO (former SLC21) superfamily of transporters. Molecular Aspects of Medicine, 34(2-3), 396-412. http://dx.doi.org/10.1016/j.mam.2012.10.009. PMid:23506880.
http://dx.doi.org/10.1016/j.mam.2012.10....
). OATPs have been found to be expressed in several human organs including liver, kidney, brain and intestine (Gong et al., 2011Gong, L., Aranibar, N., Han, Y. H., Zhang, Y., Lecureux, L., Bhaskaran, V., Khandelwal, P., Klaassen, C. D., & Lehman-McKeeman, L. D. (2011). Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 122(2), 587-597.; Hagenbuch & Stieger, 2013Hagenbuch, B., & Stieger, B. (2013). The SLCO (former SLC21) superfamily of transporters. Molecular Aspects of Medicine, 34(2-3), 396-412. http://dx.doi.org/10.1016/j.mam.2012.10.009. PMid:23506880.
http://dx.doi.org/10.1016/j.mam.2012.10....
). In terms of clinical relevance, OATPs proteins often serve as key transport vehicles for drugs across the blood-brain barrier. On the other hand, the expression level of OATPs varies significantly across multiple disease states (Kim, 2003Kim, R. B. (2003). Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. European Journal of Clinical Investigation, 33(Suppl 2), 1-5. http://dx.doi.org/10.1046/j.1365-2362.33.s2.5.x. PMid:14641549.
http://dx.doi.org/10.1046/j.1365-2362.33...
; Shitara et al., 2003Shitara, Y., Itoh, T., Sato, H., Li, A., & Sugiyama, Y. (2003). Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. The Journal of Pharmacology and Experimental Therapeutics, 304(2), 610-616. http://dx.doi.org/10.1124/jpet.102.041921. PMid:12538813.
http://dx.doi.org/10.1124/jpet.102.04192...
). In recent years, much progress has been made in the identification of endogenous substrates of OATPs and their role in drug transport (Hagenbuch & Meier, 2004Hagenbuch, B., & Meier, P. (2004). Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Archiv: European Journal of Physiology, 447(5), 653-665. http://dx.doi.org/10.1007/s00424-003-1168-y. PMid:14579113.
http://dx.doi.org/10.1007/s00424-003-116...
). Organic anion transport protein 1a4 (Oatp1a4) (Figure 1) is the prototypical member of the Oatp family of highly homologous transport proteins that are highly expressed in the liver, cerebrum (Imai et al., 2013Imai, S., Kikuchi, R., Kusuhara, H., & Sugiyama, Y. (2013). DNA methylation and histone modification profiles of mouse organic anion transporting polypeptides. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 41(1), 72-78. http://dx.doi.org/10.1124/dmd.112.047969. PMid:23033256.
http://dx.doi.org/10.1124/dmd.112.047969...
), and skeletal myofibres (Sakamoto et al., 2008Sakamoto, K., Mikami, H., & Kimura, J. (2008). Involvement of organic anion transporting polypeptides in the toxicity of hydrophilic pravastatin and lipophilic fluvastatin in rat skeletal myofibres. British Journal of Pharmacology, 154(7), 1482-1490. http://dx.doi.org/10.1038/bjp.2008.192. PMid:18500364.
http://dx.doi.org/10.1038/bjp.2008.192...
). The important role of Oatp1a4 in the passage of drugs through the blood-brain barrier has attracted increasing attention. In addition to this, Oatp1a4 has been associated with a variety of diseases. Therefore, this paper systematically reviewed the expression of Oatp1a4 in drug administration, cholestasis and other pathological states and its differences across gender and age. The aim is to bring more attention to the role of Oatp1a4 in the precise clinical administration of medications.

Figure 1
The theoretical 3D structures of OATP1A4 from AlphaFold v2.0, a protein structure database (Jumper et al., 2021Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. http://dx.doi.org/10.1038/s41586-021-03819-2. PMid:34265844.
http://dx.doi.org/10.1038/s41586-021-038...
).

2 OATP1A4 in physiological state

Organic anion transporting polypeptides (Oatps) play an important role in transporting endogenous substances and xenobiotics to the liver and have been implicated in drug-drug interactions. Many factors, such as gender, age and diet, may influence their expression, leading to altered drug disposition, efficacy and toxicity. Organic anion transport protein 1a4 (Oatp1a4) is the prototypical member of the Oatp family of highly homologous transport proteins that are highly expressed in the liver, cerebrum (Imai et al., 2013Imai, S., Kikuchi, R., Kusuhara, H., & Sugiyama, Y. (2013). DNA methylation and histone modification profiles of mouse organic anion transporting polypeptides. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 41(1), 72-78. http://dx.doi.org/10.1124/dmd.112.047969. PMid:23033256.
http://dx.doi.org/10.1124/dmd.112.047969...
), and skeletal myofibres (Sakamoto et al., 2008Sakamoto, K., Mikami, H., & Kimura, J. (2008). Involvement of organic anion transporting polypeptides in the toxicity of hydrophilic pravastatin and lipophilic fluvastatin in rat skeletal myofibres. British Journal of Pharmacology, 154(7), 1482-1490. http://dx.doi.org/10.1038/bjp.2008.192. PMid:18500364.
http://dx.doi.org/10.1038/bjp.2008.192...
), while its placental expression is low (St-Pierre et al., 2004St-Pierre, M. V., Stallmach, T., Freimoser Grundschober, A., Dufour, J. F., Serrano, M. A., Marin, J. J., Sugiyama, Y., & Meier, P. J. (2004). Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(6), R1505-R1516. http://dx.doi.org/10.1152/ajpregu.00279.2003. PMid:15345472.
http://dx.doi.org/10.1152/ajpregu.00279....
). In mouse livers, Oatp1a4 is female-predominant. Hepatic Oatp1a4 mRNA levels were decreased by both androgens and male-pattern growth hormone administration (Cheng et al., 2006Cheng, X., Maher, J., Lu, H., & Klaassen, C. D. (2006). Endocrine regulation of gender-divergent mouse organic anion-transporting polypeptide (Oatp) expression. Molecular Pharmacology, 70(4), 1291-1297. http://dx.doi.org/10.1124/mol.106.025122. PMid:16807376.
http://dx.doi.org/10.1124/mol.106.025122...
). This sex-specific difference is also reflected in the functional expression of blood-brain barrier Oatp1a4 (Brzica et al., 2018Brzica, H., Abdullahi, W., Reilly, B. G., & Ronaldson, P. T. (2018). Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood-brain barrier in Sprague-Dawley rats. Fluids and Barriers of the CNS, 15(1), 25. http://dx.doi.org/10.1186/s12987-018-0110-9. PMid:30208928.
http://dx.doi.org/10.1186/s12987-018-011...
). And, Oatp1a4 mRNA expression is age-dependent. It was hardly detectable in fetal rat livers, low at birth, Subsequently, rapidly increased after weaning (21 d), and reached the peak at 60 d, and then remained stable during the age between 60-180 d, at last decreased at elderly (540 and/or 800 d) (Hou et al., 2014Hou, W. Y., Xu, S. F., Zhu, Q. N., Lu, Y. F., Cheng, X. G., & Liu, J. (2014). Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicology and Applied Pharmacology, 280(2), 370-377. http://dx.doi.org/10.1016/j.taap.2014.08.020. PMid:25168429.
http://dx.doi.org/10.1016/j.taap.2014.08...
). In clinical practice thyroid dysfunction varies with age and asymptomatic manifestations of hyperthyroidism are frequently observed in the elderly. In the hyperthyroid state, the expression of Oatp1a4 is downregulated (Engels et al., 2015Engels, K., Rakov, H., Zwanziger, D., Moeller, L. C., Homuth, G., Köhrle, J., Brix, K., & Führer, D. (2015). Differences in mouse hepatic thyroid hormone transporter expression with age and hyperthyroidism. European Thyroid Journal, 4(Suppl 1), 81-86. http://dx.doi.org/10.1159/000381020. PMid:26601077.
http://dx.doi.org/10.1159/000381020...
). In terms of diet, high sucrose diet could reduce gene expressions of Oatp1a4 (Zagorova et al., 2015Zagorova, M., Prasnicka, A., Kadova, Z., Dolezelova, E., Kazdova, L., Cermanova, J., Rozkydalova, L., Hroch, M., Mokry, J., & Micuda, S. (2015). Boldine attenuates cholestasis associated with nonalcoholic fatty liver disease in hereditary hypertriglyceridemic rats fed by high-sucrose diet. Physiological Research, 64(Suppl 4), S467-S476. http://dx.doi.org/10.33549/physiolres.933206. PMid:26681076.
http://dx.doi.org/10.33549/physiolres.93...
). Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. CR could increase the female-predominantly expressed Oatp1a4 (Fu & Klaassen, 2014Fu, Z. D., & Klaassen, C. D. (2014). Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice. Toxicology and Applied Pharmacology, 274(1), 137-146. http://dx.doi.org/10.1016/j.taap.2013.11.003. PMid:24240088.
http://dx.doi.org/10.1016/j.taap.2013.11...
). Maternal consumption of a high-fat diet during pregnancy and lactation also increases the mRNA expression of Oatp1a4 (Tanaka et al., 2018Tanaka, Y., Ikeda, T., Yamamoto, K., Masuda, S., Ogawa, H., & Kamisako, T. (2018). Gender-divergent expression of lipid and bile acid metabolism related genes in adult mice offspring of dams fed a high-fat diet. Journal of Biosciences, 43(2), 329-337. http://dx.doi.org/10.1007/s12038-018-9750-9. PMid:29872021.
http://dx.doi.org/10.1007/s12038-018-975...
). Inosine induces a decrease in Oatp1a4 expression levels through activation of xanthine oxidase induced oxidative stress, as confirmed by experiments in rats fed inosine (Tsujimoto et al., 2013Tsujimoto, T., Ogura, J., Kuwayama, K., Koizumi, T., Sasaki, S., Terada, Y., Kobayashi, M., Yamaguchi, H., & Iseki, K. (2013). Effect of oxidative stress on expression and function of human and rat organic anion transporting polypeptides in the liver. International Journal of Pharmaceutics, 458(2), 262-271. http://dx.doi.org/10.1016/j.ijpharm.2013.10.013. PMid:24409515.
http://dx.doi.org/10.1016/j.ijpharm.2013...
).

3 OATP1A4 and drug delivery

3.1 Role of OATP1A4 in the blood-brain barrier

The physical and biochemical properties of the blood-brain barrier (BBB) make the treatment of central nervous system disorders extremely difficult because drug delivery to the central nervous system (CNS) is greatly limited by BBB. In contrast, drug delivery to CNS can be achieved by targeting drug uptake transporters such as Oatp1a4, which is also thought to be a strategy that could improve drug delivery to the brain. It has been demonstrated that the transport activity of Oatp1a4 in the BBB is directly regulated by TGF-β/ALK1 signaling, and this pathway could be a target for controlling the CNS delivery of OATP substrate drugs. (Abdullahi et al., 2018Abdullahi, W., Brzica, H., Hirsch, N. A., Reilly, B. G., & Ronaldson, P. T. (2018). Functional expression of organic anion transporting polypeptide 1a4 Is regulated by transforming growth factor-β/Activin Receptor-like Kinase 1 signaling at the Blood-Brain Barrier. Molecular Pharmacology, 94(6), 1321-1333. http://dx.doi.org/10.1124/mol.118.112912. PMid:30262595.
http://dx.doi.org/10.1124/mol.118.112912...
), and activation of activin receptor-like kinase (ALK)-1 using bone morphogenetic protein (BMP)-9 increased the expression of Oatp1a4 protein in rat brain microvessels in vivo (Abdullahi et al., 2017aAbdullahi, W., Brzica, H., Ibbotson, K., Davis, T. P., & Ronaldson, P. T. (2017a). Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 37(7), 2340-2345. http://dx.doi.org/10.1177/0271678X17702916. PMid:28387157.
http://dx.doi.org/10.1177/0271678X177029...
). Hence, targeting Oatp1a4 regulation represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS (Abdullahi et al., 2017bAbdullahi, W., Davis, T. P., & Ronaldson, P. T. (2017b). Functional expression of p-glycoprotein and organic anion transporting polypeptides at the Blood-Brain Barrier: understanding transport mechanisms for improved CNS drug delivery? The AAPS Journal, 19(4), 931-939. http://dx.doi.org/10.1208/s12248-017-0081-9. PMid:28447295.
http://dx.doi.org/10.1208/s12248-017-008...
). The human ortholog of Oatp1a4 is OATP1A2. It has been shown that OATP1A2 could be regulated by transforming growth factor-β/activator receptor-like kinase 1 signaling in humans (Ronaldson et al., 2021Ronaldson, P. T., Brzica, H., Abdullahi, W., Reilly, B. G., & Davis, T. P. (2021). Transport properties of statins by organic anion transporting polypeptide 1A2 and regulation by transforming growth factor-β signaling in human endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 376(2), 148-160. http://dx.doi.org/10.1124/jpet.120.000267. PMid:33168642.
http://dx.doi.org/10.1124/jpet.120.00026...
). Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors), as transport substrates for Oatp1a4 improve functional neurological outcomes in patients, and Oatp1a4 statin uptake is higher in the cerebral cortex relative to the hippocampus and cerebellum (Betterton et al., 2022Betterton, R. D., Abdullahi, W., Williams, E. I., Lochhead, J. J., Brzica, H., Stanton, J., Reddell, E., Ogbonnaya, C., Davis, T. P., & Ronaldson, P. T. (2022). Regulation of blood-brain barrier transporters by transforming growth factor-β/Activin Receptor-Like Kinase 1 Signaling: relevance to the brain disposition of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors (i.e., Statins). Drug Metabolism and Disposition: the Biological Fate of Chemicals, 50(7), 942-956. http://dx.doi.org/10.1124/dmd.121.000781. PMid:35504656.
http://dx.doi.org/10.1124/dmd.121.000781...
). Pitavastatin, rosuvastatin, pravastatin, taurolite, digoxin, ochratoxin A and [d-penicillamine (2,5)]-enkephalin are currently identified as substrates of Oatp1a4, which mediates the brain-blood and blood-brain transport of these drugs across the blood-brain barrier (Ose et al., 2010Ose, A., Kusuhara, H., Endo, C., Tohyama, K., Miyajima, M., Kitamura, S., & Sugiyama, Y. (2010). Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 38(1), 168-176. http://dx.doi.org/10.1124/dmd.109.029454. PMid:19833843.
http://dx.doi.org/10.1124/dmd.109.029454...
). There is growing evidence that bumetanide also affects brain disorders, including autism, neonatal seizures, and epilepsy; however, the low brain levels of bumetanide after systemic administration severely limit its clinical use in the treatment of brain disorders. In vivo experiments have shown that restricted passive diffusion and active efflux transport, mediated by Oat3 as well as the organic anion transporting peptide (Oatp) Oatp1a4 and multidrug resistance protein 4, explain the extremely low brain concentrations achieved after systemic administration of bumetanide (Römermann et al., 2017Römermann, K., Fedrowitz, M., Hampel, P., Kaczmarek, E., Töllner, K., Erker, T., Sweet, D. H., & Löscher, W. (2017). Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology, 117, 182-194. http://dx.doi.org/10.1016/j.neuropharm.2017.02.006. PMid:28192112.
http://dx.doi.org/10.1016/j.neuropharm.2...
). Pain is a major symptom associated with inflammation, and inhibition of inflammatory pain by the anti-inflammatory drug diclofenac attenuates these changes in Oatp1a4 functional expression, suggesting that peripheral inflammation can modulate BBB transporters (Ronaldson et al., 2011Ronaldson, P. T., Finch, J. D., Demarco, K. M., Quigley, C. E., & Davis, T. P. (2011). Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. The Journal of Pharmacology and Experimental Therapeutics, 336(3), 827-839. http://dx.doi.org/10.1124/jpet.110.174151. PMid:21131267.
http://dx.doi.org/10.1124/jpet.110.17415...
).

3.2 Role of OATP1A4 in the blood retinal barrier and blood-arachnoid barrier

Oatp1a4 is also expressed on the blood retinal barrier (BRB) and is a major determinant in controlling the entry of anionic drugs into the retina. Immunoblotting and immunohistochemical analysis showed that Oatp1a4 is localized to the apical membrane of the retinal pigment epithelium (Akanuma et al., 2013Akanuma, S., Hirose, S., Tachikawa, M., & Hosoya, K. (2013). Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids and Barriers of the CNS, 10(1), 29. http://dx.doi.org/10.1186/2045-8118-10-29. PMid:24083450.
http://dx.doi.org/10.1186/2045-8118-10-2...
). Recent studies have shown that Oatp1a4 is involved in the transport of nutrients including riboflavin, L-ornithine, β-alanine and L-histidine in the blood to the retina, and pravastatin in the BRB (Kubo et al., 2018Kubo, Y., Akanuma, S. I., & Hosoya, K. I. (2018). Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opinion on Drug Metabolism & Toxicology, 14(5), 513-531. http://dx.doi.org/10.1080/17425255.2018.1472764. PMid:29719158.
http://dx.doi.org/10.1080/17425255.2018....
). In addition, there is evidence that Oatp1a4 plays a role in drug clearance at the blood-arachnoid barrier (BAB) and may play an important role in cerebrospinal fluid (CSF) detoxification in vivo by limiting the distribution of organic anions in the brain and spinal cord (Yaguchi et al., 2019Yaguchi, Y., Tachikawa, M., Zhang, Z., & Terasaki, T. (2019). Organic anion-transporting polypeptide 1a4 (Oatp1a4/Slco1a4) at the blood-arachnoid barrier is the major pathway of sulforhodamine-101 clearance from cerebrospinal fluid of rats. Molecular Pharmaceutics, 16(5), 2021-2027. http://dx.doi.org/10.1021/acs.molpharmaceut.9b00005. PMid:30977661.
http://dx.doi.org/10.1021/acs.molpharmac...
).

3.3 Role of OATP1A4 in hepatic metabolism

It is well known that the liver is the primary organ of drug metabolism and organic anion transporting peptides (Oatps) are involved in hepatic transport of a variety of organic anion compounds and drugs. The function of Oatp1a4 dominates the region around the central hepatic vein (CV) in the rat liver lobules and can affect the distribution of substrates such as sulfanilamide-101, digoxin, quinine, d-verapamil, 17beta-estradiol-d-17beta-glucuronide in the liver (Akanuma et al., 2019Akanuma, S. I., Kida, R., Tsuchiyama, A., Tachikawa, M., Kubo, Y., & Hosoya, K. I. (2019). Organic anion-transporting polypeptide 1a4-mediated heterogeneous distribution of sulforhodamine-101 in rat hepatic lobules. Drug Metabolism and Pharmacokinetics, 34(4), 239-246. http://dx.doi.org/10.1016/j.dmpk.2019.04.001. PMid:31174976.
http://dx.doi.org/10.1016/j.dmpk.2019.04...
). It has been shown that Oatp1a4 plays a major role in the hepatic accumulation of cardiac glycosides (Takano et al., 2018Takano, J., Maeda, K., Kusuhara, H., & Sugiyama, Y. (2018). Organic anion transporting polypeptide 1a4 is responsible for the hepatic uptake of cardiac glycosides in mice. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 46(5), 652-657. http://dx.doi.org/10.1124/dmd.117.079483. PMid:29348124.
http://dx.doi.org/10.1124/dmd.117.079483...
) and berberine (Chen et al., 2015Chen, C., Wu, Z. T., Ma, L. L., Ni, X., Lin, Y. F., Wang, L., Chen, K. P., Huang, C. G., & Pan, G. (2015). Organic anion-transporting polypeptides contribute to the hepatic uptake of berberine. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 45(12), 1138-1146.) in mice. Oatp1a4 plays a major role in the hepatic uptake of beta-lactam antibiotics in humans, and probably corresponds functionally to OATP1B3 in rat liver (Nakakariya et al., 2008Nakakariya, M., Shimada, T., Irokawa, M., Maeda, T., & Tamai, I. (2008). Identification and species similarity of OATP transporters responsible for hepatic uptake of beta-lactam antibiotics. Drug Metabolism and Pharmacokinetics, 23(5), 347-355. http://dx.doi.org/10.2133/dmpk.23.347. PMid:18974612.
http://dx.doi.org/10.2133/dmpk.23.347...
). Eprosartan is an angiotensin II receptor antagonist used clinically for the treatment of hypertension and heart failure. It is transported by multiple Oatps (at least Oatp1a1 and Oatp1a4)/Mrp2 in rats and at least OATP1B1/MRP2 in humans (Sun et al., 2014Sun, P., Wang, C., Liu, Q., Meng, Q., Zhang, A., Huo, X., Sun, H., & Liu, K. (2014). OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacological reports: PR, 66(2), 311-319.). Adverse effects of statins are usually the result of drug-drug interactions, and inhibition of the Oatp1a4 and Oatp1b2 transporters in rats by the bacteriostatic agent fusidic acid (FA) may attenuate hepatic uptake of statins, leading to increased blood and tissue concentrations that exhibit musculoskeletal toxicity (Eng et al., 2016Eng, H., Scialis, R. J., Rotter, C. J., Lin, J., Lazzaro, S., Varma, M. V., Di, L., Feng, B., West, M., & Kalgutkar, A. S. (2016). The antimicrobial agent fusidic acid inhibits organic anion transporting polypeptide-mediated hepatic clearance and may potentiate statin-induced myopathy. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 44(5), 692-699. http://dx.doi.org/10.1124/dmd.115.067447. PMid:26888941.
http://dx.doi.org/10.1124/dmd.115.067447...
). Pregnenolone-16alpha-carbonitrile (PCN) regulates the expression of some transporters, namely, Oatp1a4 and Mrp3 in liver via a PXR-mediated mechanism (Cheng & Klaassen, 2006Cheng, X., & Klaassen, C. D. (2006). Regulation of mRNA expression of xenobiotic transporters by the pregnane x receptor in mouse liver, kidney, and intestine. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 34(11), 1863-1867. http://dx.doi.org/10.1124/dmd.106.010520. PMid:16928788.
http://dx.doi.org/10.1124/dmd.106.010520...
).

3.4 Role of OATP1A4 in drug metabolism

The liver plays an important role in the in vivo metabolism of drugs, and hepatic transporters contribute to the absorption and excretion of drugs by the liver. Dexamethasone (DEX) treatment of hepatocytes increased the expression of CYP3A1/2, Oatp1a4 and Mrp2 and decreased the expression of Ntcp (Turncliff et al., 2004Turncliff, R. Z., Meier, P. J., & Brouwer, K. L. (2004). Effect of dexamethasone treatment on the expression and function of transport proteins in sandwich-cultured rat hepatocytes. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 32(8), 834-839. http://dx.doi.org/10.1124/dmd.32.8.834. PMid:15258109.
http://dx.doi.org/10.1124/dmd.32.8.834...
). Hepatotoxicity of methotrexate was increased during human treatment with dexamethasone, and analysis of methotrexate transporter expression in the liver showed upregulation of Mrp2, Oatp1a4, and Oat2 and downregulation of Mrp3, resulting in reduced biliary elimination and leading to increased hepatotoxicity of the drug in combination with DEX (Fuksa et al., 2010Fuksa, L., Brcakova, E., Kolouchova, G., Hirsova, P., Hroch, M., Cermanova, J., Staud, F., & Micuda, S. (2010). Dexamethasone reduces methotrexate biliary elimination and potentiates its hepatotoxicity in rats. Toxicology, 267(1-3), 165-171. http://dx.doi.org/10.1016/j.tox.2009.11.010. PMid:19922765.
http://dx.doi.org/10.1016/j.tox.2009.11....
). Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected in wildlife and humans worldwide. Both play a central role in the down-regulation of Oatp1a1, 1a4, 1b2 (Cheng & Klaassen, 2008Cheng, X., & Klaassen, C. D. (2008). Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers. Toxicological Sciences: An Official Journal of the Society of Toxicology, 106(1), 37-45.). Perinatal exposure to polybrominated diphenyl ethers (PBDEs) resulted in increased expression of the hepatic efflux transporters Mdr1 (multidrug resistance), Mrp2 (multidrug resistance-associated protein) and Mrp3, and the influx transporter Oatp1a4 mRNA (Szabo et al., 2009Szabo, D. T., Richardson, V. M., Ross, D. G., Diliberto, J. J., Kodavanti, P. R., & Birnbaum, L. S. (2009). Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicological Sciences: An Official Journal of the Society of Toxicology, 107(1), 27-39.). Patients with nonalcoholic steatohepatitis (NASH) may ingest both Pravastatin and herbs containing Evodiamine, which upregulates the expression of Oatp1a1, Oatp1a4, and Oatp1b2 decreasing systemic exposure to pravastatin (Liang et al., 2022Liang, R., Ge, W., Li, B., Cui, W., Ma, X., Pan, Y., & Li, G. (2022). Evodiamine decreased the systemic exposure of pravastatin in non-alcoholic steatohepatitis rats due to the up-regulation of hepatic OATPs. Pharmaceutical Biology, 60(1), 359-373. http://dx.doi.org/10.1080/13880209.2022.2036767. PMid:35171063.
http://dx.doi.org/10.1080/13880209.2022....
). The regulation of Oatp1a4 by some natural products or traditional drugs has also been reported. For example, monoammonium glycyrrhizinate (MAG) increases the expression of Oatp1a4 and decreases the expression of Mrp2 (Zhou et al., 2016Zhou, L., Song, Y., Zhao, J., Qin, H., Zhang, G., Zhou, Y., & Wu, X. (2016). Monoammonium glycyrrhizinate protects rifampicin- and isoniazid-induced hepatotoxicity via regulating the expression of transporter Mrp2, Ntcp, and Oatp1a4 in liver. Pharmaceutical Biology, 54(6), 931-937. http://dx.doi.org/10.3109/13880209.2015.1070878. PMid:26987268.
http://dx.doi.org/10.3109/13880209.2015....
). Silymarin inhibits protein expression of Oatp1b2 and Oatp1a4 in NASH animals (Lynch et al., 2021Lynch, K. D., Montonye, M. L., Tian, D. D., Arman, T., Oyanna, V. O., Bechtold, B. J., Graf, T. N., Oberlies, N. H., Paine, M. F., & Clarke, J. D. (2021). Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin-drug interactions. Phytotherapy Research, 35(6), 3286-3297. PMid:33587330.). Imperatorin, Isoimperatorin, and Angelica dahurica extract can significantly downregulate the expression of Oatp1a1, Oatp1a4, and Oatp1b2 of liver in mice (Wang et al., 2020Wang, Z., Shang, H., Li, Y., Zhang, C., Dong, Y., Cui, T., Zhang, H., Ci, X., Yi, X., Zhang, T., Yan, F., Zhang, Y., Huang, X., Wu, W., & Liu, C. (2020). Transporters (OATs and OATPs) contribute to illustrate the mechanism of medicinal compatibility of ingredients with different properties in yuanhuzhitong prescription. Acta Pharmaceutica Sinica. B, 10(9), 1646-1657. http://dx.doi.org/10.1016/j.apsb.2020.05.012. PMid:33088685.
http://dx.doi.org/10.1016/j.apsb.2020.05...
).

4 OATP1A4 and diseases

4.1 OATP1A4 and cholestasis

Cholestasis is caused by interruption of bile flow and is associated with a variety of liver diseases, and organic anion transporting polypeptides are thought to have an important function in bile acid (BA) transport. Uptake of conjugated BA by the liver may be affected by down-regulation of OATP1A1 and up-regulation of OATP1A4 (Slijepcevic et al., 2015Slijepcevic, D., Kaufman, C., Wichers, C. G. K., Gilglioni, E. H., Lempp, F. A., Duijst, S., de Waart, D. R., Oude Elferink, R. P. J., Mier, W., Stieger, B., Beuers, U., Urban, S., & van de Graaf, S. F. J. (2015). Impaired uptake of conjugated bile acids and hepatitis B virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology (Baltimore, Md.), 62(1), 207-219. http://dx.doi.org/10.1002/hep.27694. PMid:25641256.
http://dx.doi.org/10.1002/hep.27694...
). Oatp1a4 is upregulated in the liver and downregulated in the intestine after bile duct ligation (BDL) in rats (Giroux et al., 2022Giroux, P., Kyle, P. B., Tan, C., Edwards, J. D., Nowicki, M. J., & Liu, H. (2022). Evaluating the regulation of transporter proteins and P-glycoprotein in rats with cholestasis and its implication for digoxin clearance. World Journal of Gastrointestinal Pathophysiology, 13(3), 73-84. http://dx.doi.org/10.4291/wjgp.v13.i3.73. PMid:35720166.
http://dx.doi.org/10.4291/wjgp.v13.i3.73...
), this seems to indicate that Oatp1a4 is associated with cholestasis. However, in another experiment using 7-day BDL-induced liver dysfunction rats, it was found that the mRNA expression of Oatp1a4 in the liver of BDL rats decreased to 84.8% of that of normal rats (Horiuchi et al., 2009Horiuchi, I., Mori, Y. I., Taguchi, M., Ichida, F., Miyawaki, T., & Hashimoto, Y. (2009). Mechanisms responsible for the altered pharmacokinetics of bosentan: analysis utilizing rats with bile duct ligation-induced liver dysfunction. Biopharmaceutics & Drug Disposition, 30(6), 326-333. http://dx.doi.org/10.1002/bdd.671. PMid:19639656.
http://dx.doi.org/10.1002/bdd.671...
). This difference in results may be caused by the experimental period. Under lipopolysaccharide (LPS)-induced inflammatory conditions, lymphocyte deficiency altered basal and inflammatory IL-6 mRNA expression, and B-cell deletion also attenuated Oatp1a4 mRNA in LPS-treated mice, suggesting that IL-6 signaling may play a critical role (Bodeman et al., 2013Bodeman, C. E., Dzierlenga, A. L., Tally, C. M., Mulligan, R. M., Lake, A. D., Cherrington, N. J., & McKarns, S. C. (2013). Differential regulation of hepatic organic cation transporter 1, organic anion-transporting polypeptide 1a4, bile-salt export pump, and multidrug resistance-associated protein 2 transporter expression in lymphocyte-deficient mice associates with interleukin-6 production. The Journal of Pharmacology and Experimental Therapeutics, 347(1), 136-144. http://dx.doi.org/10.1124/jpet.113.205369. PMid:23929842.
http://dx.doi.org/10.1124/jpet.113.20536...
). Reverse regulation of Mrp2 and 3 is thought to represent an adaptive response to cholestatic injury in hepatocytes, and downregulation of periportal Ntcp and induction of Oatp1a4 and Oatp1b2 in BDL and LPS-treated rat livers may be adaptive mechanisms for reducing cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2 (Donner et al., 2007Donner, M. G., Schumacher, S., Warskulat, U., Heinemann, J., & Häussinger, D. (2007). Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. American Journal of Physiology. Gastrointestinal and Liver Physiology, 293(6), G1134-G1146. http://dx.doi.org/10.1152/ajpgi.00079.2007. PMid:17916651.
http://dx.doi.org/10.1152/ajpgi.00079.20...
). Mice deficient in ATP11C are characterized by conjugated hyperbilirubinemia and nonconjugated hyperbilirubinemia, and the basal bile salt uptake transporters OATP1B2, OATP1A1, OATP1A4, and Ntcp are almost absent in central hepatocytes of ATP11C-deficient livers with features very similar to those of Rotor syndrome, suggesting that deletion of OATP expression potentially predisposes to Rotor syndrome (de Waart et al., 2016de Waart, D. R., Naik, J., Utsunomiya, K. S., Duijst, S., Ho-Mok, K., Bolier, A. R., Hiralall, J., Bull, L. N., Bosma, P. J., Oude Elferink, R. P., & Paulusma, C. C. (2016). ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes. Hepatology (Baltimore, Md.), 64(1), 161-174. http://dx.doi.org/10.1002/hep.28522. PMid:26926206.
http://dx.doi.org/10.1002/hep.28522...
). Transmembrane protein 30A (TMEM30A) is a β-subunit essential for the function of ATP11C, and the expression and membrane localization of ATP11C were significantly reduced in Tmem30a LKO mice, which correlated with impaired expression and localization of BS transporters, such as OATP1A4, OATP1B2, NTCP, BSEP, and MRP2, suggesting that TMEM30A deficiency can lead to intrahepatic cholestasis in mice by impairing the expression and localization of BS transporters and associated nuclear receptors (Liu et al., 2017Liu, L., Zhang, L., Zhang, L., Yang, F., Zhu, X., Lu, Z., Yang, Y., Lu, H., Feng, L., Wang, Z., Chen, H., Yan, S., Wang, L., Ju, Z., Jin, H., & Zhu, X. (2017). Hepatic Tmem30a deficiency causes intrahepatic cholestasis by impairing expression and localization of bile salt transporters. American Journal of Pathology, 187(12), 2775-2787. http://dx.doi.org/10.1016/j.ajpath.2017.08.011. PMid:28919113.
http://dx.doi.org/10.1016/j.ajpath.2017....
). Alpha-naphthyl isothiocyanate (ANIT) is a hepatotoxic agent that causes acute intrahepatic cholestasis in rodents. In an experiment on the effect of Dioscin on ANIT-induced cholestasis, it was found that co-treatment of ANIT with Dioscin prevented adaptive downregulation of Oatp1a1, 1b2 and promoted upregulation of Oatp1a4, multidrug resistance-associated protein (Mrp)2 and bile salt export pump (Bsep), suggesting that Dioscin may prevent hepatic transporters by restoring expression to prevent impairment of liver function (A. Zhang et al., 2016Zhang, A., Jia, Y., Xu, Q., Wang, C., Liu, Q., Meng, Q., Peng, J., Sun, H., Sun, P., Huo, X., & Liu, K. (2016). Dioscin protects against ANIT-induced cholestasis via regulating Oatps, Mrp2 and Bsep expression in rats. Toxicology and Applied Pharmacology, 305, 127-135. http://dx.doi.org/10.1016/j.taap.2016.06.019. PMid:27317372.
http://dx.doi.org/10.1016/j.taap.2016.06...
). Pyrazinamide (PZA), a first-line drug for the treatment of tuberculosis, causes severe hepatotoxicity, with a 2-fold increase in serum levels of both ALT and AST, a 10-fold increase in total bile acids in serum, and significantly altered mRNA and protein expression of bile acid synthesis and transporters in PZA-treated rats, with FXR, Bsep, Mrp2, Mdr2, Ostα/β Oatp1a1, Oatp1b2, and Cyp8b1 were decreased, whereas Mrp3, Ntcp, Oatp1a4, and Cyp7a1 were increased (Guo et al., 2016Guo, H. L., Hassan, H. M., Zhang, Y., Dong, S. Z., Ding, P. P., Wang, T., Sun, L. X., Zhang, L. Y., & Jiang, Z. Z. (2016). Pyrazinamide induced rat cholestatic liver injury through inhibition of FXR regulatory effect on bile acid synthesis and transport. Toxicological Sciences: An Official Journal of the Society of Toxicology, 152(2), 417-428.). In estrogen-induced cholestasis, ethinylestradiol significantly increased cholestasis markers, decreased bile bile acid excretion, downregulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2), and upregulated Mrp3 (Muchova et al., 2015Muchova, L., Vanova, K., Suk, J., Micuda, S., Dolezelova, E., Fuksa, L., Cerny, D., Farghali, H., Zelenkova, M., Lenicek, M., Wong, R. J., Vreman, H. J., & Vitek, L. (2015). Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. Journal of Cellular and Molecular Medicine, 19(5), 924-933. http://dx.doi.org/10.1111/jcmm.12401. PMid:25683492.
http://dx.doi.org/10.1111/jcmm.12401...
). Yinchenhao Decoction (YCHD) is a famous traditional Chinese formula used for treating cholestasis. The cholestatic effect of YCHD was shown to be related to its modulating effect on the expression of metabolic enzymes and transporters in cholestatic liver. YCHD significantly increased the expression of UGT1A1, bile salt export pump, MRP2 and OATP1A4 in cholestatic rats, which had a great ameliorating effect on cholestasis (Yi et al., 2018Yi, Y. X., Ding, Y., Zhang, Y., Ma, N. H., Shi, F., Kang, P., Cai, Z. Z., & Zhang, T. (2018). Yinchenhao decoction ameliorates alpha-naphthylisothiocyanate induced intrahepatic cholestasis in rats by regulating phase II metabolic enzymes and transporters. Frontiers in Pharmacology, 9, 510. http://dx.doi.org/10.3389/fphar.2018.00510. PMid:29867509.
http://dx.doi.org/10.3389/fphar.2018.005...
). In an experiment using Oatp1a4-deficient mice to investigate the physiological role of Oatp1a4 in BA homeostasis, female Oatp1a4-deficient mice showed no significant alterations in BA concentrations in serum or liver, whereas male Oatp1a4 null mice showed significant alterations in BA homeostasis, including increased concentrations of deoxycholic acid (DCA) in serum, liver, and intestinal contents. Loss of Oatp1a4 function did not reduce BA accumulation in serum or liver of bile duct ligated mice, suggesting that Oatp1a4 is unlikely to be an uptake transporter of BA, but plays an important role in secondary BA metabolism in male mice (Zhang et al., 2013Zhang, Y., Csanaky, I. L., Selwyn, F. P., Lehman-McKeeman, L. D., & Klaassen, C. D. (2013). Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochemical Pharmacology, 86(3), 437-445. http://dx.doi.org/10.1016/j.bcp.2013.05.020. PMid:23747753.
http://dx.doi.org/10.1016/j.bcp.2013.05....
).

4.2 OATP1A4 and liver diseases

The liver plays an important role in the detoxification process of foreign bodies. Hepatobiliary transporters contribute to the process of foreign body uptake and elimination by the liver. The expression of these transporters may be regulated in the presence of liver failure. For example, in the Long-Evans Cinnamon (LEC) rat hepatitis model, decreased hepatic expression of three sinusoidal organic anion transporters, Ntcp, Oatp1a1 and Oatp1a4, was found (Chiba et al., 2007Chiba, M., Itagaki, S., Kobayashi, M., Hirano, T., & Iseki, K. (2007). Characterization of hepatobiliary organic anion transporters in Long-Evans Cinnamon rats. Drug Metabolism and Pharmacokinetics, 22(5), 387-390. http://dx.doi.org/10.2133/dmpk.22.387. PMid:17965523.
http://dx.doi.org/10.2133/dmpk.22.387...
). Progressive loss of mRNA for transporters such as Ntcp, Bsep, Mrp2, Oatp1/Oatp1a1, Oatp2/Oatp1a4 and Oatp4/Oatp1b2 was found at 20 and 32 weeks of hepatocarcinogenesis in rats (Monte et al., 2005Monte, M. J., Fernandez-Tagarro, M., Macias, R. I., Jimenez, F., Gonzalez-San Martin, F., & Marin, J. J. (2005). Changes in the expression of genes related to bile acid synthesis and transport by the rat liver during hepatocarcinogenesis. Clinical Science (London, England: 1979), 109(2), 199-207.). Plasma bilirubin levels are increased in rat models and in patients with alcoholic liver disease (ALD). The constructive androgen receptor (CAR) is a known xenobiotic receptor that induces bilirubin detoxification and transport, and the CAR agonist phenobarbital (PB) downregulates bilirubin levels in the serum of ALD patients, while selectively upregulating the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 (Wang et al., 2017Wang, X., Zheng, L., Wu, J., Tang, B., Zhang, M., Zhu, D., & Lin, X. (2017). Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease. Molecular Medicine Reports, 15(6), 3459-3466. http://dx.doi.org/10.3892/mmr.2017.6435. PMid:28393244.
http://dx.doi.org/10.3892/mmr.2017.6435...
). After hepatic ischemia-reperfusion (IR) injury, mRNA expression of hepatic transporter Oatp1a1, Oatp1a4, Oatp1b2, Ntcp, Mdr2 and Bsep decreased, while Mdr1b expression increased (Tanaka et al., 2006Tanaka, Y., Chen, C., Maher, J. M., & Klaassen, C. D. (2006). Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation, 82(2), 258-266. http://dx.doi.org/10.1097/01.tp.0000226243.69023.54. PMid:16858290.
http://dx.doi.org/10.1097/01.tp.00002262...
). Chronic high-fat diets are a key factor in obesity, and progressive obesity can subsequently lead to liver damage, kidney damage, and intestinal atrophy. Transporters expressed in the liver, kidney and intestine play an important role in the deposition of nutrients and drugs. In HFD-fed mice, the relative expression of Oat2 was increased 4.08-fold and the protein expression of Oat2 was upregulated at 24 weeks, while the mRNA expression of the uptake transporters Oct1, Oatp1b2 and Oatp1a4 was decreased by 79%, 61% and 19%, respectively (Lu et al., 2019Lu, X., Dong, Y., Jian, Z., Li, Q., Gong, L., Tang, L., Zhou, X., & Liu, M. (2019). Systematic investigation of the effects of long-term administration of a high-fat diet on drug transporters in the mouse liver, kidney and intestine. Current Drug Metabolism, 20(9), 742-755. http://dx.doi.org/10.2174/1389200220666190902125435. PMid:31475894.
http://dx.doi.org/10.2174/13892002206661...
).

4.3 OATP1A4 and other diseases

Autosomal dominant polycystic kidney disease (ADPKD), a common form of hereditary polycystic kidney disease (PKD), is a major cause of renal failure, and increased bile acids in the liver of rats with polycystic kidney (PCK) are associated with decreased protein expression of Mrp2 and Oatp1a4 in the liver (Bezençon et al., 2019Bezençon, J., Beaudoin, J. J., Ito, K., Fu, D., Roth, S. E., Brock, W. J., & Brouwer, K. L. R. (2019). Altered expression and function of hepatic transporters in a rodent model of polycystic kidney disease. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 47(8), 899-906. http://dx.doi.org/10.1124/dmd.119.086785. PMid:31160314.
http://dx.doi.org/10.1124/dmd.119.086785...
). Protein expression of Oatp1a4 is significantly decreased in the brains of Alzheimer's disease (AD) mice (Wen et al., 2021Wen, J., Zhao, M., Sun, W., Cheng, X., Yu, L., Cao, D., & Li, P. (2021). Uptake of Aβ by OATPs might be a new pathophysiological mechanism of Alzheimer disease. BMC Neuroscience, 22(1), 53. http://dx.doi.org/10.1186/s12868-021-00658-9. PMid:34521342.
http://dx.doi.org/10.1186/s12868-021-006...
). Cerebral hypoxia/reoxygenation stress (H/R) is a component of multiple diseases, and in rat brain microvessels, Oatp1a4 expression is significantly increased under H/R conditions (Thompson et al., 2014Thompson, B. J., Sanchez-Covarrubias, L., Slosky, L. M., Zhang, Y., Laracuente, M. L., & Ronaldson, P. T. (2014). Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 34(4), 699-707. http://dx.doi.org/10.1038/jcbfm.2014.4. PMid:24473481.
http://dx.doi.org/10.1038/jcbfm.2014.4...
). Elevated systemic levels of cytokines in rheumatoid arthritis (RA) can alter the expression of metabolic enzymes and transporters. mRNA levels of intestinal Cyp3a1 and hepatic Cyp2c6, Cyp2c7, Cyp3a1, Oatp1a1, Oatp1b2, Oatp1a4 and Mrp2 were significantly decreased in rats with collagen-induced arthritis (CIA) (Lin et al., 2017Lin, C. H., Hsu, K. W., Chen, C. H., Uang, Y. S., & Lin, C. J. (2017). Differential changes in the pharmacokinetics of statins in collagen-induced arthritis rats. Biochemical Pharmacology, 142, 216-228. http://dx.doi.org/10.1016/j.bcp.2017.06.118. PMid:28636885.
http://dx.doi.org/10.1016/j.bcp.2017.06....
).

5 Conclusions

Oatp1a4 is an important Organic anion transporting polypeptides which is known to play an important role in the transport of many drugs and endogenous substances, such as bile acids. Oatp1a4 is highly expressed in the liver and brain and has significant age and sex differences, which are important for individualized drug effectiveness and safety. And significantly altered expression of Oatp1a4 has been found in a variety of diseases. However, the regulatory mechanisms of Oatp1a4 are still poorly understood and more studies are needed to elucidate them.

Acknowledgements

This work was supported by the Department of Science and Technology of Guizhou Province (Nos. QKHZC [2021] normal 476, QKHZC [2019]2953, QKHZC [2023]general 426, QKHZC [2019]2829, QKHPTRC [2018]5772-001), Department of Education of Guizhou Province (QJHKY [2021]049), Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile (QJJ [2022]048 and QJJ [2022]006) and the Science and Technology Innovation Action Plan of Domestic Science and Technology Cooperation Projects in Shanghai (20025800400).

  • Practical Application: Important for precise clinical use of drugs.

References

  • Abdullahi, W., Brzica, H., Hirsch, N. A., Reilly, B. G., & Ronaldson, P. T. (2018). Functional expression of organic anion transporting polypeptide 1a4 Is regulated by transforming growth factor-β/Activin Receptor-like Kinase 1 signaling at the Blood-Brain Barrier. Molecular Pharmacology, 94(6), 1321-1333. http://dx.doi.org/10.1124/mol.118.112912 PMid:30262595.
    » http://dx.doi.org/10.1124/mol.118.112912
  • Abdullahi, W., Brzica, H., Ibbotson, K., Davis, T. P., & Ronaldson, P. T. (2017a). Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 37(7), 2340-2345. http://dx.doi.org/10.1177/0271678X17702916 PMid:28387157.
    » http://dx.doi.org/10.1177/0271678X17702916
  • Abdullahi, W., Davis, T. P., & Ronaldson, P. T. (2017b). Functional expression of p-glycoprotein and organic anion transporting polypeptides at the Blood-Brain Barrier: understanding transport mechanisms for improved CNS drug delivery? The AAPS Journal, 19(4), 931-939. http://dx.doi.org/10.1208/s12248-017-0081-9 PMid:28447295.
    » http://dx.doi.org/10.1208/s12248-017-0081-9
  • Akanuma, S. I., Kida, R., Tsuchiyama, A., Tachikawa, M., Kubo, Y., & Hosoya, K. I. (2019). Organic anion-transporting polypeptide 1a4-mediated heterogeneous distribution of sulforhodamine-101 in rat hepatic lobules. Drug Metabolism and Pharmacokinetics, 34(4), 239-246. http://dx.doi.org/10.1016/j.dmpk.2019.04.001 PMid:31174976.
    » http://dx.doi.org/10.1016/j.dmpk.2019.04.001
  • Akanuma, S., Hirose, S., Tachikawa, M., & Hosoya, K. (2013). Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids and Barriers of the CNS, 10(1), 29. http://dx.doi.org/10.1186/2045-8118-10-29 PMid:24083450.
    » http://dx.doi.org/10.1186/2045-8118-10-29
  • Betterton, R. D., Abdullahi, W., Williams, E. I., Lochhead, J. J., Brzica, H., Stanton, J., Reddell, E., Ogbonnaya, C., Davis, T. P., & Ronaldson, P. T. (2022). Regulation of blood-brain barrier transporters by transforming growth factor-β/Activin Receptor-Like Kinase 1 Signaling: relevance to the brain disposition of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors (i.e., Statins). Drug Metabolism and Disposition: the Biological Fate of Chemicals, 50(7), 942-956. http://dx.doi.org/10.1124/dmd.121.000781 PMid:35504656.
    » http://dx.doi.org/10.1124/dmd.121.000781
  • Bezençon, J., Beaudoin, J. J., Ito, K., Fu, D., Roth, S. E., Brock, W. J., & Brouwer, K. L. R. (2019). Altered expression and function of hepatic transporters in a rodent model of polycystic kidney disease. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 47(8), 899-906. http://dx.doi.org/10.1124/dmd.119.086785 PMid:31160314.
    » http://dx.doi.org/10.1124/dmd.119.086785
  • Bodeman, C. E., Dzierlenga, A. L., Tally, C. M., Mulligan, R. M., Lake, A. D., Cherrington, N. J., & McKarns, S. C. (2013). Differential regulation of hepatic organic cation transporter 1, organic anion-transporting polypeptide 1a4, bile-salt export pump, and multidrug resistance-associated protein 2 transporter expression in lymphocyte-deficient mice associates with interleukin-6 production. The Journal of Pharmacology and Experimental Therapeutics, 347(1), 136-144. http://dx.doi.org/10.1124/jpet.113.205369 PMid:23929842.
    » http://dx.doi.org/10.1124/jpet.113.205369
  • Brzica, H., Abdullahi, W., Reilly, B. G., & Ronaldson, P. T. (2018). Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood-brain barrier in Sprague-Dawley rats. Fluids and Barriers of the CNS, 15(1), 25. http://dx.doi.org/10.1186/s12987-018-0110-9 PMid:30208928.
    » http://dx.doi.org/10.1186/s12987-018-0110-9
  • Chen, C., Wu, Z. T., Ma, L. L., Ni, X., Lin, Y. F., Wang, L., Chen, K. P., Huang, C. G., & Pan, G. (2015). Organic anion-transporting polypeptides contribute to the hepatic uptake of berberine. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 45(12), 1138-1146.
  • Cheng, X., & Klaassen, C. D. (2006). Regulation of mRNA expression of xenobiotic transporters by the pregnane x receptor in mouse liver, kidney, and intestine. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 34(11), 1863-1867. http://dx.doi.org/10.1124/dmd.106.010520 PMid:16928788.
    » http://dx.doi.org/10.1124/dmd.106.010520
  • Cheng, X., & Klaassen, C. D. (2008). Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers. Toxicological Sciences: An Official Journal of the Society of Toxicology, 106(1), 37-45.
  • Cheng, X., Maher, J., Lu, H., & Klaassen, C. D. (2006). Endocrine regulation of gender-divergent mouse organic anion-transporting polypeptide (Oatp) expression. Molecular Pharmacology, 70(4), 1291-1297. http://dx.doi.org/10.1124/mol.106.025122 PMid:16807376.
    » http://dx.doi.org/10.1124/mol.106.025122
  • Chiba, M., Itagaki, S., Kobayashi, M., Hirano, T., & Iseki, K. (2007). Characterization of hepatobiliary organic anion transporters in Long-Evans Cinnamon rats. Drug Metabolism and Pharmacokinetics, 22(5), 387-390. http://dx.doi.org/10.2133/dmpk.22.387 PMid:17965523.
    » http://dx.doi.org/10.2133/dmpk.22.387
  • de Waart, D. R., Naik, J., Utsunomiya, K. S., Duijst, S., Ho-Mok, K., Bolier, A. R., Hiralall, J., Bull, L. N., Bosma, P. J., Oude Elferink, R. P., & Paulusma, C. C. (2016). ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes. Hepatology (Baltimore, Md.), 64(1), 161-174. http://dx.doi.org/10.1002/hep.28522 PMid:26926206.
    » http://dx.doi.org/10.1002/hep.28522
  • Donner, M. G., Schumacher, S., Warskulat, U., Heinemann, J., & Häussinger, D. (2007). Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. American Journal of Physiology. Gastrointestinal and Liver Physiology, 293(6), G1134-G1146. http://dx.doi.org/10.1152/ajpgi.00079.2007 PMid:17916651.
    » http://dx.doi.org/10.1152/ajpgi.00079.2007
  • Eng, H., Scialis, R. J., Rotter, C. J., Lin, J., Lazzaro, S., Varma, M. V., Di, L., Feng, B., West, M., & Kalgutkar, A. S. (2016). The antimicrobial agent fusidic acid inhibits organic anion transporting polypeptide-mediated hepatic clearance and may potentiate statin-induced myopathy. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 44(5), 692-699. http://dx.doi.org/10.1124/dmd.115.067447 PMid:26888941.
    » http://dx.doi.org/10.1124/dmd.115.067447
  • Engels, K., Rakov, H., Zwanziger, D., Moeller, L. C., Homuth, G., Köhrle, J., Brix, K., & Führer, D. (2015). Differences in mouse hepatic thyroid hormone transporter expression with age and hyperthyroidism. European Thyroid Journal, 4(Suppl 1), 81-86. http://dx.doi.org/10.1159/000381020 PMid:26601077.
    » http://dx.doi.org/10.1159/000381020
  • Fu, Z. D., & Klaassen, C. D. (2014). Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice. Toxicology and Applied Pharmacology, 274(1), 137-146. http://dx.doi.org/10.1016/j.taap.2013.11.003 PMid:24240088.
    » http://dx.doi.org/10.1016/j.taap.2013.11.003
  • Fuksa, L., Brcakova, E., Kolouchova, G., Hirsova, P., Hroch, M., Cermanova, J., Staud, F., & Micuda, S. (2010). Dexamethasone reduces methotrexate biliary elimination and potentiates its hepatotoxicity in rats. Toxicology, 267(1-3), 165-171. http://dx.doi.org/10.1016/j.tox.2009.11.010 PMid:19922765.
    » http://dx.doi.org/10.1016/j.tox.2009.11.010
  • Giroux, P., Kyle, P. B., Tan, C., Edwards, J. D., Nowicki, M. J., & Liu, H. (2022). Evaluating the regulation of transporter proteins and P-glycoprotein in rats with cholestasis and its implication for digoxin clearance. World Journal of Gastrointestinal Pathophysiology, 13(3), 73-84. http://dx.doi.org/10.4291/wjgp.v13.i3.73 PMid:35720166.
    » http://dx.doi.org/10.4291/wjgp.v13.i3.73
  • Gong, L., Aranibar, N., Han, Y. H., Zhang, Y., Lecureux, L., Bhaskaran, V., Khandelwal, P., Klaassen, C. D., & Lehman-McKeeman, L. D. (2011). Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 122(2), 587-597.
  • Guo, H. L., Hassan, H. M., Zhang, Y., Dong, S. Z., Ding, P. P., Wang, T., Sun, L. X., Zhang, L. Y., & Jiang, Z. Z. (2016). Pyrazinamide induced rat cholestatic liver injury through inhibition of FXR regulatory effect on bile acid synthesis and transport. Toxicological Sciences: An Official Journal of the Society of Toxicology, 152(2), 417-428.
  • Hagenbuch, B., & Meier, P. (2004). Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Archiv: European Journal of Physiology, 447(5), 653-665. http://dx.doi.org/10.1007/s00424-003-1168-y PMid:14579113.
    » http://dx.doi.org/10.1007/s00424-003-1168-y
  • Hagenbuch, B., & Stieger, B. (2013). The SLCO (former SLC21) superfamily of transporters. Molecular Aspects of Medicine, 34(2-3), 396-412. http://dx.doi.org/10.1016/j.mam.2012.10.009 PMid:23506880.
    » http://dx.doi.org/10.1016/j.mam.2012.10.009
  • Horiuchi, I., Mori, Y. I., Taguchi, M., Ichida, F., Miyawaki, T., & Hashimoto, Y. (2009). Mechanisms responsible for the altered pharmacokinetics of bosentan: analysis utilizing rats with bile duct ligation-induced liver dysfunction. Biopharmaceutics & Drug Disposition, 30(6), 326-333. http://dx.doi.org/10.1002/bdd.671 PMid:19639656.
    » http://dx.doi.org/10.1002/bdd.671
  • Hou, W. Y., Xu, S. F., Zhu, Q. N., Lu, Y. F., Cheng, X. G., & Liu, J. (2014). Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicology and Applied Pharmacology, 280(2), 370-377. http://dx.doi.org/10.1016/j.taap.2014.08.020 PMid:25168429.
    » http://dx.doi.org/10.1016/j.taap.2014.08.020
  • Imai, S., Kikuchi, R., Kusuhara, H., & Sugiyama, Y. (2013). DNA methylation and histone modification profiles of mouse organic anion transporting polypeptides. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 41(1), 72-78. http://dx.doi.org/10.1124/dmd.112.047969 PMid:23033256.
    » http://dx.doi.org/10.1124/dmd.112.047969
  • Ji, W., Zhang, C., Song, C., & Ji, H. (2022). Three DPP-IV inhibitory peptides from Antarctic krill protein hydrolysate improve glucose levels in the zebrafish model of diabetes. Food Science and Technology (Campinas), 42, e58920. http://dx.doi.org/10.1590/fst.58920
    » http://dx.doi.org/10.1590/fst.58920
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. http://dx.doi.org/10.1038/s41586-021-03819-2 PMid:34265844.
    » http://dx.doi.org/10.1038/s41586-021-03819-2
  • Kesika, P., Sivamaruthi, B. S., & Chaiyasut, C. (2022). Health promoting effects of fermented foods against cancer: an updated concise review. Food Science and Technology (Campinas), 42, e18220. http://dx.doi.org/10.1590/fst.18220
    » http://dx.doi.org/10.1590/fst.18220
  • Kim, R. B. (2003). Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. European Journal of Clinical Investigation, 33(Suppl 2), 1-5. http://dx.doi.org/10.1046/j.1365-2362.33.s2.5.x PMid:14641549.
    » http://dx.doi.org/10.1046/j.1365-2362.33.s2.5.x
  • Kubo, Y., Akanuma, S. I., & Hosoya, K. I. (2018). Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opinion on Drug Metabolism & Toxicology, 14(5), 513-531. http://dx.doi.org/10.1080/17425255.2018.1472764 PMid:29719158.
    » http://dx.doi.org/10.1080/17425255.2018.1472764
  • Liang, R., Ge, W., Li, B., Cui, W., Ma, X., Pan, Y., & Li, G. (2022). Evodiamine decreased the systemic exposure of pravastatin in non-alcoholic steatohepatitis rats due to the up-regulation of hepatic OATPs. Pharmaceutical Biology, 60(1), 359-373. http://dx.doi.org/10.1080/13880209.2022.2036767 PMid:35171063.
    » http://dx.doi.org/10.1080/13880209.2022.2036767
  • Lin, C. H., Hsu, K. W., Chen, C. H., Uang, Y. S., & Lin, C. J. (2017). Differential changes in the pharmacokinetics of statins in collagen-induced arthritis rats. Biochemical Pharmacology, 142, 216-228. http://dx.doi.org/10.1016/j.bcp.2017.06.118 PMid:28636885.
    » http://dx.doi.org/10.1016/j.bcp.2017.06.118
  • Liu, L., Zhang, L., Zhang, L., Yang, F., Zhu, X., Lu, Z., Yang, Y., Lu, H., Feng, L., Wang, Z., Chen, H., Yan, S., Wang, L., Ju, Z., Jin, H., & Zhu, X. (2017). Hepatic Tmem30a deficiency causes intrahepatic cholestasis by impairing expression and localization of bile salt transporters. American Journal of Pathology, 187(12), 2775-2787. http://dx.doi.org/10.1016/j.ajpath.2017.08.011 PMid:28919113.
    » http://dx.doi.org/10.1016/j.ajpath.2017.08.011
  • Lu, X., Dong, Y., Jian, Z., Li, Q., Gong, L., Tang, L., Zhou, X., & Liu, M. (2019). Systematic investigation of the effects of long-term administration of a high-fat diet on drug transporters in the mouse liver, kidney and intestine. Current Drug Metabolism, 20(9), 742-755. http://dx.doi.org/10.2174/1389200220666190902125435 PMid:31475894.
    » http://dx.doi.org/10.2174/1389200220666190902125435
  • Lynch, K. D., Montonye, M. L., Tian, D. D., Arman, T., Oyanna, V. O., Bechtold, B. J., Graf, T. N., Oberlies, N. H., Paine, M. F., & Clarke, J. D. (2021). Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin-drug interactions. Phytotherapy Research, 35(6), 3286-3297. PMid:33587330.
  • Monte, M. J., Fernandez-Tagarro, M., Macias, R. I., Jimenez, F., Gonzalez-San Martin, F., & Marin, J. J. (2005). Changes in the expression of genes related to bile acid synthesis and transport by the rat liver during hepatocarcinogenesis. Clinical Science (London, England: 1979), 109(2), 199-207.
  • Muchova, L., Vanova, K., Suk, J., Micuda, S., Dolezelova, E., Fuksa, L., Cerny, D., Farghali, H., Zelenkova, M., Lenicek, M., Wong, R. J., Vreman, H. J., & Vitek, L. (2015). Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. Journal of Cellular and Molecular Medicine, 19(5), 924-933. http://dx.doi.org/10.1111/jcmm.12401 PMid:25683492.
    » http://dx.doi.org/10.1111/jcmm.12401
  • Nakakariya, M., Shimada, T., Irokawa, M., Maeda, T., & Tamai, I. (2008). Identification and species similarity of OATP transporters responsible for hepatic uptake of beta-lactam antibiotics. Drug Metabolism and Pharmacokinetics, 23(5), 347-355. http://dx.doi.org/10.2133/dmpk.23.347 PMid:18974612.
    » http://dx.doi.org/10.2133/dmpk.23.347
  • Ose, A., Kusuhara, H., Endo, C., Tohyama, K., Miyajima, M., Kitamura, S., & Sugiyama, Y. (2010). Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 38(1), 168-176. http://dx.doi.org/10.1124/dmd.109.029454 PMid:19833843.
    » http://dx.doi.org/10.1124/dmd.109.029454
  • Römermann, K., Fedrowitz, M., Hampel, P., Kaczmarek, E., Töllner, K., Erker, T., Sweet, D. H., & Löscher, W. (2017). Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology, 117, 182-194. http://dx.doi.org/10.1016/j.neuropharm.2017.02.006 PMid:28192112.
    » http://dx.doi.org/10.1016/j.neuropharm.2017.02.006
  • Ronaldson, P. T., Brzica, H., Abdullahi, W., Reilly, B. G., & Davis, T. P. (2021). Transport properties of statins by organic anion transporting polypeptide 1A2 and regulation by transforming growth factor-β signaling in human endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 376(2), 148-160. http://dx.doi.org/10.1124/jpet.120.000267 PMid:33168642.
    » http://dx.doi.org/10.1124/jpet.120.000267
  • Ronaldson, P. T., Finch, J. D., Demarco, K. M., Quigley, C. E., & Davis, T. P. (2011). Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. The Journal of Pharmacology and Experimental Therapeutics, 336(3), 827-839. http://dx.doi.org/10.1124/jpet.110.174151 PMid:21131267.
    » http://dx.doi.org/10.1124/jpet.110.174151
  • Sakamoto, K., Mikami, H., & Kimura, J. (2008). Involvement of organic anion transporting polypeptides in the toxicity of hydrophilic pravastatin and lipophilic fluvastatin in rat skeletal myofibres. British Journal of Pharmacology, 154(7), 1482-1490. http://dx.doi.org/10.1038/bjp.2008.192 PMid:18500364.
    » http://dx.doi.org/10.1038/bjp.2008.192
  • Shitara, Y., Itoh, T., Sato, H., Li, A., & Sugiyama, Y. (2003). Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. The Journal of Pharmacology and Experimental Therapeutics, 304(2), 610-616. http://dx.doi.org/10.1124/jpet.102.041921 PMid:12538813.
    » http://dx.doi.org/10.1124/jpet.102.041921
  • Slijepcevic, D., Kaufman, C., Wichers, C. G. K., Gilglioni, E. H., Lempp, F. A., Duijst, S., de Waart, D. R., Oude Elferink, R. P. J., Mier, W., Stieger, B., Beuers, U., Urban, S., & van de Graaf, S. F. J. (2015). Impaired uptake of conjugated bile acids and hepatitis B virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology (Baltimore, Md.), 62(1), 207-219. http://dx.doi.org/10.1002/hep.27694 PMid:25641256.
    » http://dx.doi.org/10.1002/hep.27694
  • St-Pierre, M. V., Stallmach, T., Freimoser Grundschober, A., Dufour, J. F., Serrano, M. A., Marin, J. J., Sugiyama, Y., & Meier, P. J. (2004). Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(6), R1505-R1516. http://dx.doi.org/10.1152/ajpregu.00279.2003 PMid:15345472.
    » http://dx.doi.org/10.1152/ajpregu.00279.2003
  • Sun, P., Wang, C., Liu, Q., Meng, Q., Zhang, A., Huo, X., Sun, H., & Liu, K. (2014). OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacological reports: PR, 66(2), 311-319.
  • Szabo, D. T., Richardson, V. M., Ross, D. G., Diliberto, J. J., Kodavanti, P. R., & Birnbaum, L. S. (2009). Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicological Sciences: An Official Journal of the Society of Toxicology, 107(1), 27-39.
  • Takano, J., Maeda, K., Kusuhara, H., & Sugiyama, Y. (2018). Organic anion transporting polypeptide 1a4 is responsible for the hepatic uptake of cardiac glycosides in mice. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 46(5), 652-657. http://dx.doi.org/10.1124/dmd.117.079483 PMid:29348124.
    » http://dx.doi.org/10.1124/dmd.117.079483
  • Tan, D. P., Cui, J., Qin, L., Chen, L., Wang, Y. H., Zhang, Q. R., & He, Y. Q. (2022). The role of OATP1A1 in cholestasis and drug-induced toxicity: a systematic review. Food Science and Technology (Campinas), 42, e70722. http://dx.doi.org/10.1590/fst.70722
    » http://dx.doi.org/10.1590/fst.70722
  • Tanaka, Y., Chen, C., Maher, J. M., & Klaassen, C. D. (2006). Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation, 82(2), 258-266. http://dx.doi.org/10.1097/01.tp.0000226243.69023.54 PMid:16858290.
    » http://dx.doi.org/10.1097/01.tp.0000226243.69023.54
  • Tanaka, Y., Ikeda, T., Yamamoto, K., Masuda, S., Ogawa, H., & Kamisako, T. (2018). Gender-divergent expression of lipid and bile acid metabolism related genes in adult mice offspring of dams fed a high-fat diet. Journal of Biosciences, 43(2), 329-337. http://dx.doi.org/10.1007/s12038-018-9750-9 PMid:29872021.
    » http://dx.doi.org/10.1007/s12038-018-9750-9
  • Tao, L., He, M., Lu, Y., Zheng, J., & Ye, Y. (2023). Expression of sclerostin and bone morphogenetic protein-7 (BMP-7) in serum of patients with chronic kidney disease-mineral and bone disorder (CKD-MBD) and their correlation with calcium and phosphorus metabolism. Food Science and Technology (Campinas), 43, e48822. http://dx.doi.org/10.1590/fst.48822
    » http://dx.doi.org/10.1590/fst.48822
  • Thompson, B. J., Sanchez-Covarrubias, L., Slosky, L. M., Zhang, Y., Laracuente, M. L., & Ronaldson, P. T. (2014). Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 34(4), 699-707. http://dx.doi.org/10.1038/jcbfm.2014.4 PMid:24473481.
    » http://dx.doi.org/10.1038/jcbfm.2014.4
  • Tsujimoto, T., Ogura, J., Kuwayama, K., Koizumi, T., Sasaki, S., Terada, Y., Kobayashi, M., Yamaguchi, H., & Iseki, K. (2013). Effect of oxidative stress on expression and function of human and rat organic anion transporting polypeptides in the liver. International Journal of Pharmaceutics, 458(2), 262-271. http://dx.doi.org/10.1016/j.ijpharm.2013.10.013 PMid:24409515.
    » http://dx.doi.org/10.1016/j.ijpharm.2013.10.013
  • Turncliff, R. Z., Meier, P. J., & Brouwer, K. L. (2004). Effect of dexamethasone treatment on the expression and function of transport proteins in sandwich-cultured rat hepatocytes. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 32(8), 834-839. http://dx.doi.org/10.1124/dmd.32.8.834 PMid:15258109.
    » http://dx.doi.org/10.1124/dmd.32.8.834
  • Wang, X., Zheng, L., Wu, J., Tang, B., Zhang, M., Zhu, D., & Lin, X. (2017). Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease. Molecular Medicine Reports, 15(6), 3459-3466. http://dx.doi.org/10.3892/mmr.2017.6435 PMid:28393244.
    » http://dx.doi.org/10.3892/mmr.2017.6435
  • Wang, Z., Shang, H., Li, Y., Zhang, C., Dong, Y., Cui, T., Zhang, H., Ci, X., Yi, X., Zhang, T., Yan, F., Zhang, Y., Huang, X., Wu, W., & Liu, C. (2020). Transporters (OATs and OATPs) contribute to illustrate the mechanism of medicinal compatibility of ingredients with different properties in yuanhuzhitong prescription. Acta Pharmaceutica Sinica. B, 10(9), 1646-1657. http://dx.doi.org/10.1016/j.apsb.2020.05.012 PMid:33088685.
    » http://dx.doi.org/10.1016/j.apsb.2020.05.012
  • Wen, J., Zhao, M., Sun, W., Cheng, X., Yu, L., Cao, D., & Li, P. (2021). Uptake of Aβ by OATPs might be a new pathophysiological mechanism of Alzheimer disease. BMC Neuroscience, 22(1), 53. http://dx.doi.org/10.1186/s12868-021-00658-9 PMid:34521342.
    » http://dx.doi.org/10.1186/s12868-021-00658-9
  • Yaguchi, Y., Tachikawa, M., Zhang, Z., & Terasaki, T. (2019). Organic anion-transporting polypeptide 1a4 (Oatp1a4/Slco1a4) at the blood-arachnoid barrier is the major pathway of sulforhodamine-101 clearance from cerebrospinal fluid of rats. Molecular Pharmaceutics, 16(5), 2021-2027. http://dx.doi.org/10.1021/acs.molpharmaceut.9b00005 PMid:30977661.
    » http://dx.doi.org/10.1021/acs.molpharmaceut.9b00005
  • Yi, Y. X., Ding, Y., Zhang, Y., Ma, N. H., Shi, F., Kang, P., Cai, Z. Z., & Zhang, T. (2018). Yinchenhao decoction ameliorates alpha-naphthylisothiocyanate induced intrahepatic cholestasis in rats by regulating phase II metabolic enzymes and transporters. Frontiers in Pharmacology, 9, 510. http://dx.doi.org/10.3389/fphar.2018.00510 PMid:29867509.
    » http://dx.doi.org/10.3389/fphar.2018.00510
  • Zagorova, M., Prasnicka, A., Kadova, Z., Dolezelova, E., Kazdova, L., Cermanova, J., Rozkydalova, L., Hroch, M., Mokry, J., & Micuda, S. (2015). Boldine attenuates cholestasis associated with nonalcoholic fatty liver disease in hereditary hypertriglyceridemic rats fed by high-sucrose diet. Physiological Research, 64(Suppl 4), S467-S476. http://dx.doi.org/10.33549/physiolres.933206 PMid:26681076.
    » http://dx.doi.org/10.33549/physiolres.933206
  • Zhang, A., Jia, Y., Xu, Q., Wang, C., Liu, Q., Meng, Q., Peng, J., Sun, H., Sun, P., Huo, X., & Liu, K. (2016). Dioscin protects against ANIT-induced cholestasis via regulating Oatps, Mrp2 and Bsep expression in rats. Toxicology and Applied Pharmacology, 305, 127-135. http://dx.doi.org/10.1016/j.taap.2016.06.019 PMid:27317372.
    » http://dx.doi.org/10.1016/j.taap.2016.06.019
  • Zhang, Y., Csanaky, I. L., Selwyn, F. P., Lehman-McKeeman, L. D., & Klaassen, C. D. (2013). Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochemical Pharmacology, 86(3), 437-445. http://dx.doi.org/10.1016/j.bcp.2013.05.020 PMid:23747753.
    » http://dx.doi.org/10.1016/j.bcp.2013.05.020
  • Zhou, L., Song, Y., Zhao, J., Qin, H., Zhang, G., Zhou, Y., & Wu, X. (2016). Monoammonium glycyrrhizinate protects rifampicin- and isoniazid-induced hepatotoxicity via regulating the expression of transporter Mrp2, Ntcp, and Oatp1a4 in liver. Pharmaceutical Biology, 54(6), 931-937. http://dx.doi.org/10.3109/13880209.2015.1070878 PMid:26987268.
    » http://dx.doi.org/10.3109/13880209.2015.1070878

Publication Dates

  • Publication in this collection
    16 Jan 2023
  • Date of issue
    2023

History

  • Received
    01 Oct 2022
  • Accepted
    28 Nov 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br