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Abstract 
 
DEA is a well-established, widely used, and powerful analytical resource in the toolbox of the OR/MS 
analyst. It is used to assess relative efficiency of many, functionally similar, entities. It has applications 
in diverse areas including finance and banking, education, and healthcare. DEA is computationally 
intensive and, as the scale of applications grows, this intensity rapidly becomes one of the limiting 
factors in its utility. In this paper, we explore computations in DEA. We investigate the theory behind 
schemes, procedures and algorithms used in performing a DEA study and we report on current 
practices ranging from the basic and standard to the advanced and sophisticated. Our objective is to 
give researchers and practitioners an appreciation for the computational aspects of DEA that will 
permit them to understand the performance, problems, complications, limitations, as well as the 
potential of this technique. 
 
Keywords: data envelopment analysis (DEA), linear programming, computational geometry. 
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1. Introduction 

Data Envelopment Analysis (DEA), as originally proposed by Charnes et al. in 1978, is a 
non-parametric frontier estimation methodology for evaluating relative efficiencies and 
performance of a collection of related comparable entities (called Decision Making Units or 
DMUs) in transforming inputs into outputs. DEA’s domain can be any group of many 
entities characterized by the same set of multiple attributes. DEA is a powerful quantitative 
tool that provides a means to obtain useful information about efficiency and performance of 
firms, organizations, and all sorts of functionally similar, somewhat autonomous, operating 
units. This methodology is nonparametric in the sense that it does not require an assumption 
about a functional form of the efficient frontier and, therefore, no parameter estimation, 
making it useful in a wide variety of applications. DEA clusters the entities as “efficient” or 
“inefficient” depending on their relative geometric location with respect to an empirical 
efficient frontier. The comparison is strictly in relation to the members of the subject group. 
DEA provides decision makers with information about how well subordinate units transform 
the resources they manage locally into the outputs that are necessary to achieve the 
operation’s mission. 

Modern DEA encompasses diverse areas and motivates work from researchers with sundry 
backgrounds. The field traces its origins to the seminal works in the economics literature of 
Debreu (1951), Koopmans (1951) and Farrell (1957) and, to this day, issues such as returns 
to scale of transformation processes motivate many new works with an economics 
perspective. DEA’s relevance and impact is broad as witnessed by the eclectic array of 
applications where this methodology has been validated. DEA has been applied in 
education, finance, agriculture, sports, marketing, manufacturing; to name just a few. 
Implementation and application research frequently involves the participation of researchers 
in classical MS/OR. MS/OR can be said to be the home of DEA because of this and 
because of the methodology’s inextricable relation with linear programming (LP). Other 
formal areas from which DEA extracts and contributes knowledge is convex analysis and 
computational geometry. All this can make works on DEA quite mathematical. Related to 
these areas, and of special interest here, are the algorithmic and computational aspects of 
DEA. DEA presents rich challenges in algorithm design and computational performance. 
The reader may begin to become familiar with a vast body of literature behind these different 
lines of research in DEA by turning to Seiford’s (1996) work. This paper will be a contribution 
to the last of the topics above; namely, convex analysis, computational geometry, and 
algorithms. 

This article is a comprehensive presentation of the theory behind computations in DEA. 
We consider the elements of DEA that impact computations; make connections with other 
areas that contribute and help understand these computations; explore the geometry of the 
objects behind DEA; and present the current procedures that involve computations when 
performing DEA analyses. We avoid facts, figures, and discussions that would date the 
paper; e.g., matters having to do with computational times since these depend so much on 
technology or commentaries on specialized commercial DEA software since this comes 
and goes and, as with technology, also evolves. We have elected to offer an expository 
narrative to make it enjoyable to read and easy to understand and to this end, we have 
kept notation and formulas to a minimum. However, this is not at the expense of accuracy 
and rigor. 
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2. DEA objectives and computations 

The data set for a DEA study is a finite collection of points in multidimensional space. 
A DEA entity is defined by a vector of values; one for each attribute. To each entity, there 
corresponds a point and the dimension of each point is the number of attributes (e.g., inputs 
plus outputs) in the study. One assumption on technology can give rise to the four standard 
“convexified” returns to scale models in DEA (as opposed to the nonconvex “free disposal 
hull” model of, e.g., Deprins et al. (1984)). A full DEA analysis involves the individual 
“scoring” of each of the entities’ vector once the returns to scale assumption has been 
specified. This score depends on the values of the components of the vector somehow 
compared to the values of the rest of the data points in the study. The score is used to classify 
the entity as either efficient or inefficient. 

The score of an entity in a DEA study depends on its relation to a constrained linear 
combination of the data set. The four different convexified returns to scale models are a 
result of different linear combinations of the same data set. In a variable returns 
transformation environment the comparison is made with convex combinations of the data. 
This is the, so called, “BCC” model of Banker et al. (1984). If the relative position with 
respect to the rest of the data is independent of any uniform scaling of the data points, the 
comparison is made with just nonnegative linear combinations of the data. This is the 
constant returns or “CCR” model of Charnes et al. (1978). In between variable and constant 
returns to scale assumptions we have increasing and decreasing returns. In the first, the 
linear combinations used in the comparison are allowed coefficients that add up to less than 
unity and in the other the coefficients can add up to values greater than one. 

The four assumptions about returns to scale engender polyhedral sets that “envelop” the data 
in four different ways. Each of these sets is called a production possibility set in DEA. The 
polyhedral sets are defined by constrained linear operations of a finite list of points; 
therefore, they are an external representation in the sense of Rockafellar (1970), rather than 
an internal representation characterized by the intersection of halfspaces. In any case, as 
finitely generated polyhedral sets, they are always convex. The problem of scoring an entity 
under any one of these returns to scale assumptions requires locating the vector of the entity 
in the appropriate production possibility set with respect to a portion of its boundary. The 
specific portion of the boundary is referred to as the efficient frontier. The fundamental 
questions in DEA are: i) is the point in the interior or on the boundary? And, ii) if on the 
boundary, is it on the efficient frontier? 

Whether a point is in the interior or on the boundary of a production possibility set can be 
ascertained using supporting hyperplanes. A point is on the boundary of the production 
possibility set if and only if there exists a supporting hyperplane with support set which 
includes the point. This relation between point and supporting hyperplane suggests two 
approaches. One is to start with a hyperplane and then proceed to identify data points in a 
support set of a translation of the hyperplane. Such points would necessarily be boundary 
points of the production possibility set. This idea is behind many preprocessors in DEA 
because of its computational simplicity. The second approach is to start with a point and then 
try to determine the existence of a supporting hyperplane there. This can be achieved by 
constructing a linear system such that a solution exists only if the point is on the boundary. 
The second approach, unlike the first, can be used systematically on each of the data points 
to establish conclusively their position relative to the boundary of the production possibility 
set. One practical way to establish the feasibility of a linear system is to use linear programming. 
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The second fundamental question posed above requires a difficult distinction. Determining 
whether a boundary point is on the efficient frontier of the production possibility set is not as 
straight forward as a determination about whether the point is on the boundary or not. The 
distinction as to where on the boundary a point is located causes theoretical and 
computational complications that many would rather, and actually do, ignore. The boundary 
of the production possibility set can be partitioned into two regions: the efficient frontier and 
the “free disposability” region. Part of the problem is that neither of the two regions is 
convex. The necessary and sufficient conditions to classify points in these regions exist; 
namely, a point is on the efficient frontier of the production possibility set if and only if there 
exists a supporting hyperplane at the point such that all the coefficients of the attributes are 
non-zero. The problem is that the existence of a supporting hyperplane at a point such that 
one or more of the coefficients of the attributes is zero is not sufficient to conclude that the 
point is not on the efficient frontier. Note that the condition requires that some hyperplane 
exist with the required characteristic. Data points on the free disposability region of the 
production possibility set are called weak efficient; a misnomer in terms of DEA since these 
are not points in the efficient frontier. A commentary to the original DEA LP proposed by 
Charnes et al. (1978, 1979) addresses this issue directly. Their LP provides necessary and 
sufficient conditions for a point to be on the efficient frontier. The implementation of this LP, 
however, is problematic because it requires an explicit numerical value for an arbitrarily 
small constant the, so called, nonArchimedean constant. We will say more about the role of 
weak efficiency in DEA computations later. 

Modern DEA and linear programming have been intimately and inextricably related since its 
origins in 1978. DEA was originally presented, interpreted, and understood in terms of the 
solution to a linear program in Charnes et al. (1978). Since then, many LP formulations have 
been proposed for DEA. All of them can be viewed as devices to identify the location of a 
point with respect to the boundary of the production possibility set. Different LPs, however, 
have different purposes and provide different information. For example, the original LP in 
Charnes et al. (1978) provides information about extending interior points to the boundary to 
provide benchmarks (suggested boundary counterparts that can be used to make 
recommendations for attaining efficiency) and its optimal solution conclusively classifies 
DMUs as efficient or inefficient. Other LPs are simplifications of this original formulation 
with the same benchmarking capabilities but without the assurance of a conclusive 
distinction between efficient and weak efficient DMUs. Yet others forego entirely 
benchmarking considerations and are formulated specifically to provide conclusive 
classifications. An example of such LPs are the additive forms of Charnes et al. (1985) and 
the slack-based measures generalizations of Pastor et al. (1999) and Tone (2001). So, 
depending on the returns to scale assumption, the information requirement of the analysis, 
and the approach to address the complications of weak efficiency, there is a multitude of LPs 
from which to choose and this selection is an important part of the modeling process. 

We may, of course, solve either one of a primal-dual pair of LPs to obtain the information 
needed for a DEA classification. One of the problems in this pair will be the multiplier 
formulation and the other the envelopment formulation. The multiplier LP is in the space of 
the attributes plus one more structural variable for returns to scale when it is not constant. 
The optimal solution to a multiplier LP will be the parameters of a hyperplane that supports 
the production possibility set. Structural variables in envelopment formulations are 
associated with DEA data points. The optimal solution will be information on a subset of the 
data points that define a facet of the production possibility set where a benchmark is located 
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(efficient DMUs are their own benchmarks). This LP has a strong intuitive appeal and is 
typically the one use to explain, understand, and visualize DEA. 

The solution to an LP will conclusively classify a point as interior or boundary with respect 
to the production possibility set. An obvious algorithm for DEA emerges from this property 
of these special LP formulations. It consists simply of iteratively solving an LP for every 
point in the data set. This is the “standard” basic algorithm for DEA and it is widely used in 
actual practice. It is easy to apply manually for small problems and can be coded directly in a 
language such as Visual Basic for Applications (VBA) when the data is in a spreadsheet. 
This algorithm requires the solution of as many linear programs as there are points in the 
data set. This means, however, that a DEA analysis on a large data set using the standard 
approaches is computationally intensive. 

We can begin to appreciate the computational demands of a DEA analysis using the 
standard, LP-based, algorithm. Let us use the familiar linear regression procedure as a 
standard since the data sets used in the two methodologies are quite similar: a dense long and 
narrow rectangular matrix. Regression requires a sequence of elementary operations on 
dense matrices and the solution of a linear system. The solution of one LP is many times this 
amount work, as many times as the iterations required to attain optimality which, according 
to practical experience and in ideal circumstances, is roughly three times the number of rows 
of the technology matrix. A DEA analysis requires the solution of as many LPs as there are 
data points and, as it turns out, the circumstances are not always ideal. This means that DEA 
is orders of magnitude more computationally demanding and much more susceptible to the 
impact in the increase in the number of attributes and data points than regression. 

The heavy computational demands of a DEA analysis have motivated considerable work on 
improving efficiency and performance. This work can be classified into three categories: 

1) Preprocessors. There are several “quick and dirty” ways to identify boundary and/or 
interior DMUs. These procedures may be used to preprocess DEA data. They reveal 
the status of some (possibly all) DMUs quickly and efficiently without paying the full 
computational price of an LP. In general, preprocessing schemes consist of clever 
observations, quick assessments, and opportunistic calculations, which reveal the status 
of DMUs. The price paid for potential computational reductions is unpredictability and 
the absence of a guarantee of a conclusive resolution of the final status of all DMUs. 

2) Enhancements and alterations to standard procedures. Besides all that can be done to 
speed up LPs, there are specific actions as the algorithm proceeds or to the sequencing 
of the instructions that have been shown to improve substantially the performance. 

3)  New algorithms. After all the improvements and modifications to the standard 
approach, there are still performance limits as the scale of the problem increases. New 
algorithms are required to solve problems that exceed these limits. 

We now proceed to discuss technical aspects of DEA computations and the different ideas to 
improve performance. In the next section we see how DEA is related to problems in a 
seemingly unrelated area, computational geometry. 

 
3. DEA and Computational Geometry 

To understand the role of computations in DEA it is helpful to establish a connection 
between it and a well-known problem in computational geometry: the problem of identifying 
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the extreme points of the polyhedral hull of a finite collection of points. All we need in terms 
of notation to move ahead with our discussion is that there are n DMUs and m attributes 
per DMU. 

A finitely generated polyhedral set is a convex polyhedron constructed using constrained 
linear operations on a finite list of data points called the set’s generators. We will refer to 
these sets as polyhedral hulls of the points. The shape of a polyhedral hull depends on the 
nature of the linear operations and coefficient’s constraints on the generators. Production 
possibility sets in DEA are the polyhedral hulls of the n data points corresponding to the 
DMUs in the model. The different returns to scale assumptions define the operations and 
constraints applied to the n generators which, in turn, define different polyhedral hulls. All 
these objects reside in ℜm. The constant returns to scale assumption generates a cone with 
multiple extreme rays. The other returns to scale assumptions all define polyhedral hulls that 
are polyhedrons with (possibly) multiple extreme points. The problem of distinguishing 
efficient from inefficient in DEA and that of finding the extreme elements (points, for 
variable, increasing and decreasing returns to scale and rays, for constant returns to scale) of 
a polyhedral hull have much in common. 

A familiar polyhedral hull is the convex hull. The polyhedral hulls generated in DEA are 
supersets of the convex hull of the data. Unlike convex hulls, DEA polyhedral hulls are 
unbounded and the recession cones depend on the returns to scale. All recession cones in 
DEA, however, contain a full orthant of ℜm. For a rigorous description of DEA polyhedral 
sets refer to Dulá et al. (1995, 2001) and Dulá (1997). 

Given a finite set of points in ℜm and a polyhedral hull generated by them, we may ask two 
basic questions: i) What intersection of halfspaces define the hull, and ii) what are the 
extreme elements of the hull. The first question is notoriously hard. There is no escaping the 
fact that it will take a combinatorial number of operations to present the hull as a solution to 
a system of linear inequalities and, as the size of the problems increase, any such procedure 
will eventually explode. Any attempt at finding an efficient algorithm to attain this 
representation is doomed to failure. There is however, considerable amount of work on this 
question simply because there are many applications in computational geometry; e.g., 
Chand et al. (1970), Wets (1990); and many others, and Yu et al. (1996) and Olesen & 
Petersen (2001) for attempts to address this question in the context of DEA. 

Fortunately for DEA, the second question above is not as difficult. Finding the extreme 
elements of the polyhedral hull of a finite list of points is a much simpler proposition. This 
problem has also been intensively studied because it has many applications in computational 
geometry, optimization, statistics, and, as we are about to see, DEA. Procedures and 
applications appear in Wets et al. (1967), Dulá et al. (1996, 1998). The extreme elements of 
a polyhedral hull will be a subset of the data points known as the frame. An important 
observation about frames of polyhedral hulls is that they are sufficient to express the original 
full hull; that is, the polyhedral hull of the frame is the same as the polyhedral hull of the 
entire data set. The question of finding a frame can be reduced to one of feasibility of linear 
systems since a point is extreme in a polyhedral hull if and only if it is not in the same sort of 
hull of the remaining points. When the question is one of feasibility of a linear system, the 
indicated approach is linear programming. The naïve algorithm that emerges from this 
observation is simply to apply a linear program to each of the data points, one at a time, to 
establish whether it is an element of the frame. 
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The naïve algorithm for finding the frame of a hull of a finite list of points sounds very 
similar to the standard procedure for DEA described in the previous section; namely, solve 
an LP for each of the data points. The similarity, actually, goes deeper. It turns out that the 
extreme elements of a DEA production possibility set will necessarily correspond to efficient 
DMUs (Dulá et al., 2001). Therefore, finding the frame of a DEA production possibility set 
solves part of the problem of identifying the efficient DMUs. Moreover, the author’s 
experience with large, randomly generated, data sets has shown that the complement of the 
frame is almost always the set of inefficient DMUs. 

The connections between finding frames in polyhedral sets and DEA is a happy relation. 
Two collateral benefits are immediately evident: i) all previous work about frames of 
polyhedral hulls as in Wets et al. (1967), Dulá et al. (1992, 1996, 1998) bears directly on 
DEA, and  ii) a natural algorithm for DEA is available based on finding frames first and 
using them to score the rest of the DMUs. 

In the next section we begin our presentation about computations in DEA. We start it off 
with a discussion of preprocessors. 

 

4. Preprocessors for DEA 

Several preprocessing ideas have been proposed for the frame problem in computational 
geometry and these have been successfully applied in DEA. A preprocessor is effective when 
it conclusively determines the status of one or more DMUs without having to pay the full 
computational price of an LP solution. All preprocessors discussed here reduce to finding a 
support set for specified family of hyperplanes. Preprocessors fall into the following 
categories: 

1) Sortings. Unique maximum and minimum attribute values over the entire data set can 
correspond to extreme points of a polyhedral hull depending on its recession cone 
Dulá et al. (1992). Therefore, simple sortings based on each attribute can detect 
efficient entities depending on the type of production possibility set. A sorting based 
on maximum and minimum attribute values corresponds to translating a special 
hyperplane the coefficients of which are all zero except for one attribute. These 
hyperplanes are perpendicular to one of the axes of ℜm and parallel to the rest of the 
space. Other kinds of sortings that work as preprocessors are possible (see Rosen et al., 
1992). The effort involved in sorting is minimal and for the variable returns model, as 
many as 2m different efficient DMUs may be identified this way. 

2) Translating Hyperplanes. The simple sorting idea above is generalized by using 
arbitrary hyperplanes. Unique data points that yield maximum or minimum level 
values for families of arbitrary parallel hyperplanes are extreme-point supports of the 
production possibility set. Any arbitrary hyperplane has the potential to uncover an 
extreme point or ray. Complications can occur in the event of ties since then the 
assurance that the supports are extreme elements is lost. Procedures based on such 
translating hyperplanes are relatively inexpensive requiring only m-dimensional inner 
products and the identification of the largest or smallest value in a list (see Dulá et al., 
1992). Because of the flexibility in the choice of hyperplanes, these preprocessors can 
reveal any number of new efficient DMUs, and, in the limit, they will find them all. 
They cannot, however, guarantee the identification of all efficient DMUs in a finite 
number of attempts. 
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3) Rotating hyperplanes. In the same way that a hyperplane can be translated until it 
supports a polyhedral hull, a family of rotating hyperplanes can be characterized. The 
idea that a supporting hyperplane “anchored” at an extreme point can be rotated to 
obtain new supporting hyperplanes that reveal the status of previously unknown 
extreme points is presented in Dulá et al. (2001b). The computational price amounts 
to inner products and minimum ratio tests. 

The preprocessors described above are limited to identifying efficient DMUs since they are 
based on supporting hyperplanes. Work on preprocessors for identifying interior points is in 
the development stages; see e.g., Shaheen (2001). 

In the next section, we discuss the standard procedure along with its known ameliorations 
and important variations. 

 

5. The Standard Procedures for DEA 

Implementing the standard procedure for DEA requires a decision about the DEA LP 
formulation. This choice can have an impact on the computational requirements of an 
analysis. The original LP proposed by Charnes et al. (1978) is what has come to be known as 
a nonArchimedean oriented formulation. In theory, such formulations conclusively classify 
efficient and inefficient DMUs based on any optimal solution and provide meaningful 
benchmarks based on the uniform scaling of either the inputs or outputs. However, as 
mentioned earlier, they are problematic in their implementation and may even result in 
incorrect classifications depending on machine tolerances and precision (Ali, 1994). 
Therefore, LP formulations that do not require setting values for nonArchimedean constants 
are interesting and available. The price paid for this convenience is, in some cases, the 
unavailability of information from optimal solutions for conclusive classifications. An LP 
formulation that provides sufficient conditions for classification of DMUs with every 
solution without the device of nonArchimedean constants was proposed by Charnes et al. 
(1985). It is the, so-called, additive LP. This LP however, is not suitable for many of the 
reasons that motivate a DEA analysis; efficiency studies to provide oriented benchmarking 
recommendations for inefficient DMUs. If the LP conclusively classifies efficient and 
inefficient DMUs then the standard procedure for DEA proceeds as follows: 
 

Standard DEA Procedure: 
 

FOR J=1 TO n DO: 
 STEP 1. J* ← J. 
 STEP 2. SOLVE APPROPRIATE LP TO SCORE DMU J*. 
 STEP 3. CLASSIFY DMU J*. 
 

In the case of analyses with LPs that do not always provide sufficient conditions for 
efficiency or inefficiency classification, the standard procedure above needs to be modified. 
Such LPs are less discriminating and typically distinguish only between interior and 
boundary points. These LP arise naturally as when all nonArchimedean constants are set to 
zero in the original formulations or they may be especially constructed to provide specific 
benchmarking recommendations, e.g., the “unoriented” formulations of Bougnol (2001). 
Ambiguity may arise when a point is on the boundary without satisfying the sufficient 
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condition for efficiency or inefficiency. In an envelopment formulation this typically is 
manifested by an appropriate optimal objective function value that places the point on the 
boundary but all slacks are zero. Positive slacks are sufficient to conclude weak efficiency 
but absent this, the point may or may not be efficient. In a multiplier formulation the 
ambiguous situation arises when at least one of the attributes’ multiplier is zero for a point on 
the boundary. Strictly positive multipliers for all the attributes conclusively establish that the 
point is efficient. One zero multiplier precludes this conclusion. Such LPs require a two-
stage approach for conclusive classification of all the DMUs. 

 
Two-Stage Standard DEA Procedure: 

 
FOR J=1 TO n DO: 
 STEP 1. J* ← J. 
 STEP 2. SOLVE APPROPRIATE LP TO SCORE DMU J*. 
 STEP 3. IF OBJECTIVE FUNCTION VALUE SATISFIES SUFFICIENT 
  CONDITION FOR INTERIOR POINT: 
  THEN. 
   CLASSIFY DMU J* AS INEFFICIENT. 
  ELSE. 
    IF SUFFICIENT CONDITION FOR 
    EFFICIENCY/INEFFICIENT CLASSIFICATION 
    SATISFIED 
    THEN. 
     CLASSIFY DMU J*. 
    ELSE 
     SOLVE “ADDITIVE” LP FORMULATION 
     AND MAKE CONCLUSIVE 
     CLASSIFICATION. 

 

The problem of having to solve two LPs for every DMU for which no sufficient condition 
for classification is available may be somewhat mitigated by the use of deleted domain 
techniques. 

The idea behind this technique consists of excluding the DMU being scored from the 
coefficient matrix of the LPs. This idea has been around since early in DEA computations 
and was probably practiced by many. It is mentioned in Banker & Gifford (1991), Charnes 
et al. (1992). It was not formally presented and discussed as an alternative to the 
conventional LPs until the papers by Andersen & Petersen (1993) and Bogetoft (1994). A 
rigorous study of the impact of domain deletion for the case of constant returns model 
appears in Thrall (1996), Dulá et al. (1997) and Seiford et al. (1999). The technique 
essentially provides all the same information as a complete LP plus additional insights about 
efficient DMUs including sufficient conditions to identify DMUs that correspond to extreme 
elements of the production possibility set. Such “extreme-efficient” DMUs are by far the 
most common type of efficient DMUs and are never weakly efficient; this is useful 
information when the LP is not nonArchimedean. The fact that LPs can be infeasible with 
this technique actually adds to its value since this is sufficient to conclude that the DMU 
being scored is extreme-efficient. 
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6. Enhancements to standard approaches 

Enhancements and improvements for the standard approach are available. Besides all that 
can be done by applying what is known outside DEA about improving LP performance (e.g., 
multiple pricing, product forms, hot starts, etc.), there are techniques that exploit the special 
attributes of DEA LPs. Perhaps the two best known are Reduced Basis Entry (RBE) and 
Early Identification of Efficient DMUs (EIE) (see Ali, 1994). Both ideas are a consequence 
of the same result about DEA LPs; namely, that a DEA LP optimal solution provides 
information about a supporting hyperplane for the production possibility set and its support 
set. This translates to the fact that only variables associated with boundary DMUs can be 
basic at any (dual feasible) optimal solution in an envelopment form or, conversely, that only 
constraints associated with boundary entities can be equalities at optimal solutions of 
multiplier forms. RBE takes advantage of the fact that an inefficient entity is never in a 
support set and therefore, once identified as such, its data point can be omitted on any 
subsequent LPs to be solved. This idea is easy to implement as LPs are iteratively formulated 
and solved. The systematic application of this approach progressively reduces the size of the 
LPs that need to be tested. EIE simply states that if a DMU’s variable appears in a basis of an 
optimal solution of an envelopment LP, or as its constraint is an equality at optimality in a 
multiplier form, then we have advance knowledge that it is a boundary DMU. EIE appears to 
have much less of an impact on improving performance than RBE. This is due to the fact that 
the proportion of efficient DMUs is relatively small compared to the number of data points, 
especially in large data sets. Another factor is that the list of efficient DMUs the variables for 
which appear as basic is frequently a subset of the full set of efficient DMUs. Moreover, if 
the LP is formulated to provide sufficient conditions for efficiency as with nonArchimedean 
or additive formulations, our knowledge is that the DMU is efficient under those 
circumstances. Durchholtz (1994) tested these two techniques together and reports a 
dramatic impact on reducing computation times. He also concludes that most of the impact 
on improvement is due to RBE. 

An idea to speed up DEA computations is based on combining RBE with data partitioning 
schemes. The idea applies the principle that if an entity is inefficient with respect to a subset 
of the entities, it will be inefficient with respect to any superset. An implementation consists 
of partitioning the data set into uniformly sized “blocks” and independently applying 
standard DEA procedures to them to identify the inefficient entities within blocks. At this 
stage, the idea can be considered as simply a preprocessing scheme. Since the procedure can 
be repeated with new blocks of entities with unknown status, however, it becomes something 
more elaborate and effective. Repeating the process until a final block is created will result in 
eventually culling the bulk of inefficient entities. All entities are scored in a second phase 
using LPs composed of the entities which survived the culling; hopefully, a much smaller LP 
than would otherwise be used in a standard approach. The idea originates in the paper by 
Barr et al. (1997). They observe that the performance of such “hierarchical decomposition” 
techniques is affected by the size of the initial and intermediary blocks. This poses a problem 
since this decision has to be made explicitly by the analyst. Their experiments suggest that 
performance is quasiconvex in that times are monotonically nondecreasing as the block size 
deviates from an optimal value. Their tests indicate substantial time reductions in ideal 
implementations. 
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Figure 1. 

 
Implementations of the standard procedures for DEA reveal that three factors affect 
computational performance: “Dimension” (number of inputs plus outputs), “Density” 
(proportion of DMUs that are efficient), and “Cardinality” (number of DMUs). All three 
have an adverse effect; that is, the greater their magnitude the more time is required to 
perform a DEA run. This effect is evident in the graphs in Figures 1 and 2. In Figure 1 we 
can see that, in a particular experiment we would consider typical, as either the dimension of 
the data set or its density increases (all else approximately equal), the effect is a clear 
increase in computational times. These experiments were executed with a single phase 
standard implementation enhanced with RBE. 

Researchers have speculated on the nature of the relation between the cardinality, n, of a 
DEA problem and the time to solve it. In some papers (e.g., Barr et al., 1997) this relation 
has been reported as exponential. Our tests confirm that the time required to solve DEA 
problems using the standard approach can be approximated by a quadratic function of the 
cardinality of the data set. Figure 2 depicts this relation for the actual case of five attributes 
and 4% efficiency. The results correspond to a standard implementation enhanced with RBE. 

The actual relation between cardinality, n, and time, t, is approximated by the relation: 
t = cn2, where the factor, c, depends on the cardinality and number of attributes. The factor 
would be unaffected by density in a pure (unenhanced) standard implementation. Efficiency 
density affects standard implementations enhanced with RBE. The impact is to favor lower 
densities since this means that more entities are excluded from LPs as the procedure iterates. 
Clearly, the hardware and software used will also affect this factor. 

These days analysts who wish to program standard DEA procedures directly are likely to 
turn to a commercial spreadsheet. An excellent candidate for this would be Microsoft’s 
‘Excel’ since it offers as part of the package an LP solver that is adequate for the task. It is a 
simple matter to program the spreadsheet to perform the single stage standard procedure. A 
complete macro using no more than 15 to 20 instructions is possible and quite effective for 
small problems. More sophisticated programming would be needed to implement the two-stage 
approach. Almost certainly, this has already been done and macros may be available through 
contacts or commercially. It is reasonable to expect that, one day, a macro for DEA will be 
bundled with the spreadsheet package in the same way as for, say, least-squares regression. 
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Figure 2. 

 
7. Notes about Degeneracy and Parallel Implementations 

An implementation of the standard procedure must contend with the possibility of numerical 
complications. A potentially serious one is connected to degeneracy and cycling. Ali (1994) 
observes that “As the number of input and output measures increases, the potential for 
encountering a very large number of degenerate pivots also increases. Barr et al. (1997) add: 
“our experience indicates that cycling in DEA codes is not only prevalent but likely, in the 
absence of anti-cycling procedures.” This concern has lead to works such as Charnes et al. 
(1993) where an anti-degeneracy/cycling linear programming method especially for data 
envelopment analysis is introduced. A factor inducing degeneracy in DEA codes may be the 
inclusion of the column of the DMU being scored in the constraint matrix of envelopment 
LPs. This is a problem because the same column appears in the left and right hand sides of the 
linear system. One way to avoid this “induced degeneracy” is to use deleted domain formulations. 

There is no natural sequence for the solution of the LPs in any of the procedures to solve 
DEA problems described so far. Therefore, one way to accelerate performance of these 
procedures is to distribute the load of solving individual LPs among several processors. In all 
procedures, including decomposition approaches, the LPs can be solved separately and the 
solutions independently advance the progress of the procedure. There is limited experience 
on parallelization schemes but indications are that substantial gains in time will be achieved 
through them. Durchholz (1994) reports that speedups with parallelization are nearly linear. 
Today's network architectures suggest obvious master/slave distribution scheme with the 
master assigning LPs to the subordinates and managing the information as it arrives. The 
coarse grained nature of such a parallelization is a good indication that substantial speed-ups 
are possible. Since all algorithms for DEA rely in the same way on the solution of linear 
programs, we might expect that the impact will be comparable across all the procedures. 
Certainly more work is needed to learn exactly how much can be gained. 

 
8. Frame Algorithms and DEA 

The frame is composed of the generators of the polyhedral hull that are its extreme elements. 
Therefore, a frame is a minimal cardinality subset of entities that generate the same 
polyhedral hull as the full data set. 
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The frame of a DEA production possibility set is composed of a subset of the data set that 
corresponds to extreme-efficient DMUs. Since the polyhedral hull of a frame is the same as 
the original polyhedral hull of the entire data set, the LP used to score DMUs can be reduced 
to include only the points in the frame. The optimal solution to such a reduced LP will 
provide all the same information as the original whole LP. From this result emerges the basic 
two-stage procedure for DEA using frames (Dulá et al., 2001). 
 

DEA Procedure using Frames: 
 

STAGE 1. FIND FRAME FOR SPECIFIED RETURNS TO SCALE. 
STEP 2. FORMULATE SCORING LP USING ONLY FRAME ELEMENTS AND 
SCORE ALL DMUS NOT IN THE FRAME. 

 
In the first stage of the DEA procedure using frames, the frame is identified for the specific 
DEA model. Routines for identifying the frame of the data for the four returns to scale models 
may be based on any number of procedures. For example, results in Dulá et al. (1997) 
provide necessary and/or sufficient conditions for a DMU to be extreme-efficient based on 
the solution of deleted domain envelopment LPs. Specialized algorithms for finding frames 
have been proposed (Dulá et al., 1996, 1998; López, 1999). These new frame algorithms 
build the frame sequentially, one element at a time. The process of erecting the frame begins 
with a single extreme point (or ray, in a polyhedral cone). A special linear program and inner 
products reveal a new, previously unidentified, extreme element. The process is repeated until 
all extreme elements are identified. These algorithms begin with small LPs the dimension of 
which grows one column (or row, in a dual) at a time. The final size of the LPs will be 
determined by the number of extreme elements; i.e., the extreme element “density”. A 
discussion of frame algorithms for different polyhedral hulls can be found in López (1999). 

In the second stage of the DEA procedure using frames, all DMUs are scored using LPs 
composed of the frame elements. Therefore, when the frame is a small subset of the data set, 
the DMUs can be processed using much smaller LPs. Another interesting advantage of using 
this two-stage method is that the first stage is independent of the type of LP that is to be used 
to score the DMUs. This means that when the decision is made about the sort of LP to be 
used in the second stage, the bulk of the calculations are behind. This extends flexibility and 
functionality to the process since analyses using different LP formulations can be explored 
with relatively little additional work. 

The two stage, frame based, DEA procedure using modern frame algorithms for the first 
stage is computationally superior to standard procedures, even when enhanced, especially 
when the cardinality, n, of the problems is large and the extreme element density is low. In 
that case, the LPs remain small in the first stage and in the second stage the same small LP is 
used to score the remaining DMUs. This limit on the size of the LPs translates to substantial 
savings in computational times. A comparison between the two procedures appears in 
Figure 3. We may verify from this figure how the dominance of the frame approach becomes 
dramatic as the problem size increases. 

There are other advantages to frame-based algorithms besides faster computer times. One 
addresses the problems of induced degeneracy directly. The reason why induced degeneracy 
occurs disappears when using frame based procedures since the data for the DMU being 
scored never appears in both sides of the LP’s system of constraints. Another advantage is 
that since the frame is composed exclusively of extreme elements of the production 
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possibility set these necessarily are not ever weakly efficient. Therefore, they need not be 
tested in the second stage. Moreover, the author’s experience with randomly generated, high 
cardinality, low density data sets is that the vast majority of efficient DMUs are extreme 
efficient. Although efficient DMUs that are not extreme efficient can occur, they are a 
measure zero event in natural data. Even if weak efficient DMUs occur, scoring them with 
LPs composed of the frame is less likely to generate the type of situation where ambiguity 
about their classification might occur. 
 
9. Extensions of DEA computations using frames 

The interrelation among the four DEA frames can be exploited to gain knowledge about 
returns to scales without paying the full computational price that individual analyses would 
require. It turns out that the frame for a variable returns to scale production possibility set is a 
superset for the frames of the increasing, decreasing, and constant returns to scale production 
possibility sets (Dulá et al., 2001). Another set of useful results is that the union of the 
increasing and decreasing returns to scale fame is the frame of the variable returns model and 
their intersection is the frame of the constant returns model. It we label these four frames as 
ƒ1, ƒ2, ƒ3, and ƒ4 , for the variable, increasing, decreasing, and constant returns to scales 
production possibility set, respectively, then the results above are that i) ƒ1=ƒ2∪ƒ3 ; and 
ii) ƒ4=ƒ2∩ƒ3 (Dulá et al., 2001). 

These results have immediate computational implications since, after calculating any two 
frames from the list, {ƒ2, ƒ3, ƒ4}, the third may be obtained through simple set operations. 
One of these ideas is as follows. 

Consider three routines VRFRAME(), IRFRAME(), and DRFRAME() the input argument for 
which is a DEA data set, A, and outputs will be frames as follows: 
 

ƒ1← VRFRAME (A), 
ƒ2← IRFRAME (A), 
ƒ3← DRFRAME (A). 

 
An important realization is that routines IRFRAME() and DRFRAME() can be used as follows: 
 

ƒ2← IRFRAME (ƒ1), 
ƒ3← DRFRAME (ƒ1). 

 
With this, we have enough to design a procedure for DEA analysis to identify of all four 
frames (Dulá et al, 2001): 
 

DEA Procedure for All Returns to Scale. 
 

STAGE 1. IDENTIFY ALL FOUR FRAMES OF THE DEA DATA SET A. 
 STEP 1. ƒ1← VRFRAME (A). 
 STEP 2. ƒ2← IRFRAME (ƒ1). 
 STEP 3. ƒ3← DRFRAME (ƒ1). 
 STEP 4. ƒ4← ƒ2∩ƒ3. 
STAGE 2. SELECT RETURN TO SCALE MODEL(S) AND DEA LP FORMULATION AND 
SCORE DMUS WITH APPROPRIATE FRAME. 
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Figure 3. 

 
Let us analyze some scenarios. In the worst case, the cardinalities of the frame and the entire 
data set are almost the same. In this case, the effort to find the frames of the data for the four 
models will require roughly three times the time to find the frame of the variable returns model. 
This since Step 4 is computationally inexpensive and effectively free. So, in a sense, we obtain 
four frames for the price of three. In real applications, however, such “dense” data sets do not 
seem to be the norm. A more realistic scenario is that the set of efficient DMUs is relatively 
small compared to the full DEA data set. In actual testing with this type of data, the four steps 
in Stage 1 are completed in little more than the time needed to execute Step 1 alone. This, 
combined with the fact that decisions about the DEA LP are left to the second stage where 
they can be performed using only frames, translates to significant increases in flexibility and 
speed especially when DEA analyses are over several models and multiple LP formulations. 

These suppositions are actually borne out when tested with real data as we may see from 
Figure 4. The abscissa of the graph measures the ratio of the times it takes to calculate the 
three frames, ƒ2, ƒ3, ƒ4, to just the frame ƒ1. What is immediately apparent form Figure 4 is 
that the relation between frame density of the variable returns production possibility set and 
the time to find all four frames is linear and that the time to calculate the three frames ƒ2, ƒ3, 
and ƒ4, is nearly negligible after ƒ1 has been found when the extreme point density is very 
low. It is important to reassert the fact that low extreme point density is indeed the case in 
actual applications, especially with large problems. 
 
10. Conclusions 

An important part of being an OR/MS practitioner who employs DEA is dealing with 
computations. There are examples of successful DEA applications with tens of thousands of 
entities. Massive data sets with hundreds of thousands, even millions, of entities are waiting 
to be analyzed. Studies with DEA can be predicted to go from the traditional one-time, cross-
sectional, approach to dynamic, ‘instantaneous update’, tracking of DMUs. Such applications 
for DEA are not hard to conceive especially when we look around us and find already highly 
complicated financial, social, and technical systems and processes steadily growing and 
becoming more sophisticated. Contributions to reduce times and increase the information 
yield of a DEA study are needed to submit new problems to the understanding this 
quantitative tool provides. If these contributions are up to the task, DEA will emerge as one 
of the available tools for mining massive data sets. 
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Notes 

Part of the work for this paper, especially the part about extensions of DEA computations 
using frames, was supported by ONR grant ONR 98342-0080. The author is grateful for this 
support. 
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