
Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

117

AN ALGORITHM FOR DETERMINING THE K-BEST SOLUTIONS OF THE
ONE-DIMENSIONAL KNAPSACK PROBLEM

Horacio Hideki Yanasse
Instituto Nacional de Pesquisas Espaciais -
INPE/LAC
Nei Yoshihiro Soma
Instituto Tecnológico de Aeronáutica - ITA/IEC
Nelson Maculan
Universidade Federal do Rio de Janeiro -
UFRJ/COPPE

Abstract
In this work we present an enumerative scheme for determining the K-best solutions (K > 1) of the one
dimensional knapsack problem. If n is the total number of different items and b is the knapsack’s capac-
ity, the computational complexity of the proposed scheme is bounded by O(Knb) with memory require-
ments bounded by O(nb). The algorithm was implemented in a workstation and computational tests for
varying values of the parameters were performed.

Keywords: Knapsack problem, K-best solutions.

Resumo
Neste trabalho apresenta-se um esquema enumerativo para se determinar as K-melhores (K > 1)
soluções para o problema da mochila unidimensional. Se n é o número total de itens diferentes e b é a
capacidade da mochila, a complexidade computacional do esquema proposto é limitado por O(Knb). O
algoritmo foi implementado em uma estação de trabalho e testes computacionais foram realizados
variando-se diferentes parâmetros do problema.

Palavras-chave: Problema da mochila, K-melhores soluções.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

118

1. INTRODUCTION

Consider the one-dimensional knapsack problem (KP),

Maximize z =
i

n

=
∑

1

cixi

 subject to
i

n

=
∑

1

aixi ≤ b

xi ≥ 0 i = 1,2,...,n and integer

Our focus in this work is on the problem of finding the K-best solutions (K > 1) for KP, instead
of just a single optimal solution.

The KP is a well known NP-hard problem and is usually considered “well solved”, since there
are methods whose running time and space requirements are bounded by pseudo-polynomial
functions in the input data, c.f. Toth [1980]; Yanasse and Soma [1987]; Soma, Yanasse, Zinober
and Harley [1992]. Additionally, specialized branch-and-bound methods for solving the KP have
a good performance in practice, c.f. Martello and Toth [1990].

Contrary to the case K = 1 where there is a vast literature (c.f. Martello and Toth [1990]), the
case K > 1 is seldom addressed. We can point out the works by Lawler [1972] and Wolsey
[1973], which do not specifically consider the KP but any discrete optimization problem, and
more recently, the work of Yanasse and Soma [1990] which addresses the value independent
knapsack problem.

Finding the K-best solutions of the Knapsack Problem (KKP) is of interest, for instance, when in
addition to the knapsack constraint, there are some others which might be difficult to consider
explicitly in a mathematical model, or if considered, would largely increase the size of the model.
By finding the best, second best, ..., K-best solution, we are able to sequentially verify these
solutions with respect to the additional constraints and stop when a solution that satisfies all of
them is found. This situation usually appears in cutting stock problems - in addition to finding
good combination of parts to be cut from a larger stock, cutting patterns must obey a series of
constraints due to limitations of the cutting machine, material handling problems, order spread,
etc.

Related to cutting, there are still other situations where the interest in finding the K-best solutions
of a KP may arise. Cutting stock problems can be modeled as a set covering problem where each
column represents a possible cutting pattern. In order to use such a formulation, we must gener-
ate at least some of the columns of the problem (the possible cutting patterns). The KP might
appear as a subproblem for pattern generation, c.f. Gilmore and Gomory [1961, 1963, 1965],
where each solution to the KP represents a cutting pattern. Generating a single pattern or several
patterns at a time might be of interest, depending on the solution procedure adopted.

Another potential interest for solving the KKP arises in some approaches to integer problems.
For instance, Maculan et al [1992] have proposed a column generation method to solve linear
programming with bounding variable constraints, extending their results to the solution of integer
problems. To solve some integer problems, their method requires a good implementation of an
algorithm for the KKP.

Our interest in finding the K-best solutions is due to the difficulty we were faced with when we
wanted to implement pseudo-polynomial algorithms for the one dimensional knapsack problem in
small portable microcomputers. For relatively small values of b and n, most DOS-based compil-
ers already complain about memory overflow. One possible way to overcome this difficulty is to
scale down the problem data. However, with the scaling operation we might loose optimality of

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

119

the solutions determined. By checking the best K solutions of the scaled knapsack, we are able to
verify them and make sure of getting the actual optimal solution for the original problem.

For the K-best KP, branch-and-bound methods do not perform as well as in the 1-best case since
branches now cannot be fathomed, lower bounds for the K-best solution being hard to obtain.
We are fairly confident that dynamic programming methods and/or other enumeration schemes
for solving the K-best KP, are as competitive as any other method in terms of computational
effort.

In the following session we propose an enumeration scheme for finding the K-best solutions to
the KP. The enumeration scheme proposed allows a better implementation than the general algo-
rithms suggested by Lawler [1972] and Wolsey [1973]. In section 3 we present computational
tests using the proposed algorithm. Finally, section 4 contains some concluding remarks.

2. The algorithm

Without loss of generality, we assume from now on that the problem data is given in such a way
that a1 ≤ a2 ≤....≤ an. For convenience, the KP with equality constraint and right hand side
equal to b is denoted by KPb.

The proposed enumeration scheme is a recursive construction of optimal solutions to KPj for all
possible values of the right hand side j, from a1 up to b. It follows closely the one presented in
Yanasse and Soma [1987, 1990]. The method proposed can be viewed as an enumeration tree,
where at each node we branch adding +1 to each one of the decision variables. So, for instance,
at node t, we branch to get nodes t1, t2, …, tn, which are the result of adding 1 to xj, j = 1,..., n
to the current solution at t (see Figure 1).

Figure 1
Branching scheme

Following a path from the initial node (node 0) to any node t gives the values to be assigned to
the decision variables in order to reach node t. Observe that adding in sequence, +1 to xj, then +1
to xk, ..., then +1 to xs or, by adding in sequence, +1 to xj, then +1 to xs, ..., then +1 to xk leads
to the same solution. Hence, to avoid duplications, when branching from a node t, it is sufficient
to consider nodes corresponding to adding +1 to decision variables with indices greater than or
equal to the index of the incoming branch at node t.

Further savings in the enumeration process are obtained by grouping nodes t and m into a super
node whenever the values of the knapsack constraint associated with these nodes are equal. This
happens when t and m correspond to different combinations of the coefficients of the knapsack
constraint leading to the same value. That is, if the decision variables in the knapsack constraint
take the values obtained with the path from node zero to node t and with the path from node 0 to
node m, the corresponding values are equal.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

120

Now, each super node t in the enumeration corresponds to the KPt. And, we know beforehand
that in our scheme we are interested in at most (b-a1) super nodes. From each super node t, we
update n-j+1 new super nodes (“branching scheme”), where j is the smallest index in super node t
for which we know there is a solution for KPt, with xj ≥ 1. The super nodes to be updated are the
ones determined by adding to t, the coefficient ap, that is, super nodes (t+ap), p = j, j+1,..., n. Of
course, only super nodes of interest are updated, that is super nodes (t+ap) ≤ b. Observe that the
above operation corresponds to adding +1 to the variables with index p, p = j, j+1,...,n. Indices
smaller than j need not be considered since the corresponding combinations they produce are
considered somewhere else. At each super node are kept the index j known to have at least one
solution for KPt with xj ≥ 1, together with its corresponding best solution. Observe that the best
solution value at a super node (t+ap), corresponding to index p, is obtained by adding to the best
optimal solution values at super node t corresponding to indices smaller than or equal to p, the
coefficient cp, p = j, j+1,...,n. Starting with super node t = 0, (the root super node, corresponding
to KP0) with index set equal to {1,2,...,n} and corresponding objective values {0,0,...,0}, the
subsequent super nodes on which to “branch” are always chosen in increasing order of t. Only
super nodes having at least one solution are considered. Once a super node t > (b-a1) is reached
for branching, we stop. The forward enumeration part has been finished.

We illustrate the forward enumeration scheme by means of a numerical example. Consider the
KP:

Maximize z = 4x1+3x2+5x3+7x4+8x5

subject to 3x1+4x2+5x3+6x4+7x5 ≤ 15

 xi ≥ 0 i = 1,2,...,5 and integer.

Initially, we start with super node 0, with an attached set of indices {1,2,3,4,5} and correspond-
ing values of the objective function {0,0,0,0,0}. Nodes 3,4,...,15 are the other super nodes whose
set of indices and corresponding objective function values are to be updated. Observe that super
nodes 1 and 2 (all super nodes t < a1) are never updated since they cannot be reached from super
node 0 (that is, there is no solution with right hand sides smaller than a1). Since the smaller in-
dex in the index set attached to super node 0 is 1, from super node 0, the following super nodes
are to be updated: (0+a1) = 3, (0+a2) = 4, (0+a3) = 5, (0+a4) = 6, (0+a5) = 7. The correspond-
ing objective function values are (0+4), (max{0,0}+3), (max{0,0,0}+5), (max{0,0,0,0}+7),
(max{0,0,0,0,0}+8), respectively. We represent this information in Table 1.

In Table 1, columns 1 to 5 give indication of the index attached to a super node. The super nodes
are indicated in the last column. The numbers filled in the table in any column j are the best ob-
jective values corresponding to a feasible solution having at least xj ≥ 1. For instance, column 4,
node 6, has a value 7, indicating that there is a solution to KP6 with x4 ≥ 1 and corresponding
objective function value equal to 7.

The subsequent super node to branch is super node 3, which is the next super node after 0 that
has at least one solution. Since the smaller index in the index set attached to super node 3 is 1
again, from super node 3, the following super nodes are to be updated: (3+a1) = 6, (3+a2) = 7,
(3+a3) = 8, (3+a4) = 9, (3+a5) = 10. The corresponding objective function values are (4+4) ,
(4+3), (4+5), (4+7), (4+8), respectively. This information is shown in Table 2.

Observe now in Table 2, that there are some rows (super nodes) with more than 2 objective
function values. This indicates a multiplicity of feasible solutions for the knapsack problem cor-
responding to that super node. For instance, from row 6, we can conclude that KP6 has at least 2
solutions with objective values 8 and 7 and one of the solutions has x1 ≥ 1 and the other x4 ≥ 1.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

121

 Table 1
 Initial updating from
 super node 0

 Table 2
 Updating from
 super node 3

Index Index
1 2 3 4 5 SN 1 2 3 4 5 SN
0 0 0 0 0 0 0 0 0 0 0 0
X X X X X 1 X X X X X 1
X X X X X 2 X X X X X 2
4 3 4 X X X X 3

3 4 3 4
5 5 5 5

7 6 8 7 6
8 7 7 8 7

8 9 8
9 11 9
10 12 10
11 11
12 12
13 13
14 14
15 15

The subsequent super node to branch is super node 4, then, super node 5 and the updating is
performed as before. We discuss further the branching of super node 6, which presents new par-
ticularities. The smaller index in the index set attached to super node 6 is 1, hence, from super node
6, the following super nodes are to be updated: (6+a1) = 9, (6+a2) = 10, (6+a3) = 11, (6+a4) = 12,
(6+a5) = 13. The corresponding objective function values are (8+4), (8+3), (8+5), (max{8,7}+7),
(max{8,7}+8), respectively. Observe that super nodes 12 and 13 are updated only with the best
objective function values 15 and 16, respectively, but there is an alternative solution in each one of
these super nodes, with corresponding objective values of 14 and 15, respectively. We present the
result of the enumeration made up to this point in Table 3 and in Table 4, the final result of the
enumeration process is displayed.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

122

 Table 3
 Updated table after branching
 from super node 6

 Table 4
Table obtained at the end of the
 forward enumeration

Index Index
1 2 3 4 5 SN 1 2 3 4 5 SN
0 0 0 0 0 0 0 0 0 0 0 0
X X X X X 1 X X X X X 1
X X X X X 2 X X X X X 2
4 X X X X 3 4 X X X X 3
X 3 X X X 4 X 3 X X X 4
X X 5 X X 5 X X 5 X X 5
8 X X 7 X 6 8 X X 7 X 6

7 8 7 X 7 X X 8 7
6 9 8 X 6 9 X X 8

12 8 11 9 12 X 8 11 X 9
11 10 12 10 X 11 10 10 12 10

13 11 11 X 10 13 12 11 11
15 12 16 9 12 15 13 12

16 13 15 14 14 16 13
14 14 17 16 16 14
15 20 13 16 19 17 15

Observe that we can easily determine a feasible solution to KP corresponding to a specified objec-
tive function value using the information in the Table. Consider, for instance, the objective function
value 19, in super node 15. The immediate information we have from the table is that there is a
solution to KP15, with objective value 19 and with x4 ≥ 1. Since x4 ≥ 1, we subtract a4 from 15,
leading to the right hand side 9 and the corresponding objective value of 12, which is determined by
subtracting c4 from 19. So, there should be a solution for KP9 with objective value 12 and, due to
the forward enumeration process, we also know that this value should be located in the table in
some column corresponding to an index smaller than or equal to 4. In fact at super node 9, the
value 12 can be found in column 1. The same reasoning is applied again. There is a solution to
KP9, with objective value 12 and with x1 ≥ 1. Since x1 ≥ 1, we subtract a1 from 9, leading to the
new right hand side 6 and the corresponding objective value of 8, which is determined by subtract-
ing c1 from 12. So, there should be a solution for KP6 with objective value 8 and we will find it in
the table in some column corresponding to an index smaller than or equal to 1. This is verified and
the same reasoning is applied again and again, until we finally reach node 0. At this stage we have
determined a solution to the equality constrained KP with right hand side 15, and objective function
value equal to 19, which in our case would be: x1 = 3, x4 = 1, x2 = x3 = x5 = 0.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

123

Recovering the K-best solutions

To recover the K-best solutions a list of the K-best objective function values to the KP is built by
traversing the super nodes from b, b-1,...,0, and by choosing the K-best solution values. Unfortu-
nately, they are not always the K-best solutions to our KP. There might be alternative solutions
with the same objective function value or a little bit smaller which are not explicitly indicated in
the final table. It is necessary, therefore, to check the existence of any other alternative solution
better than the Kth element listed so far. The only thing that can be stated at this point is that the
Kth element in the list is just a lower bound for the K-best optimal solution value of the KP.

In our previous numerical example, let us assume K = 15. The initial list containing the best K
(=15) objective function values to the KP are: 20, 19, 17, 17, 16, 16, 16, 16, 16, 15, 15, 14, 14,
14 and 13. Hence, a lower bound on the 15th-best objective function value is 13 and a check
verifying whether there are other solutions, not explicitly indicated in the final enumeration table,
better than the Kth solution, is, then, performed.

The recovering of the K-best solutions is achieved by analyzing the solutions corresponding to the
best K values already identified in the list. In the process, we search for alternative solutions
having objective values better than the Kth best value identified so far. Our search will start
analyzing the best, second best, third best and so on solutions, hoping that by analyzing first the
best solutions, there would be an increased chance of finding alternative solutions as good as the
ones being considered. Once the analysis of a Jth-best solution with value equal to the Kth best in
the list is reached we can stop. The K-best solution values are now at hand and it is necessary
only to determine the remaining solutions corresponding to the objective values in the list, which
were not considered yet.

Alternative solutions are identified in the process of recovering a solution to a specific objective
value, whenever more than one feasible solution is observed in any intermediate super node dur-
ing backtracking. For instance, in the previous recovering process example with super node 15
and objective value 19, a backtrack in super node 9 detected 3 solutions with objective values
(12,8,11) identified in the table. All three of them are feasible in the sense that super node 15 can
be reached from them and moreover, a numerical value in column 4 indicates that all these values
are in columns with indices smaller than or equal to 4. Hence, with all of them, by adding +1 to
variable x4, leads to super node 15, column 4. In this example, the objective values correspond-
ing to these alternative solutions are different: 19, 15 and 18, respectively. Only one of the solu-
tions reaches the value 19, the best value with at least one x4 ≥ 1.

The full recovery of the 15-best solutions of our numerical example is illustrated now. The proc-
ess starts with the 1-best solution value 20. Backtracking, it is seen that the value 20 in super
node 15 came by adding +1 to variable x1. Subtracting a1 from 15 yields super node 12, with
corresponding objective value of 16 = 20 - c1.

We are again in a similar situation and proceed in the same way, concluding that there is no al-
ternative solution for this case. The single solution x1 = 5, x2 = x3 = x4 = x5 = 0, with objective
function value 20 has been obtained.

The next solution to be considered is the second best one, whose objective function value is 19.
As previously pointed out, there are alternative solutions in this case. Recall that with the back-
tracking from super node 15, solution value 19, super node 9 was reached with alternative solu-
tions. In the process of analyzing these alternative solutions, we start with the largest index
smaller than or equal to 4. A solution of value 11 is found at column 4 in row 9, indicating that a
solution exists with corresponding objective function value of 18. This value is compared with the
current 15th-best value in the list to see if this solution will be included among the 15-best or is to
be discarded. In this case, a better solution has been obtained, hence, this value is introduced in
the list and the previous 15th value is deleted. With the new list, the lower bound for the 15th-
best solution is updated and the process is repeated from where it has been previously halted, i.e.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

124

from super node 9, column 4 and objective value 11. We backtrack subtracting a4 from 9. This
gives super node 3 with corresponding objective value 4. There is a single solution in node 3 and
proceeding with the backtracking up to super node 0 a solution is identified, given by x1 = 1, x4
= 2, x2 = x3 = x5 = 0, with corresponding objective value 18.

Then we return to the smallest super node where an alternative solution was identified, super
node 9 in this case. It is necessary now to move to the immediate next column with a smaller
index with a solution, that is column 3. A solution of value 8 is found, indicating that a solution
exists with corresponding objective function value of 15. Again, this value is compared with the
15th-best value in the list, and since this latter one is greater than the former, it is, therefore,
introduced in the list and the previous 15th value is discarded. The lower bound for the 15th-best
solution is updated and the process is re-launched from where it has stopped.

Since the last super node considered was the 9, column 3, with objective value 8 a backtracking
is performed by subtracting a3 from 9, reaching super node 4 with corresponding objective value
of 3. There is just a single solution in super node 4 and proceeding with the backtracking up to
super node 0 the solution x2 = 1, x3 = 1, x4 = 1, x1 = x5 = 0, with corresponding objective
value 15 is identified.

The smallest super node where an alternative solution was identified, i.e. super node 9 is consid-
ered again and the immediate next column, which has yet to be considered, with a smaller index
possessing a solution is column 1. A solution of value 12 is found, and after a backtracking no
more alternative solutions are found, and the single solution x1 = 3, x4 = 1, x2 = x3 = x5 = 0,
with corresponding objective function value of 19 is identified.

We move now to the next best value in the list not yet analyzed. At this stage, the list has
changed to 20*, 19*, 18*, 17, 17, 16, 16, 16, 16, 16, 15*, 15, 15, 14, 14, where the values indi-
cated with an * are the ones which have already been analyzed (the corresponding solutions have
already been obtained). The third best value in the list is 18 and it was considered during the
analysis of the 2nd best value. Hence, the 4th-best value, which is 17, is considered next.

Proceeding with the same reasoning, we are in super node 15, column 5, objective value 17, and
the backtracking implies in subtracting a5 from 15, reaching super node 8 which has two solu-
tions. Starting again the recovering process with the largest index smaller than or equal to 5, a
solution of value 9 is found at column 3 in row 8, indicating a solution with corresponding ob-
jective function value of 17. We backtrack subtracting a3 from 8 to reach super node 3 with
corresponding objective value 4. There is a single solution in node 3 and proceeding with the
backtracking up to super node 0 the solution x1 = 1, x3 = 1, x5 = 1, x2 = x4 = 0 is identified,
with corresponding objective value 17.

Returning to the smallest super node where an alternative solution was identified, super node 8,
we move to the immediate next column with a smaller index with a solution, that is column 2. A
solution of value 6 is found indicating a solution with corresponding objective function of 14.
Since this is worse than the 15th-best value in the current list, this solution is discarded. No more
alternative solution are present, we then move to the 5th-best value of the list, which is again 17.

This is in super node 14, column 3, objective value 17, and a backtracking is carried out by sub-
tracting a3 from 14 reaching super node 9. In this super node there are 3 solutions,. however,
only two of them with indices smaller than or equal to 3. Starting with the largest index smaller
than or equal to 3, a solution of value 8 is found at column 3 in row 9, indicating a solution with
corresponding objective function of 13. Since this is worse than the 15th best current value, this
solution is disregarded and the next alternative solution is examined. Moving to the immediate
next column with a smaller index and with a solution, that is column 1, a solution of value 12 is
found indicating a solution with corresponding objective function of 17. Since this solution is
better than the 15th best in the list, we proceed with the backtracking, arriving at the solution x1

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

125

= 3, x3 = 1, x2 = x4 = x5 = 0, with corresponding objective value 17. No more alternative solu-
tions are present, so the 6th-best value of the list, which is 16, is examined next.

Proceeding with this analysis, a stage is reached when the 15th-best value is 15 and there are
only values 15 in the list to be analyzed. In this case, we are sure that the 15th best value in the
list is the optimal value of the 15-best solution of the KP and hence, further searches for alterna-
tive solutions are not necessary; what is left is just the recovering of the solution corresponding
to each one of the remaining values of the list.

The 15-best solutions to our numerical example are presented in Table 5.

Table 5
15-best solutions to

the example

Index
1 2 3 4 5 OV
5 0 0 0 0 20
3 0 0 1 0 19
1 0 0 2 0 18
1 0 1 0 1 17
3 0 1 0 0 17
2 1 1 0 0 16
0 0 0 0 2 16
1 0 1 1 0 16
2 0 0 0 1 16
4 0 0 0 0 16
0 1 1 1 0 15
0 0 3 0 0 15
1 1 0 0 1 15
0 0 0 1 1 15
3 1 0 0 0 15

As can be seen, the memory requirements for the proposed enumeration scheme is O(n(b-a1)). In
fact, if K < n, we need to keep only K values for every super node t corresponding to KPt, t =
a1,...,b. Hence, memory requirements for the algorithm is O(min{K,n}(b-a1)), and in particular,
for K =1, O(b-a1). The computational complexity of the algorithm is bounded by O((K+1)n(b-
a1)), since the forward enumeration is bounded by O(n(b-a1)) and to recover the K solutions (any
K), we surely require no more than O(K min{K,n}(b-a1)) operations (we, at worse, must back-
track this much of the forward enumeration performed, for each one of the solutions). Generally,
recovering each solution is quite straightforward taking O((b-a1)/a1) operations, hence, the recov-
ery time for the K-best solutions will generally be smaller compared with the forward enumeration
time. This was observed with the computational results presented in the next section.

3. Computational experiments

We performed some computational tests to observe the effect on computational time of varying
values of the right hand side b, the number of variables n, and the number, K, of best solutions
desired. For each set of parameters tested, a fixed sample size of 20 was used. The test problems

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

126

were constructed artificially with all coefficients aj of the knapsack constraint generated ran-
domly in the interval [1,5000].

Our proposed enumeration scheme was implemented in C++ on an IBM RISC/6000, Model
580H, with an IBM Power PC 2 processor and 256 Mbytes of RAM memory. All processing
times were measured in seconds.

For the first set of tests, we varied the number of the K-best solutions required. K was set to 100,
200, L, 2800, 2900. b was set to 10000 and n to 500. Figure 2 presents the results.

n=500, b=10000

13
57
9111315171921232527

100

300

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

K

sec

Forward Backward TOTAL

Figure 2
Computational times with varying K

In the second set of problems we varied the number of variables n. n varied from 100 to 1050 in
steps of 50. K and b were fixed respectively to 1000 and 10000. The results are shown in Figure
3.

K=1000, b=10000

0

2

4

6

8

10

12

14

16
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

n

sec

Forward Backward TOTAL

Figure 3
Effect of varying n.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

127

In the last set of tests we varied the value of b from 5000 to 16000, in steps of 1000. The number
of variables and K were fixed in 500 and 1000, respectively. The results are presented in Figure
4.

K=1000, n=500

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8
8,5

9
9,5
10

10,5
11

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

b

sec

Forward Backward TOTAL

Figure 4
Effect of varying b

The forward enumeration becomes responsible for most of the processing time, as n increases.
Retrieving the solutions demands an amount of time which depends on K and n, but we observed
that it is quite insensitive with respect to variations in the value of b (perhaps because of the
small variations of this parameter for the tests performed). Its contribution to the overall com-
puter processing time sharply decreases (percentagewise) as the size of the problem increases.
For K < n, the time complexity of the recovery phase should vary as K2b and for K > n as Knb.
The backward curve in Figure 2 suggests a quadratic behaviour with K, even for K larger than n.
A possible explanation for this behaviour is due to the fact that all the tests were run using the
same implemented version of the algorithm where the number of columns was maintained fixed.
Recall that in case of K < n, only K columns are needed to be carried on in the forward enu-
meration. Another explanation is the computational time spent to sort the solutions. Recovered
solutions are sorted as they are obtained, however, no special care was taken to use an efficient
sorting routine in the implemented version of the algorithm. Therefore, the curves in Figure 2 are
overestimating the actual ones that would have been obtained with an improved implementation.

4. Concluding remarks

As stated previously, we were unable to obtain other references on the KKP. The general meth-
ods proposed by Lawler [1972] and Wolsey [1973] can be applied to the KP but the implemen-
tation proposed here is better. Lawler's method has a computational complexity of O(Kn2(b-a1))
and the computational complexity of Wolsey's method is hard to determine since it uses a series
of branch-and-bound problems. We have yet to perform computational tests comparing all these
methods.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

128

The proposed enumeration scheme can be easily extended to solve knapsack problems with
bounded variables, in particular the 0-1 case. Notice that the equality constrained KP can also be
easily solved. In fact it was solved as a by-product of our proposed enumeration scheme.

Improved computational time performance might be obtained if additional information are kept.
For instance, we can keep in another array, the index and the best value for each super node.
Hence, these optimal solutions for each KPt, will be ready for consulting when needed, other-
wise, every time we need such information at each super node, it is necessary to make a search
among n elements.

It is of course possible to have an implementation of the algorithm with a reduced memory re-
quirement. The authors can propose an implementation using O(b-a1) of memory space but the
computational effort to recover the solutions will be much increased.

We would like to observe that the proposed enumeration scheme presented is just the KP solved
as a longest path problem, where we are interested in finding the longest path from node 0 to
node b. The "distance" from a node j to a node j+ak in the "knapsack graph" is given by ck, for
each one of the nodes j = 0, 1, 2,..., b, and for every k = 1,2,..., n (see Figure 5).

0 1 2 j j+a b
k

c
k

c
1

c
n

0 0 0
0

0

.
.

.

.
.

.

.
.

.

 Figure 5
 KP as a longest path problem

With the implementation proposed here many arcs of the graph are not considered, thus avoiding
duplicated analysis of equivalent solutions. Additional information of intermediate paths is kept
so that information on alternative solutions and not only the best solution are retrieved with in-
creased efficiency. It is important to note that other known algorithms for solving the KKP,
based on the approach suggested previously, e.g. Katoh, Ibaraki and Mine [1982], Perko [1986],
Sckiscim and Golden [1989] and, more recently, Eppstein [1994], are designed for the 0-1 case.
No direct comparison among those methods with the one suggested here can be made, since the
corresponding number of varivables (n) increases for the 0-1 case, which, in turn, affects the
quantity of arcs in the "knapsack graph".

Note that the computational complexity of finding the K-longest loopless paths from node 0 to
node b, in a general network with (b+1) nodes using the proposed enumeration scheme is
O((K+1)b2). Exactly the same reasoning can be applied to find the K-shortest loopless paths in a
network, hence, with the same computational complexity. Observe that in terms of computational
complexity this scheme to solve the K-shortest loopless paths in a network is better than the one
suggested by Lawler [1972] which requires O(Kb3).

Acknowledgements: The authors acknowledge Mr. Rodrigo de Castro Penna Franca for the im-
plementation and computational results. This work was partially funded by CNPq – Conselho
Nacional de Desenvolvimento Científico e Tecnológico and FAPESP – Fundação de Amparo à

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

129

Pesquisa do Estado de São Paulo. The authors also thanks for the comments of the anonymous
referees that improved the presentation of the paper.

References

(1) Eppstein, D. (1994) Finding the k Shortest Paths, Proc. 25th IEEE Annual Symposium on
Foundation of Computer Science, 154-165.

(2) Gilmore, P.; Gomory, R. (1961) A linear programming approach to the cutting stock prob-
lem. Operations Research, 9, 849-859.

(3) Gilmore, P.; Gomory, R. (1963) A linear programming approach to the cutting stock problem
- part II. Operations Research, 11, 863-888.

(4) Gilmore, P.; Gomory, R. (1965) Multistage cutting stock problems of two and more dimen-
sions. Operations Research, 14, 1045-1074.

(5) Katoh, N.; Ibaraki, T.; Mine, H. (1982) An efficient algorithm for the shortest simple paths,
Networks, 12, 411-448.

(6) Lawler, E.L. (1972) A procedure for computing the k-best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18 (7), 401-
405.

(7) Maculan, N.; Michelon, P.; Plateau, G. (1992) Column-generation in linear programming
with bounding variable constraints and its application in integer programming. Pesquisa Op-
eracional, 12 (2), 45-57.

(8) Perko A. (1986) Implementations of algorithms for k shortest loopless paths, Networks, 16,
149-160.

(9) Martello, S.; Toth, P. (1990) Knapsack problems - Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester.

(10) Sckiscim C.C. and Golden, B.L. (1989) Solving k-shortest and constrained shortest path
problems efficiently, Annals of Operations Research, 20, 249-282.

(11) Soma, N.Y.; Yanasse, H.H.; Zinober, A.S.I.; Harley, P. J. (1992) A pseudopolylogarithmic
algorithm for the subset sum problem. CO92 - Combinatorial Optimization Conference, Uni-
versity of Oxford, Oxford, England.

(12) Toth, P. (1980) Dynamic programming algorithms for the zero-one knapsack problem,
Computing, 25, 29-45.

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

130

(13) Wolsey, L.A. (1973) Generalized dynamic programming methods in integer programming.
Mathematical Programming, 4, 222-232.

(14) Yanasse, H.H.; Soma, N.Y. (1987) A new enumeration scheme for the knapsack problem.
Discrete Applied Mathematics, 18, 235-245.

(15) Yanasse, H.H.; Soma, N.Y. (1990) Finding the k-best solutions to a value independent
knapsack problem. IFORS XII, Athens, Greece.

Appendix – The K-best algorithm

Given
positive integers b, n, K, ai, i = 1, 2, ..., n,

such that
n ≤ K and a1 ≤ a2 ≤....≤ an,

non-negative real numbers ci, i = 1, 2, ..., n. If for some i, ai = ai+1 then ci ≥ ci+1.
Notation
• Variables in bold indicate vectors;
• 0 is a vector with all components equal to 0.
• 1 is a vector with all components equal to 1.
• // line with comments

The algorithm

Main Program
Begin-Main
// Begin-Initialization

Generate matrix MbXn

M(r,s) ← -1, r = 1,...,b and s = 1,...,n
// End-Initialization

// Begin-Forward Enumeration
// Begin initial ramification

For j = 1 to n do M(aj,j) ← cj;
// End-initial ramification
// Begin-ramification of supernodes

For t = a1 to (b - a1) do
Begin-For

 m ← n+1;
m ← min {i : M(t,i) ≥ 0, i = 1, … n};
If (m ≠ n+1) Then
Begin If

z ← M(t,m);
For i = m to n do

Begin-For
If (t+ai) ≤ b Then
Begin-If

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

131

If (M(t,i) > z) Then z ← M(t,i);
M(t+ai,i) ← z+ci;

End-If
 End-For
End-If

End-For
// End-ramification of supernodes

// End-Forward Enumeration
// Begin-Backward Recovering

Execute Build-initial-best-K-list (L,P,K)
// P is equal to K if there are at least K best values available; L(i) is the ith best solution in
// the list and is characterized by 5 attributes: L(i).X the vector solution, L(i).V the
// objective function value, L(i).J and L(i).T which are, respectively, the original column
// and line in matrix MbXn where the solution was identified, and L(i).C, an 0-1 control
// variable that indicates whether the vector solution L(i).X has already been
// recovered or not.
Execute Recover-solution (L,P,K)

// End-Backward Recovering
End-Main

Procedure Build-initial-best-K-list (L,P,K)
Begin // Build-initial-best-K-list
// List of K elements are ordered at a time. Lists are combined when necessary. Many other
// alternative ways to find the initial K-best elements exist (e.g. Binary Search Tree
// with post-order)

Counter ← 0;
i ← b+1;
Fim ← False;
Moreleft ← False;
While (i > a1) do
Begin-While

i ← i-1;
j ← n+1;
While (j > 1) do
Begin-While

j ← j-1;
If (M(i,j) ≥ 0) Then
Begin-If

Counter ← Counter + 1;
L(Counter).V ← M(i,j);
L(Counter).J ← j;
L(Counter).T ← i;
If (Counter = K) Then
Begin-If

i1 ← i;
j1 ← j;
Moreleft ← True;
i ← 0;
j ← 0;

End-If

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

132

End-If
End-While

End-While
P ← Counter;
Sort in non-increasing order, L(i) i = 1, ..., P, using attribute L(i).V
If ((P = K).AND.((i1 > a1).OR.(j1 > 1)) Then Fim ← True;
While (Fim) do
Begin-While

Counter ← 0;
i ← i1+1;
Fim ← False;
While (i > a1) do
Begin-While

i ← i-1;
j ← n+1;
If (Moreleft) Then
Begin-If

j ← j1;
Moreleft ← False;

End-If
While (j > 1) do
Begin-While

j ← j-1;
If (M(i,j) > L(K).V) Then
Begin-If

Counter ← Counter + 1;
L1(Counter).V ← M(i,j);
L1(Counter).J ← j;
L1(Counter).T ← I;
If (Counter = K) Then
Begin-If

i1 ← i;
j1 ← j;
Moreleft ← True;
i ← 0;
j ← 0;

End-If
End-If

End-While
End-While
P1 ← Counter;
Sort in non-increasing order, L1(i) i = 1, ..., P1, using attribute L1(i).V
If (L1(1).V > L(K).V) Then using lists L and L1, build a sorted list (non-increasing or-

der) of the K objects having the largest V attribute. Assign this list to L(i), i = 1, ..., K;
If ((i1 > a1).OR.(j1 > 1)) Then Fim ← True;

End-While
For i = 1 to P do
Begin-For

L(i).X ← 0;
L(i).C ← 0;

End-For

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -
__

133

End // Build-initial-best-K-list

Procedure Recover-solution (L,P,K)
Begin // Recover-solution

i ← 0;
While (i ≤ P) do
Begin-While

i ← i+1;
If (L(i).C = 0) Then
Begin-If

AUXL ← L(i);
Call Backtracking (L, AUXL,i,P,K);
L(i) ← AUXL;

End-If
End-While

End // Recover-solution

Procedure Backtracking (L,AUXL,i,P,K)
Begin // Backtracking

t ← AUXL.T;
j ← AUXL.J;
z ← AUXL.V;
zcum ← 0;
While (t > 0) do
Begin-While

t ← t – aj;
z ← z – cj;
zcum ← zcum + cj;
AUXL.X(j) ← AUXL.X(j)+1;
j ← {s : M(t,s) = z, 1 ≤ s ≤ j};
j1 ← AUXL.J;
If (t > 0) Then Call Search-alternative-solution (t,j,zcum,j1,i,L,P,K);

End-While
AUXL.C ← 1;

End // Backtracking

Procedure Search-alternative-solution (t,j,zcum,j1,i,L,P,K)
Begin // Search-alternative-solution

For s = 1 to j1 do
Begin-For

If (s ≠ j) Then
Begin-If

If (M(t,s) ≥ 0) Then
Begin-If

If ((M(t,s)+zcum) ≥ L(P).V) Then
Begin-If

Determine position g : g > i to insert this alternative solution in ordered list L;
If (P < K) Then P ← P+1;

- Pesquisa Operacional Vol. 20, No. 1, junho de
2000
__

134

f ← P;
While (f > g) do
Begin-While
 L(f) ← L(f-1);
 f ← f-1;
End-While
L(g).V ← M(t,s) + zcum;
L(g).J ← L(i).J;
L(g).T ← L(i).T;
AUXL1.V ← M(t,s);
AUXL1.J ← s;
AUXL1.T ← t;
AUXL1.X ← 0;
Call Backtracking (L,AUXL1,g,P,K);
L(g).C ← 1;
L(g).X ← L(i).X + AUXL1.X;
If (M(t,s) ≥ L(P).V) Then
Begin-If

Determine position k : k > g to insert this alternative solution in ordered list L;
If (P < K) Then P ← P+1;
f ← P;
While (f > k) do
Begin-While

L(f) ← L(f-1);
f ← f-1;

End-While
L(k) ← AUXL1;

End-If
End-If

End-If
End-If

End-For
End // Search-alternative-solution

