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Abstract
We present an adaptation of a new Keynesian model into an agent-based computational mo-
del, accounting for the importance of heterogeneity, interaction and bounded rationality in 
problems such as price setting and expectations formation. We evaluate the evolution of the 
distribution of price setting strategy frequencies, which agents might choose on each period 
between inflationary, neutral or deflationary, a process based on private and social features of 
agents’ utility functions. In addition, we consider the network’s topological structure and find 
that the regular network model fails in replicating exactly the new Keynesian model’s original 
results, while the complex network model presents results in accordance with the originals.
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Resumo
Apresentamos uma adaptação de um modelo novo keynesiano em um modelo computacional 
baseado em agentes, tendo em vista a importância da heterogeneidade, interação e racionali-
dade limitada nos problemas como fixação de preços e formação de expectativas. Avaliamos a 
evolução da distribuição de frequência das estratégias de formação de preços, que os agentes 
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podem escolher a cada período entre inflacionária, neutra ou deflacionária, processo este ba-
seado nas características privadas e sociais da função utilidade dos agentes. Adicionalmente, 
levamos em conta a estrutura topológica da rede em conta, e verificamos que o modelo em rede 
regular fracassa em replicar com exatidão os resultados originais do modelo novo keynesiano, 
enquanto o modelo em rede complexa apresenta resultados congruentes com os originais.

Palavras-chave
Modelos baseado em agentes. Redes completas. Formação de preços.

Classificação JEL
C63, D80, E30.

1.	 Introduction

Price setting and expectations are subject to long-standing debates in ma-
croeconomics. Most new Keynesian models assume that individuals for-
mulate expectations independently and employ a representative agent to 
analyse them, assuming that individuals have similar preferences, access 
to the same information and the same reasoning prowess. It goes without 
saying that these assumptions are not to be taken literally, but they are the 
foundations on which canonical new Keynesian models are built.

However, these models have its critics. Flieth and Foster (2002) for ins-
tance remark that representative agent models face hardships trying to 
reproduce patterns found empirically. With that in mind, we have agent-
-based models (ABM), a newer style of modelling that, according to Macal 
and North (2005), can be an important tool to evaluate social systems 
composed by different agents that interact amongst them, learn with past 
experiences, influence each other and adapt their behaviour looking for 
the best responses to their environment.

Recent literature such as Fainmesser and Galeotti (2016) or Fainmesser 
and Galeotti (2020) highlight that network effects can be very important 
in price setting, with firms and consumers looking at their neighbourhoods 
to gather information in order to make better decisions. The amount of 
influence these relations exert depend on various factors, like the strength 
of network effects, network size and the behaviour of a few very influen-
tial vertices.
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This study’s proposed model is an ABM which takes network effects into 
account, assuming a monopolistic competition economy based on Ball and 
Romer (1989). In our reasoning, agents must choose their strategy on each 
round: keeping the same prices, raising them or lowering them. Their choi-
ces depend on their preferences. These agents are disposed in a network, 
which starts out regular (where neighbourhoods are always the same) but 
eventually will include a degree of randomness, as proposed by Watts and 
Strogatz (1998).

Therefore, this article’s main contribution to macroeconomic research is 
assessing whether the conclusions put forward by Ball and Romer (1989) 
still hold up after relaxing certain hypotheses – namely, representative 
agents, perfect rationality, and a tendency towards symmetrical equilibria. 
These hypotheses are put aside in favour of heterogeneous agents, bounded 
rationality and a non-enforcement of equilibria.

Thus, this article is structured as follows: next section is a review of the 
literature touching on topics such as price setting, social interaction and 
networks in economics; the third section lays out the methodology behind 
the model here proposed; the fourth section presents and discusses the 
results achieved; and the fifth and final section presents our concluding 
remarks.

2.	 Prices, social interaction and networks

2.    Some theory and evidence on price setting

This subsection assembles some findings regarding price setting and ex-
pectations that are of great interest to us due to how they relate to the 
model we will run afterwards. As a starter, the study published by Levy et 
al. (1998) about the price adjustment process at multiproduct retail stores 
shows that this is a more complex task than previously thought. Therefore, 
at some moments it isn’t rigorously planned, resulting in price stickiness. 
The authors remark that this is caused mainly by item pricing laws and the 
fear that agents have of making mistakes while setting prices.
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According to Nakamura (2008), 16% of the variation in product prices is 
common all across the market, while 65% is common only within a same 
retail chain and 17% of it is completely idiosyncratic. Midrigan (2011) too 
finds that it’s more likely that a particular product has its price changed if 
a big fraction of the other prices within the same store are being changed, 
especially when the price changes touch similar goods. He also points out 
(although based on weaker evidence than on the previous finding) that 
there is some level of synchronization across stores in a given city.

In this article we chose an evolutionary approach when discussing price 
setting. Bonomo et al. (2003), for instance, employ evolutionary games to 
evaluate the transaction costs between two equilibria with the goal of rea-
ching disinflation. Based on their findings we can assume that agents with 
traits of bounded rationality suffer worse losses than more rational agents 
and strategies with below average performance have their use reduced 
with the passage of time. Likewise, in the long run they will eventually be 
able to learn which strategy leads to more gains. In the same vein, Saint-
Paul (2005) aims to find a motivation for price stickiness. The author aims 
to answer two main questions: (i) if the economy converges to a rational 
expectations equilibrium; (ii) in the case this doesn’t happen, if is it pos-
sible to find a particular behaviour of sticky prices. The author builds a 
model where economic agents are imperfectly rational and interact in a 
localized manner with others. The author argues that, even though the 
rational expectations equilibrium is among the possible choices by agents, 
the economy doesn’t necessarily converge to this equilibrium.

Still on evolutionary dynamics, Silveira and Lima (2008) elaborate a model 
that takes into account the emergence of monomorphic (where only one 
price-setting strategy survives between perfect and bounded rationality) 
and polymorphic (both survive in the long run) equilibria. Another diffe-
rence is that while on the monomorphic equilibria the money is neutral, 
on polymorphic equilibria the money might not be.

Another model from Lima and Silveira (2015) allows firms to choose the 
Nash strategy (update their information and establish optimal prices) by 
paying a cost, or else they can choose the bounded rationality strategy 
(which is free) with lagged information. Evolutionary dynamics take the 
process to a long-run equilibrium where, even though most or all firms 
employ the bounded rationality strategy, the price level is the same as the 
one from the symmetric Nash equilibrium.
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2.2.    Social interaction in economics

In an effort to bring theory closer to empirical data, research in economics 
has been more observing of the importance of social interaction between 
economic agents. Hommes (2006) reminds that, in a social interaction 
framework, the payoff received by a certain agent for his/her actions is 
directly related to the agents next (be it in a geographical, economic or 
social sense) to him/her. Their gains do not come only through market 
mechanisms, but also through imitation, learning and peer pressure.

Flieth and Foster (2002) notes that the expectation formation process in-
volves discussion amongst agents, as an individual has his/her expectations 
influenced by opinions of friends, business partners or competitors. Topa 
(2001) highlights those interactions happen between social neighbours 
which share certain socioeconomic proximity, but not necessarily geogra-
phic: this could mean individuals who took the same classes at school, 
co-workers or any attendants of the same social activities, even if they do 
not live close to each other.

If a firm decides to raise the price of a good it produces, it cannot raise 
the price much higher than the neighbouring firms that produce close 
substitute goods, as that raises the chance of losing clients, therefore not 
maximising profits. Bernhardt (1993) points out there is a cost in price 
adjustment, in the sense that not coordinating with close firms means that 
an increase in price might in fact not be profit maximising: it would be 
only a question of following a nominal change in money supply.

In this context, Hohnisch et al. (2005) propose an interactive expectations 
model to study business environment amongst entrepreneurs. Each entre-
preneur is faced with a ternary choice between negative, neutral or posi-
tive expectations. Thus, it would change its evaluation of business climate 
based on the opinions of its neighbours, with the results emulating with 
great proximity some traits of the German business confidence index.

Fainmesser and Galeotti (2016) develop a model with a monopolistic 
firm that sells a network good and discriminate prices by using informa-
tion about consumers’ influence and their susceptibility to peer pressure. 
The monopoly’s maximising behaviour happens when offering discounts 
to influential consumers and charging premia to susceptible clients (that 
are more likely to go along side influential consumers). Fainmesser and 
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Galeotti (2020) make new progress by showing that this influence marke-
ting leads to inefficient consumer-product matches, making firms invest in 
more information. This competition for information brings firms’ profits 
closer to zero but, at the same time, increases consumer surplus.

In macroeconomics, with the prevalence of the new neoclassical synthe-
sis and DSGE models, the starting studies in this field was rather timid 
but, more recently, models with social interaction have been getting more 
attention. The reason behind it is that current mainstream models have 
started to come under fire since the subprime crisis, facing difficulties 
when trying to fit empirical findings in their framework, as Romer (2016) 
staunchly points out. ABMs, however, present promising tools to address 
these issues.

Dosi and Roventini (2019) point that The Great Recession was a natu-
ral experiment in macroeconomics, considering it showed issues with the 
mainstream approach. It displayed that price stickiness, for instance, can 
be better approached under the lens of agent-based modelling. The author 
signals that price stickiness might arise from heterogeneity, imperfect in-
formation and coordination hurdles.

However, not all is lost for mainstream economics, as there is a recent 
strife between RANK (Representative Agent New Keynesian) and HANK 
(Heterogeneous Agent New Keynesian) models. The mainstream models 
pointed out in the last paragraphs as suffering from lack of realism are the 
RANK models. In similar contexts, HANK models performed better, as 
discussed by Kaplan et al. (2018) and Acharya et al. (2020).

For instance, Kaplan et al. (2018) hint that, in the face of a Ricardian ex-
change failure, HANK models capture better the monetary policy trans-
mission mechanism to households. In the same vein, Acharya et al. (2020) 
stress out that, in HANK models, optimal monetary policy is considerably 
different from the standard (derived from RANK models), due to hou-
sehold inequalities. However, even though heterogeneity and sometimes 
bounded rationality is accounted for in these models, network effects are 
still mostly ignored.
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2.3.   Elements of network theory

This subsection is a primer on network science, as some basic concepts 
need to be laid out to better understand the computational model used 
here. Goyal (2012) explains that the networks of a given system might be 
represented mathematically through graph theory, according to which a 
network might be represented by G = (N, B) in which N is a set (non-
-empty and finite) of nodes and B is the set of edges, formed by unordered 
pairs of distinct nodes.

It can be said that two nodes i and j are directly connected if they are 
adjacent to each other. If they are not adjacent, but are part of a sequence 
of adjacent nodes linked amongst themselves, then i and j are indirectly 
connected. The neighbourhood of any given node is composed by a set 
formed by nodes connected by edges to this node. In complex networks, a 
node can connect with another one very far from its geographical location.

This means nodes can be linked even when their positions in the network 
are far from each other, and nodes that are very far from each other might 
be linked in a sequence with a few steps (small-world phenomena). In or-
der to represent complex networks, Watts and Strogatz (1998) suggest the 
usage of ring networks (see Figure 1), where nodes are in a circumference 
and uniformly distributed throughout it.

 

Figure 1 – Complex network types
Source: Watts and Strogatz (1998).
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Each of the nodes is linked to K neighbours in clockwise sense and K 
neighbours in anticlockwise sense. Having defined a ring network, we can 
eliminate an edge between the i-th node and a neighbour, and then create 
a new link between i and any other node chosen randomly with a prob-
ability p ∈ [0, 1]R. This operation is called rewiring.

A network is called regular when p = 0, and its main feature is having the 
same number of edges for all nodes. For any i node, in a regular network 
the connected edges are always the same. If p = 1 the network is called 
random. Watts and Strogatz (1998) remark that, empirically, social networks 
tend to present high clustering but a low average distance between nodes. 
As it has been pointed out by the authors, these traits put many empirical 
networks halfway between the regular and random networks, and in case 
p ≈ 0, 1 we can call it a small-world network. It has an average distance 
between nodes comparable to the average distance of a random network, 
but the clustering is strictly superior to the one from a random network.

3.	 A price-setting game on a complex network

3.   A discrete choice model

We will now build the model, starting with an explanation on how agents 
make decisions. Consider an agent i that must choose between three mu-
tually exclusive alternatives, denoted by −1, 0 and 1. Let σi ∈ {-1, 0, 1} 
be the i-th agent’s choice in period t ∈ N. At any period t, each agent can 
choose between lowering one’s price (σi = −1), maintaining the same price 
(σi = 0) or raising it (σi = 1).

Train (2009) remarks that preferences (and, consequently, the utility 
function that represents them too) depend on observable motivations and 
non-observable motivations, the last depending on idiosyncratic traits of an 
agent. Due to non-observable motivations, decision-making phenomena is 
stochastic, not deterministic, to someone watching from the outside. To 
account for that, the utility function will feature a deterministic compo-
nent referring to observable traits and a stochastic one that is associated to 
non-observable traits:



Estud. Econ., São Paulo, vol.53 n.1, p.7-40, jan.-mar. 2023

Complex network effects on price setting: an agent-based computational approach                  15  

                                                                   (1)  

where  is the function’s deterministic component, associated to 
observable motivations, and  the stochastic component, associated 
to non-observable motivations. After defining the utility function, next 
step is evaluating the agent’s optimal choice. Choosing a certain value 
σi ∈ {−1, 0, 1} is the agent’s optimal choice in case it fulfills the follo-
wing condition:

                                                          (2)

It is possible to rewrite (2) using (1) as follows:

	                      (3)

in a way to highlight that choosing a certain σi will be an optimal choice 
for the i-th agent if the net gain from the observable component (left-hand 
side) is bigger than the net gain from the stochastic component (right-hand 
side), associated to any σi′

 alternative.

However, even if the observable utility of a given strategy σi  is bigger than 
the others, that does not guarantee that σi will be chosen by the i-th agent. 
Non-observable incentives from one of the other strategies might be big-
ger than the ones from the σi strategy. Thus, it is only possible to define 
the probability of the i-th agent choosing σi ∈ {−1, 0, 1} from (2) and (3):

        (4)

 
where   is the joint probability density function (PDF) of the ran-
dom variables vector ε( = −1), ε( = 0), ε( = 1) and I[·] an indica-
tor function, equal to 1  if the inequality between brackets is true and 
zero if false. What follows is that function (4) is a cumulative density 
function (CDF) of the utility function’s random component given by 
equation (1). This CDF indicates the i-th agent’s propensity towards choo-
sing a certain strategy σi ∈ {-1, 0, 1}. The propensity towards choosing σi 
raises together with the difference between observable incentives, meaning 
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idiosyncratic motivations have their importance diminished when this dif-
ferential raises.

Train (2009) highlights that diverse discrete choice models might be deri-
ved from distinct specifications of the PDF given by f (ε⃗i), with the most 
common being the one whose final result is the logit model. To do so, sup-
pose the random components of (1) are random variables independent amongst 
themselves, with the same probability distribution for extreme values. This 
means that for each ε(σi) , the PDF is a Type-1 Gumbel formally given 
by:

	                                              (5)

with β > 0  being a real constant. The CDF corresponding to the PDF given 
by (5) is in turn given by:

	 	                                                                (6)

and by inserting (5) and (6) in (4) it is possible to obtain the logistic CDF, 
defined by the following equation:

	                (7)

                                  

where σi, σi′ e σi′′ are three distinct choices.

An interpretation of β relevant to analysing the results is offered by Brock 
and Hommes (1997), who remark that, ceteris paribus, when β is small, 
the impact of non-observable incentives is larger on the probability of 
choosing a certain strategy. Therefore, choices little depend on determi-
nistic utility. However, if β has a bigger value, the strategy chosen will 
probably be the one that offers the biggest deterministic utility.

Brock and Durlauf (2001) propose including a third term on the function 
(1) to represent network effects. In this logic, the i-th agent makes his/her 
decisions influenced by his/her social neighbourhood, henceforth called 
ni . Formally, ni  is the set of agents whose decisions are observed by the 
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i-th agent and influence his/her decisions. Including network effects as 
an observable incentive causes the deterministic component of the utility 
function to be represented as follows

                                                                            (8)

with α being a parametric constant that measures the relative weight of 
deterministic private utility, (·), representing all observable incentives 
except network effects, and (·) being the social deterministic utility 
that suffers network effects. It is worth highlighting that (·) depends 
not only on the choice from the i-th agent but also on the choices from the 
ni  neighbourhood, represented by the vector σe ≡ (σe)j∈n.

Inserting (8) in (1), we can obtain a new equation for the utility of the i-th 
agent when he/she chooses σi :

	 	                                           (9)

and after this adaptation, employing the same reasoning used when deri-
ving equation (7), we can obtain the probability of choosing the σi  alter-
native but with  now defined by (8).

Lastly, the social deterministic utility (·) will be derived. It depends on 
the network topology, but for demonstration ends, a regular network with 
quadratic form (square lattice) – due to ease of computational implemen-
tation – and N agents will be assumed. Therefore, the ni  social neighbou-
rhood of the i-th agent located in the coordinates (ℓ, c) ∈ {1, ..., N}X{1, ..., N} 
of order N will be defined by:

         𝑛𝑛𝑖𝑖 = {(𝑚𝑚,𝑛𝑛) ∈ {1,2,… ,𝑁𝑁}2: |𝑘𝑘 −𝑚𝑚| + |l − 𝑛𝑛| = 1}          (10)

After defining ni , it is possible to define the social utility of the i-th agent 
located in the coordinates (ℓ, c) ∈ {1, ..., N}X{1, ..., N} as:

	                                                             (11)

where J > 0 is a parametric constant that measures the degree of in-
fluence in the neighbourhoodand  is the Kronecker delta.  If σi = σj , 
then  = 1.  Otherwise,  = 0, so that the Kronecker delta can be 
rewritten as:
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	 ... δσ𝑖𝑖σ𝑗𝑗 = ∑ 1
2𝑗𝑗∈𝑛𝑛𝑖𝑖 [σ𝑖𝑖σ𝑗𝑗 + 3σ𝑖𝑖

2σ𝑗𝑗
2 − 2(σ𝑖𝑖

2 + σ𝑗𝑗
2) + 2]      (12)

Substituting (12) in (11), it is possible to redefine social utility as:

	 ... 𝒰𝒰𝒾𝒾
𝓈𝓈(𝜎𝜎𝑖𝑖) = 𝐽𝐽

8 ∑ [𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 + 3𝜎𝜎𝑖𝑖
2𝜎𝜎𝑗𝑗

2 − 2(𝜎𝜎𝑖𝑖
2 + 𝜎𝜎𝑗𝑗

2) + 2]𝑗𝑗∈𝑛𝑛𝑖𝑖                (13)

In short, if α/J > 1 then agents will put more weight on private utility, 
else they will be more affected by network incentives. As for β, the lower 
it is, the more random will the choice be. This includes bounded rationa-
lity in the model, as an agent might make bad choices from a deterministic 
utility viewpoint, choosing a worse strategy if he/she puts a low weight on 
observable incentives.

3.2.  Adaptation of a new Keynesian price-setting model

This subsection briefly introduces the model conceived by Ball and Romer 
(1989) and adapts it into a network model. Let us have N producers that 
fabricate distinct goods that are produced by their own labour (thus sup-
pressing labour markets). They are subsequentially sold and profits are 
used to purchase products from other producer-consumers – the goods, 
however, are close substitutes amongst themselves. With this model as 
basis, we can swap rational expectations for interactive expectations by 
sorting heterogeneous agents in the network.

In the original model, money is just a medium of exchange to make tran-
sactions, so it is possible to employ money supply, M, as a proxy of aggre-
gate nominal demand. Therefore, the producer’s maximum utility as a 
function of the nominal aggregate demand, the price of good i, Pi , and 
the general price level, P, resulting from the simultaneous decisions of all 
producers can be written as follows:

	                                     (14)

Therefore, the i-th producer’s optimal price, i∗ , is that which maximises 
his/her utility is given by:
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	                                                                          (15)    

where  represents the elasticity of the i-th pro-

ducer’s optimal price with respect to the general price level.

In the price-setting game described by Ball and Romer (1989), a symme-
tric Nash equilibrium occurs when i∗  = P for all i = 1, 2, ..., N. If that 
happens, then i∗  = P = M, Ci = C = 1 and Yi  = 1 for all i = 1, 2, ..., N.

Relaxing the hypothesis that states that producers immediately identify 
the game’s symmetric Nash equilibrium, it is possible to adapt the model 
here described to a network game. This means that in period t, the i-th 
producer, when choosing the price Pi,t , must form an expectation of the 
general price level Pt to apply the optimal rule, which is given by:

	                                                               (16)

where  is the general price level expected on period t by the i-th 
producer.

As mentioned beforehand, one of the main changes is abandoning the 
rational expectations

paradigm, where = Pt, employing bounded rationality instead, meaning 
that agents might not always make the best decision. They need to choose 
their stance on each step, either lowering the price (σi,t = −1), maintaining 
it (σi,t = 0) or raising it (σi,t = 1). To make a choice, an agent will choose 
the strategy which grants the most overall utility.

Now we will present the utility function’s three components. Drawing on 
Silva (2012), deterministic private utility is given by:

	 𝒰𝒰𝓅𝓅(σ𝑖𝑖,𝑡𝑡) = (𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1
𝑃𝑃𝑡𝑡−1

) σ𝑖𝑖,𝑡𝑡                                                        (17)

Notice that for U p(σi,t) > 0, both terms multiplying amongst themselves 
must have the same signal, meaning that if the agent reduces his/her pri-
ce (σi,t= −1) and the general price level falls (Pt < Pt−1), it follows that                
U  p(σi,t) > 0. Analogously, the same happens in case the agent raises             
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his/her price and the general price level goes up. If the agent is neutral          
(σi,t = 0), deterministic private utility follows the price variation’s signal.

As for the deterministic social utility, for the i-th producer on period t, 
it depends on the strategies of the producer himself and also of the ni 
neighbourhood. Deterministic social utility is given by:

	 ,,, 𝒰𝒰𝓈𝓈(σ𝑖𝑖,𝑡𝑡) = 𝐽𝐽
8 ∑ [σ𝑖𝑖,𝑡𝑡σ𝑗𝑗,𝑡𝑡 + 3σ𝑖𝑖,𝑡𝑡

2 σ𝑗𝑗,𝑡𝑡
2 − 2(σ𝑖𝑖,𝑡𝑡

2 + σ𝑗𝑗,𝑡𝑡
2 ) + 2]𝑗𝑗∈𝑛𝑛𝑖𝑖              (18)

As outlined before, the stochastic component of the utility function will 
be given by random

variables independent amongst themselves that follow the Type-1 Gumbel 
distribution, formally defined in equation (5). Based on these assumptions, 
it is possible to express the propensity to choose a certain strategy σi,t in 
the following way:

              (19)

The last step for model closure is defining how producers, given their 
states on period t, form their expectations for the general price level, .
If the agent is neutral, t−1= , if the agent is inflationary,  will be cho-
sen randomly between [ t−1, 1.2 t−1], and if the agent is deflationary,  
will be chosen randomly between [0.8 t−1, t−1].

In short, the above options can be described intuitively. Drawing again on 
Silva (2012), let us assume  be a uniformly distributed random variable, 
with its valued conditioned to the choice of σi,t. More precisely, the value 
of each agent’s expected  will be chosen amongst:

	                                               (20)

Based on their expectations of the general price level, each agent will 
define an individual price on t by using the optimal rule given by equa-
tion (16), whereas the general price level is calculated by the following 
equation:
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	                                                            (21)

An outcome that could not happen in the original model by Ball and 
Romer (1989) can and will happen all the time in ours: at any given mo-
ment, there can be heterogeneity amongst producer prices and a general 
price level that is not the symmetric Nash equilibrium price level which 
would be reached assuming rational expectations.

Some variables of interest for the results will be the output level and pri-
ce variance. The authors define the money supply M = PC, and as the 
model does not mention investment or government expenditure we can, for 
each period, isolate the mean consumption index and treat it as the aggregate 
output:
           
	                                                                                   (22)

and lastly, the price variance on each step can be described by the standard 
formula:
  
	 ,,,.... 𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡 = 1

𝑁𝑁 ∑ [𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑡𝑡]2𝑁𝑁
𝑖𝑖=1                                                        (23)

3.3.  Computational implementation

This subsection provides details on the initial conditions setup, the com-
putational loop and how agents are disposed in the program. To implement 
different network structures, we can do a rewiring procedure as described 
by Watts and Strogatz (1998), but using a matrix instead of a ring network 
due to ease of programming. This is not a problem, as we can program 
agents in the first row and column to be linked respectively to the last row 
and column to solve the contour issue. We will assume N = 10, 000 agents 
for our simulations, which is a 100X100 matrix.

For this procedure to be formally implemented to a matrix structure, 
we can employ the shortcuts routine as described by Taylor and Higham 
(2009). That is, there will be a rewiring probability p ∈ [0, 1] ⊂ R, in which 
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a shortcut will be generated between two nodes that are not immediate 
neighbours – the larger p is, the more random a network will be. A short-
cut means that an agent’s link towards one of his/her neighbours is severed 
and the agent connects with another peer from anywhere in the matrix.

Agents will only change strategies on the start of each step. As the stra-
tegies distribution has a certain weight in producer decisions, the initial 
conditions are that in t = 0 each one of the strategies starts with 33.33% 
of adherence by the agents, distributed randomly. Also, using a uniform 
probability distribution, prices are spread randomly inside the interval 
[0.8Pt−1, 1.2Pt−1] ⊂ R.

We have chosen 20% price increases at most due to evidences shown by 
authors such as He et al. (2010) and Roberts and Supina (1996) that most 
goods prices go up or down by 20%, no more than that. After defining 
individual prices, the general price level is set for the t = 0 period, using 
equation (21) and monetary supply is fixed as 1.

Having established the initial conditions, period t = 1 starts. With the 
propensities toward strategies already defined, producers form their ex-
pected prices ( ), as shown by equation (20). After expected prices are 
established, each agent’s individual price is obtained based on equation 
(15). When a period ends, firms are made aware of general price level, 
output level and variance between individual prices compared to the ge-
neral price level. With this information and observing strategies in their 
vicinity, we are able to calculate each agent’s utility function, according 
to equation (8).

After calculating utilities, the logistic CDF in (7) is taken to mea-
sure the propensity of choosing each of the three strategies. 
Afterwards, a number ri,t contained inside the interval [0, 1] ⊂ R will 
be randomly generated. Let us have σi,t = 0, σi′,t = 1 and σi′′,t = −1. If 
r(i, t) ⩽ Prob(σi,t = 0) the producer will adopt a neutral strategy, else if 
Prob(σi,t=0) < r ⩽ Prob(σi,t= 0) + Prob(σi,t =1) the producer will adopt 
an inflationary strategy.  Finally, If r > Prob(σi,t = 0)+Prob(σi,t = 1), 
the producer will adopt a deflationary strategy. Afterwards, a new period 
starts.
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3.4.   Model calibration

This subsection provides an insight into the model’s calibration process. 
We will calibrate the model aiming to find parameter sets that create a syn-
thetic time series similar to the empirical time series. As the original mo-
del is populated by producers, we chose the Producer Price Index from 
the United States, in particular the finished goods consumption index, as 
the model deals with their pricing. Monthly data was obtained from the 
Federal Reserve of St. Louis for the period from 04/1947 (first entry in 
the series) until 12/2020, totalling 884 observations.

The calibration criterion used was minimising the sum of squared errors, 
which consists of finding the set of parameters that minimises the squared 
difference between empirical and simulated prices, formally given by:

	 ,,,....1𝑇𝑇 ∑ (𝑃𝑃𝑒𝑒,𝑡𝑡 − 𝑃𝑃𝑠𝑠,𝑡𝑡)
2𝑇𝑇

𝑡𝑡=1                                                                     (24)

with T being the number of periods, Pe the price index from empirical 
data and Ps the general price index from simulated data.

Based on this criterion, an optimisation algorithm will be employed to find 
the best-fitting combination of parameters {ϕ, α. β, J,p} that minimises 
equation (24), using a variety of Newton’s methods in order to find the 
answers to the optimisation problem. Given the initial guesses plus the 
inferior and superior bounds of the parameters to be calibrated, a random 
set of parameters is chosen, generates simulated values and compares them 
to real ones. If the set generates a smaller distance than before, the function 
stores the new parameters and discards the previous, repeating the process 
until finding parameters that minimise the error.
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4.	 Results and emergent properties of the model

4.1. The benchmark case: a price-setting game on a regular network

In this section we will present the results. For the sake of comparison, 
we will start with the most basic case, which is a regular network mo-
del – thus, p = 0. We calibrate the model using the procedure described 
in Subsection 3.4. To avoid using extreme results from only one run, all 
results are averaged from 30 simulations, except for the parameter tests 
from section 4.3.

Table 1 – Calibrated values for the regular network model                                              

Parameter Calibrated value Range of possible values

α 0.01245    [0, 5] ⊂ R

β 2.0954    [0, 5] ⊂ R

ϕ 0.7653    [0, 1] ⊂ R

        J                 6.9351           [0, 10] ⊂ R

Source: own elaboration.

Figure 2 – Difference between empirical and simulated price indexes, regular network
Source: own elaboration.
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Figure 2 shows the difference between the empirical price index and the 
simulated price index generated with the parameters from Table 1. We see 
that the percentage error is small, but it does raise in both directions when 
the synthetic series overshoots or undershoots due to outliers. That is to 
be expected considering that the calibration algorithm is quite simple and 
outliers are a known problem in synthetic data generation as pointed out 
by Tucker et al. (2020). Figure 3 shows price level and output evolution, 
where it does not converge to a perfectly elegant P = Y = 1 such as Ball 
and Romer (1989): price level fluctuates between 1 and 1.01

Figure 3 – Price and output level evolution, regular network
Source: own elaboration.

and output level fluctuates between 0.99 and 1 after step 500. As seen 
in Figure 4, price level variance is very low and converges to zero between 
steps 500 and 1,000, correlated with the dying out of the deflationary 
strategy (see Figure 5). For variance plots we have excluded the first 100 
observations due to an initial overshooting while agents are still learning.
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Figure 4 – Price level variance, regular network
Source: own elaboration.

 

Figure 5 – Strategy distribution evolution, regular network
Source: own elaboration.

Next is the strategy distribution evolution (Figure 5), which should be 
read as follows: below the d line we have the proportion of deflationary 
agents at the present step and below the d + n line we have the propor-
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tion of deflationary and neutral agents, therefore the gap between the d 
and d + n lines represents the proportion of neutral agents. Everything 
above d + n is the proportion of inflationary agents. Here there is no 
convergence towards one strategy even as price level and output stabi-
lise, with the inflationary strategy coexisting with the neutral strategy 
in the long run.

4.2.  Calibration of the proposed ABM: a price-setting game on a complex 
network

Now we will compare a complex network’s results with the results pre-
viously shown. Running the optimisation algorithm, our initial guess was 
the set from Table 1 along with a value of p ≈ 0.1, which is the standard 
rewiring probability for small-world networks. After roughly 176,000 steps 
– that is, 200 runs of our data set – the optimisation algorithm found a 
combination of parameters. The results can be found in Table 2.

The closest result to the initial guess is ϕ, whose value, much closer to 
one than to zero, shows that in choosing their optimal price, agents stron-
gly value their expected price rather than changes in money supply. This 
shows that the elasticity towards the money supply and price level do not 
seem to be dependent on the network structure. The β value, which was 
very close to the initial guess, shows that there is a relatively high weight 
from deterministic incentives on agents’ choices. Hence, each agent’s in-
dividual decision will not be taken very randomly.

Table 2 – Calibrated values for the main model 

Parameter Value

α 2.0288

β 2.0279

ϕ 0.7986

J 2.3246

p 0.5267

Source: own elaboration.
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In turn, α is much higher than the initial guess and shows there is a signi-
ficant incentive from private behaviour in setting prices, much more than 
in the benchmark model where p = 0. Which means that in a complex 
network, the utility associated to setting the price in the same direction 
as the general price level is more important than in the original model.

J presents a moderate value, lower than shown by the model with a regular 
network. This one is interesting considering that agents are more connec-
ted but consistent with a higher value of α, and it might actually be an 
effect of the network structure, which is the most important change in 
the model. In turn, p goes well beyond the expectation of a small-world 
network (p ≈ 0.1).

 

Figure 6 – Difference between empirical and simulated price indexes, complex network

Source: own elaboration.

As done beforehand, Figure 6 shows the difference between the empirical 
price series and the synthetic series generated by the set of parameters 
from Table 2. Just like Figure 2, it does feature some larger errors when 
trying to keep up with outliers, but like the regular network version, errors 
are quite small on average. Thus, we can follow with our analysis.
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Figure 7 – Price and output level evolution, complex network

Source: own elaboration.

Our first analysis (Figure 7) was on the P   =  Y   =  1 equilibrium. We 
had reproduced this result closely but not perfectly on the benchmark 
model. Now there is a perfect, inverse correlation between P and Y and, 
between steps 3,500 and 4,000, the economy stabilises on P = Y = 1, 
with a higher precision than in Figure 3. In turn, the variance (Figure 8) 
is larger when compared to the benchmark (Figure 4), as it takes as long 
as step 2,500 to become equal to the variance from the benchmark but 
does not get as close to zero afterwards. This was somewhat expected, 
considering there is now a greater degree of randomness.

4.3.  Emergent properties

The previous section highlighted some differences between the regular 
network model and our main complex network model, most interesting 
being the long-run survival of inflationary expectations. Now we are fa-
ced with the most striking difference so far, which is an emergence of the 
neutral strategy as the dominant one, as shown in Figure 9. Due to the 
randomness, none of the three strategies will truly die out, but the defla-
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tionary and inflationary together end up fluctuating around 1% as we reach 
P = Y = 1, which might as well be considered an extinction. We will run 
several tests by stressing different parts of the model and checking out 
what changes happen, if any. To better understand how starting conditions 
can create very different emergent properties, we will run three tests. 
They will assess the effect of all agents starting with the same strategy, 
meaning all 10,000 of them will start being either deflationary, neutral or
inflationary.

The first test (Figure 10) shows what happens when all agents are defla-
tionary in the first step, that is, σi,1  = −1 for any i = 1, 2, . . . , 104. We 
have already understood this from previous results, but this is another 
evidence that the deflationary strategy is indeed the weakest. On step 2 
almost all agents already move away from it, splitting between the neutral 
and inflationary strategies. Afterwards, we see the neutral strategy’s climb 
towards the same spot as shown by the simulation with balanced starting 
conditions (Figure 9). It does crush the inflationary strategy much faster, 
amassing a 98% fraction around step 600, which is around 3,000 steps 
earlier.  

Figure 8 – Price level variance, complex network
Source: own elaboration.
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Figure 9 – Strategy distribution evolution, complex network
Source: own elaboration.

 

Figure 10 – Strategy distribution evolution, all agents starting as deflationary
Source: own elaboration.

The second test (Figure 11) has all agents starting as neutral, that is, σi,1= 
0 for any i = 1, 2, . . . , 104. This one shows a very surprising result, as in 
step 2 the neutral strategy – dominant in all simulations so far – is swit-
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ched out by a majority of agents. Between step 200 and 400 it is already 
very close to extinction. Then the deflationary strategy slowly dies out 
and by step 1,400 the inflationary strategy is already the choice of 99% of 
the agents. With this result, the deflationary strategy is cemented as the 
weakest one, as it is never the dominant strategy by the end.

Ultimately, the third test (Figure 12) features all agents starting with the 
inflationary strategy, that is, σi,1  = 1 for any i = 1, 2, . . . , 104. Now it is 
the inflationary strategy that is switched out by almost all agents in the 
second step, followed by the fastest of the near-extinctions in all of the 
results, with the neutral strategy establishing its firm dominance by step 
500. Looking at Figures 10 and 12, they look like imperfect mirrors of 
each other, with the universal starting strategy getting close to extinction 
during the first steps and the opposite strategy being dominated by the 
neutral one and being asymptotically extinct around step 600.

Something common between the tests is that by step 2, almost all agents 
discard the starting strategy – similar tests on the regular network model 
show that when all agents start on a single strategy, they never change. 

 

Figure 11 – Strategy distribution evolution, all agents starting as neutral
Source: own elaboration.
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Figure 12 – Strategy distribution evolution, all agents starting as inflationary

Source: own elaboration.

This reinforces the strength of the neutral strategy, as the only test where 
it is not the winning strategy is the one where it starts as the only strategy, 
and we have seen that it means the strategy is doomed to die out when 
that happens. We believe that this is caused by a bigger value of α, giving 
more weight to whether agents get the price change right compared to the 
global price level or not, and until settling near P = 1 it is quite volatile 
(check Figures 3 and 7), so they will certainly choose the wrong strategy 
at one of the early steps.

After all of them change to another strategy, there are big incentives in 
continuing with it, as the intensity of choice value (β = 2.0288) being 
strictly positive prevents them from doing many random changes and the 
value of parameter J = 2.3246 prevents them from intensely deviating 
from their neighbours. Therefore, it makes sense that the starting strategy 
is brought to the brink of extinction very quickly.

Furthermore, we can also test how the model’s parameters affect strategy 
distributions. To do so, we create vectors with 101 values of three parame-
ters of interest, α/J, β and p. For each parameter, we take the calibrated 
value as the central value and generate 50 equidistant values to the left 
and the right of the central value, with the lower bound being zero and 
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the upper bound being double the central value. Thus, each of these tests 
is comprised by 100 runs of the model.

We run simulations with t = 1, 000 and discard the first 100 observations 
to avoid biases due to the very high degree of randomness before agents 
start settling into a distribution pattern that will be more representative 
of the overall trend for that specific parameter value. After doing that, we 
calculate the mean of the remaining 900.

The first test evaluates how changing the α/J ratio impacts the frequency 
distribution of strategies across producers, as this ratio captures the re-
lative weight of private incentives with respect to social incentives. This 
means that agents will give more importance to guessing the prices right 
in lieu of following their neighbourhood along. The simplest way to do so 
is keeping J = 2.3246 as it was calibrated and manipulating the value of α. 
Therefore, the interval starts at zero and is incremented by 0.0174 each 
time, thus closing at the value α/J = 1.74.

Figure 13 shows the results found, where we observe less agents choo-
sing deflationary and inflationary expectations as the α/J ratio gets larger. 
Therefore, as the deterministic private utility’s relative weight rises, a 
larger fraction of agents go with the neutral strategy, with the average 
proportion of agents choosing it getting as large as 95%. That means when 
network effects are relatively weak (i.e. when the ratio α/J is relatively 
high), the neutral strategy is the one that provides agents with the largest 
utility gains. However, for low values of α/J, which gives a small relative 
weight to private incentives, the neutral strategy is indeed more vulnera-
ble. For several values of α/J < 1, the inflationary strategy is able to hold 
a majority, and for some values around 0.1, the neutral strategy in fact is 
going extinct.

Next, we test for values of β, the parameter that determines the intensity 
of choice, accounting for bounded rationality in the model. If values of 
β are low, we expect the proportions to remain near 33% ad infinitum, 
because choices are random. Ath the same time, larger values mean that 
agents will gravitate towards the strategy with the largest utility gains.
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Figure 13 – Average strategy distribution evolution as a function of α/J
Source: own elaboration.

That means we expect that as agents become more rational – that is, with 
β raising – they will go with the strategy that has been showing the best 
performance so far, which is neutrality. Again, the interval starts at zero 
and ends at β = 4.045 (double the calibrated value) with increments of 
0.04005 each time.

 

Figure 14 – Average strategy distribution evolution as a function of β
Source: own elaboration.
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Figure 14 presents our results: for low values of β our test reflects what 
was mentioned before, with values of β < 1 leading to the three strategies 
coexisting equally in the long run, even though there is a clear distinction 
in utility gains from picking between them. Nevertheless, as predicted 
by Hommes (1997), when β rises agents pick with higher probability the 
strategy with relatively better performance in gaining utility, which is the 
neutral strategy, as the furthest value from the origin shows the largest 
proportion of neutral agents. The path is not the smoothest, but it does 
show a trend of agents moving towards the neutral strategy as decisions 
become more deterministic.

The last test is for values of rewiring probability, p, with results shown 
on Figure 15. If p = 0 then we have a regular network with no shortcuts, 
and if p = 1, a totally random network. We account for all values between 
0 and 1 with a 0.01 increment. Unlike the previous results, there is not a 
clear trend associated with raises in the rewiring probability, however the 
neutral strategy is established as a clear favourite for most values of p. It 
does remind us again that the neutral strategy is, on average, much more 
likely to emerge as the clearly dominant one, although for some values of 
p it faces decent challenge from the inflationary strategy.

 

Figure 15 – Average strategy distribution evolution as a function of p
Source: own elaboration.
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5.	 Concluding remarks

Lately, ABMs have presented themselves as a versatile, bottom-up approa-
ch aided by the advances in complexity and network sciences. These tools 
can better explain and translate the increasing complexity of markets 
in general. As such, they are able to tackle issues that can be hard to 
include in mainstream models, e.g. network effects and heterogeneous 
expectations.

Our main objective was to assess how the relaxation of some hypotheses 
affected the results of a model proposed by Ball and Romer (1989) on 
the theme of price setting. To do so, we have adapted a new Keynesian 
model into an agent-based computational model featuring heterogeneous 
agents with interactive expectations, bounded rationality and parameters 
calibrated by numerical methods. Using a regular network version as the 
benchmark, we also have added a rewiring probability to check whether 
it improved or not the model.

Each agent could, on each period, go with deflationary, neutral or inflatio-
nary expectations. The calibrated parameters presented a higher emphasis 
on the relative weight of private utility with respect to network effects 
compared to the regular network model. In the same vein, it showed a 
larger weight on deterministic utility and a higher elasticity towards one’s 
expected price level compared to the money supply. The rewiring probabi-
lity presented a rather high value showing that, when setting prices, agents 
may be highly influenced by distant nodes in the network.

While the regular network was unable to show the emergence of the neu-
tral strategy as the dominant one, by adding the rewiring probability we 
saw that happening. Some tests were done to observe other emergent 
properties, with the first one being a change to the starting conditions. By 
making all agents start with each one of the three strategies, we have seen 
that by step two of the simulation all of them change strategies, with the 
starting one going extinct and the remaining two vying for dominance.

These tests regarding the sensitivity to initial conditions show the neutral 
strategy is the strongest, and the inflationary can be said to be second 
place, as it was able to crowd out the deflationary strategy when all agents 
started as neutral (which guaranteed it would die out soon, for reasons not 
entirely clear to us).
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We also stressed all parameters to check their effects on strategies. When 
α grows, the neutral strategy becomes more dominant, showing it is stron-
ger when agents look only at their accuracy when comparing with the 
global price level. Likewise, when β grows, meaning agents become more 
rational, they gravitate towards the neutral strategy. However, changes in 
p do not show any particular trend when running the gamut from zero to 
one.

It is also most interesting that, even though we have relaxed several hypo-
theses of the original new Keynesian model, the conclusions are mos-
tly unchanged: agents reach P = Y  = 1, reinforcing that heterogeneous 
expectations and the fear of getting the price wrong compared to one’s 
peers (thus, losing out on profits) are factors that can contribute to price 
stickiness. Still, as Guerrero and Axtell (2011) point out, by stressing 
mainstream models and reaching similar conclusions, we can be more 
appreciative of the models that do hold up even under heavy scrutiny.

In fact, our main takeaway from the comparison between regular and 
complex network results is that some degree of randomness was needed to 
perfectly replicate the symmetric Nash equilibrium from Ball and Romer 
(1989), which went hand-in-hand with the emergence of the neutral stra-
tegy as the strictly dominant one. Thus, complex networks might be bet-
ter-suited to represent price setting phenomena, which makes sense as 
economic agents are not influenced only by geographical neighbours.

As this is a quite new research agenda, our hand was forced in some deci-
sions, such as the price index and calibration method choices; still, we ran 
a high amount of simulations and believe our results to be highly trust-
worthy, even if not fully optimised. Some suggestions for future research 
on the same theme would be: adding monetary policy; using a preferential 
attachments network instead of a small-world one; increasing neighbou-
rhood size; using other arrangements instead of square lattice; changing 
the calibration method and/or price index.
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