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Abstract 
 
We consider the multiattribute decision-making problem under risk with partial information of the 
decision-makers’ preferences modelled through an imprecise vectorial utility function and where the 
consequences are assumed under uncertainty. In this framework under imprecision, we introduce the 
appropriate utility efficient set that plays a fundamental role because it is where the decision-maker 
must look for a solution. However, this set can be difficult to determine. So, we provide a decision 
support system with a solution strategy based on interactive simulated annealing for generating a subset 
of efficient solutions that gives a fair representation of the whole set, to progressively derive one or 
several satisfying solutions to aid the decision-maker in his/her final choice. 
 
Keywords:  imprecise vectorial utility function, efficient set, simulated annealing. 
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1. Introduction 

Multiattribute expected utility theory can be considered as a leading paradigm for normative 
decision theory. However, multiattribute utility theory calls for the decision-maker (DM) to 
provide all the information describing the decision situation to assess on the one hand, the 
component scalar utility functions ui, von Neumann & Morgenstern (1947), Savage (1954) 
and Fishburn (1970) and, on the other, to determine an appropriate functional form of the 
global utility function u including these components ui, Keeney & Raiffa (1976). It is 
obvious that these information requirements can be far too strict in most practical situations. 
This could lead to the consideration of imprecise components utility functions in the first 
case, see e.g., Weber (1987) and Ríos et al. (2000), and in the second one, a vectorial utility 
function u, Roberts (1972, 1979) and Rietveld (1980), due to the difficulty in testing certain 
independence conditions, thus being u a proxy for the underlying utility function u. 

In this case, what could be called the set of imprecise utility efficient strategies plays an 
important role because of its well known property, analogous to the precise scalar case: the 
DM can restrict his attention to it, discarding the remaining strategies, because a nonefficient 
strategy can never be optimal. However, this set can be difficult to determine and, in many 
cases, it is not considered the resolution of the problem because this set can have many 
elements and is not totally ordered. Thus, intelligent approaches are needed to generate a 
representative approximation of the whole set. 

Moreover, we consider the situation where the consequences of the strategies could have 
associated uncertainty in their policy effects, as it is considered in Mateos et al. (2001). 

In order to provide the DM under this framework with a manageable number of strategies 
under risk for evaluation, we introduce a method for approximating the imprecise utility 
efficient set and its reduction for the case of a vectorial utility function, if it is possible that the 
DM can improve his assessments through an interactive process, Colson & de Bruyn (1989), 
Mateos & Ríos-Insua (1997, 1998) and Ríos-Insua & Mateos (1998), that adapts multi-
objective simulated annealing, Serafini (1992), Ulungu et al. (1998) and Teghem et al. (2000). 

The paper includes four more sections. In section 2, we formally introduce the problem, 
some basic concepts and the imprecise approximation set. Section 3 deals with some theory and 
concepts describing multi-objective simulated annealing and its application to our problem, 
multiattribute decision-making problem under risk with imprecise information. An interactive 
simulated annealing approach to construct ‘good compromises’ taking into account DM 
preferences is described in section 4. Finally, in section 5, some conclusions are provided. 

 
2. Problem Formulation: the approximation set 

Throughout the paper we employ the following notation: for two scalars a and b, a ≥ b 
denotes a > b or a = b. For two vectors x, y in ℜm, x ≥ y denotes xi ≥ yi for i = 1,...,m, and 
x ≥ y denotes x ≥ y but x ≠ y. 

Let us consider a decision-making problem under risk with imprecision concerning the 
consequences of each decision strategy. We define the imprecise consequence of certain 
strategy in a particular state of nature, in such a way that it is characterised by a vector of 
intervals 

z = ([ Lz1 , Uz1 ] ,..., [ L
mz , U

mz ]) , 
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where [ L
iz , U

iz ] define the imprecise consequence of the strategy for attribute Zi of the whole 
set of attributes {Z1,...,Zm}. Note that the situation under precision or under certainty is the 
particular case where the endpoints of each interval are the same, i.e., L

iz = U
iz , for 

i = 1,...,m. Let Z be the set of imprecise outcomes with elements z, and PZ the set of simple 
probability distributions over Z (probability distributions with a finite number of imprecise 
outcomes), with elements p, q, p’... also called strategies, lotteries or risky prospects: 











=

s1

1

zz K

K spp
p , 

where 

z1 = ([ Lz1
1 , Uz1

1 ],...,[ L
mz1 , U

mz1 ]) 
……. 

zs = ([ sLz1 , sUz1 ],...,[ sL
mz , sU

mz ]) , 

with  pt ≥ 0, t = 1..,s,  and  ∑pt = 1. 

The consideration of this type of mixed strategies is important in different areas among we 
can cite portfolio management, medicine and environment. 

For each attribute Zi it is necessary to assess a utility function ui that reflects DM preferences 
about their possible values. It is well known the difficulty in assessing utility functions even 
though good software is available to aid in conducting such process, see e.g., Logical 
Decisions (1998). Several authors, see e.g., Hershey et al. (1982), McCord & de Neufville 
(1986) or Jaffray (1989), have suggested that elicited utility functions are generally method-
dependent, and bias and inconsistencies can be generated in the assignment process. To 
overcome these problems the system uses two slightly modified standard procedures jointly: 
a certainty equivalent method (CE) and a probability equivalent method (PE), see Farquhar 
(1984). It assumes imprecision concerning the scalar utility functions allowing the decision 
maker to provide a range of responses, instead of only one precise number in each 
probability question, as these methods demand. This is less stressful on experts, since they 
are allowed to provide incomplete preference statements by means of intervals rather than 
unique numbers, see von Nitzsch & Weber (1988) and Ríos et al. (1994). 

Therefore, a class of utility functions is obtained, rather than a single one, for each method. The 
intersection of both ranges provides the range where preferences elicited by the above methods 
agree. Should such intersections be empty for an interval, the DM would be inconsistent and 
he should reelicit his preferences. The process ends when a consistent range is provided. 

It is interesting to note that the use of imprecise utility functions facilitates the assignment 
process as we have experimented in real cases, as shown in Mateos et al. (2001) and Jiménez 
et al. (2002). Of course, this is not the definitive solution to overcome all the objections to 
the elicitation process, but we consider that it is an important aid and an interesting starting 
point to motivate a more deep study of the assessment problem. 

Specifically, we have implemented a CE-method, known as the fractile method, see e.g., 
Fishburn (1964, 1970), Holloway (1979) and Hull et al. (1973), where the DM is asked to 
provide certainty equivalent intervals or ranges of attributes for lotteries, whose results are 
the extreme values *

iz  and *iz , that represent the most and less preferred outcomes for 
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attribute Zi and with probabilities pt and 1 – pt, respectively. We take p1 = .25, p2 = .50 and 
p3 = .75. This means that the DM considers 








 −

*
*

1

ii

tt

zz
pp

 ~ t
iz  

for all amounts t
iz ∈[ L

ptz , U
ptz ], for t = 1, 2, 3. Figure 1 shows in the zi/ui(zi)-diagram this class 

of utility functions drawn between the dotted lines and represented by the bounding utility 
functions CEL

iu and CEU
iu , where L (U) means Lower (Upper). 

The PE-method included in the system is the extreme gambles method, see e.g., Schlaifer 
(1969) and Mosteller & Nogee (1951), where the DM has to specify probability intervals 
[pt

L, pt
U], t = 1, 2, 3, such that 








 −

*
*

1

ii

tt

zz
pp

 ~ t
iz  

for all pt∈[ L
tp , U

tp ], for some selected amounts zi
t∈[ *iz , *

iz ]. By default, these selected 
amounts for attributes Zi are the upper endpoints of the intervals proposed by the DM in the 
CE method. Other points can be used for comparison. To obtain these probability intervals, 
the system includes a routine implementing a wheel of fortune, see French (1986), that 
provides the probabilistic questions and guides the expert until an interval of indifference 
probabilities is obtained. A number of additional questions are included as consistency checks. 
Figure 1 also shows this class of utility functions drawn with continuous lines and 
represented by the bounding utility functions PEL

iu  and PEU
iu , with L and U as above. 

As mentioned above, should the intersection of both ranges be empty for some values, the 
DM would have provided inconsistent responses and he should reassess his preferences. 
Thus, the intersection will be the range for the DM’s utility functions. The system is able to 
detect the possible inconsistencies and suggests what the DM could change to achieve the 
consistency. Thus, for each attribute Zi, instead of having a unique utility ui (zi), we have a 
utility interval [ )( i

L
i zu , )( i

U
i zu ], which represents the elicited imprecision of the DM 

concerning the utility of value zi. This is also shown by the striped area in Figure 1. 

 
Figure 1 – Class of utility functions for an attribute Zi 
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The second point is related to the kind of decomposition of the global utility function 
u(z) = u(z1 ,…, zm). Assuming precision, as in the classic case, the general setting is that the 
DM looks for a global utility function of the form 

u(z) ))(),...,(( 11 mm zuzuf= , 

where zi is a specific amount of Zi, f is a scalar-valued function and ui are precise utility 
functions. To obtain a specific structure for f, it is necessary to fulfil independence conditions 
among the attributes (additive independence, preferential independence or other possible 
independence conditions related to the set or subsets of attributes), Keeney & Raiffa (1976). 
This can be difficult in complex problems because it could be possible to verify only some of 
these independence conditions among certain attributes in such a way that we consider a 
vectorial utility function instead of a scalar one as above (possibly with a more reduced 
dimension). Thus, to maintain the notation, assume that no independence condition is 
fulfilled and thus we have a vectorial utility function (dimension m remains for ease) 

u(z) ))(),...,(( 11 mm zuzu= . 

From both imprecision sources, we have associated to each consequence in a particular state 
of nature z = ([ Lz1 , Uz1 ],...,[ L

mz , U
mz ]) an imprecise vectorial utility function given by 

u(z) )])(),([,...,])(),(([ 1111
U
m

U
m

L
m

L
m

UULL zuzuzuzu= , 

where )( L
i

L
i zu  =  max { )( L

i
L
i zu PE , )( L

i
L
i zu CE } and )( U

i
U
i zu  =  min { )( U

i
U
i zu PE , )( U

i
U
i zu CE } 

provided that all the classes of utility functions for the attributes Z are monotone increasing, 
see Figure 2. In case these classes of utility functions for attribute Zi were monotone 
decreasing, the corresponding utility interval would be ])(),([ L

i
U
i

U
i

L
i zuzu . The approach we 

present requires that all the utility functions are monotone, what it is not an important 
practical limitation. For simplicity, let us suppose from now on that the classes of utility 
functions are monotone increasing for all the attributes. 

 
Figure 2 – An imprecise utility interval for an imprecise consequence when the class of 

utility functions ui is monotone increasing 



Jiménez, Ríos-Insua & Mateos  –  Interactive simulated annealing for solving imprecise discrete multiattribute problems under risk 

270 Pesquisa Operacional, v.22, n.2, p.265-280, julho a dezembro de 2002 

Now, given a strategy under risk with imprecise consequences, p, the imprecise expected 
utility vector is defined as the vector of intervals with endpoints the lower and upper 
expected utilities for each attribute (or utility component in the vectorial utility function), 
given by 

EI (u, p) = )]),(),,([],...,),(),,(([ 11 puEpuEpuEpuE U
m

L
m

UL  
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11
1
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denoted by p and where the subscript I in E means imprecision. 

Thus, u )])(),([,...,])(),(([ 11 ⋅⋅⋅⋅= U
m

L
m

UL uuuu  represents a preference relation uf on PZ, leading 
to a dominance principle defined as 

 ⇔qp uf {EI (u, p) ≥ EI (u, q)  or  p ≥ q} 
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The relation uf is a strict partial order on PZ (transitive and asymmetric), and, hence, we 
state the imprecise vector optimization problem under risk as 

 max   EI (u, p) 

 s.t.   p∈PZ 

A natural concept is the one of efficient strategy, p∈PZ is an imprecise utility efficient vector 
strategy if there is no q∈PZ such that EI (u, q) ≥ EI (u, p). This set of strategies is called 
imprecise utility efficient vector set and denoted ε I (u, p). The above definition first extends 
the one for precise problems under certainty and then under uncertainty. 

Note that, if we consider a sure prospect pz = (1, z) ∈ PZ or a strategy p = (p1, z1;...; pn, zn) ∈PZ, 
with a precise vectorial utility function u, it also makes sense to consider the utility efficient 
set for Z given u for the first case, denoted 

ε (Z, u) = { z ∈ Z : there not exists z’∈Z such that u(z’) ≥ u(z)} , 

or the utility efficient set for PZ given u for the second case, denoted 

ε (PZ , u) = { p ∈ PZ : there not exists p’∈ PZ such that E(u, p’) ≥ E(u, p)} . 

Thus, we are led to the problem “Given PZ and uf , find ε I (PZ, u)”. Clearly, if ε I (PZ, u) had 
a unique element p, it would be the most preferred strategy for DM. However, this is not the 
case in most real problems, as ε I (PZ, u) could contain a lot of elements. The generation of 
this set can be difficult and, usually, it is not the resolution of the problem because it does not 
provide the DM with a small enough number of decision strategies to facilitate the choice. 
Thus, our problem should be restated as “select a single element from the set ε I (PZ, u)”. 
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One way to solve this decision problem, favoured by behavioural approaches, will be 
possible if the DM is able to reveal more information of his preferences to provide additional 
structural assumptions obtaining a subset of the imprecise utility efficient vector set. So, we 
provide an interactive method based on multi-objective simulated annealing, Serafini (1992), 
Czyzak & Jaszkiewicz (1997) and Teghem et al. (2000), to aid the DM to progressively build 
a subset of the approximation set in collaboration with the DM. 

 

3. Multi-objective Simulated Annealing 

The idea of this method we propose is based on the set of imprecise expected utility vectors. 
We generate then an approximation set A(PZ, u) of the utility efficient set ε I (PZ, u), i.e., 
strategies not dominated by any other generated strategy. 

The basic idea of multi-objective simulated annealing (MSA) is simple, the method begins 
with a first iteration providing an initial strategy or solution p0, and thus the set A(PZ, u) is 
initialized containing only p0. In the next iterations, another strategy q from the 
neighbourhood of the current iteration is considered and is accepted if it is not dominated by 
any solution currently in the approximation set. In this case, we add q to the set A(PZ, u) and 
throw out any solution in A(PZ, u) dominated by q. On the other hand, if q is dominated by 
any solution in A(PZ, u), we would continue considering q for the next iteration with certain 
probability. In this way, according to the movement in the iterations through the space, we 
simultaneously build the set A(PZ, u). 

Next, we introduce the phases of the method in more detail. For this purpose, let us now see 
the steps to be applied from a general point of view and some adaptations to our specific 
case, the imprecise multiattribute problem under risk. The clarifications of some concepts 
that appear in the algorithm, as the neighbourhood of a solution, will be considered later. 

Parameters and stopping conditions that are typically used in simulated annealing are the 
following: 

• n, is the number of iterations in the algorithm. 
• T0, initial temperature (or alternatively, it defines the initial acceptance probability). 
• Nstep, number of iterations throughout the temperature is held at the same value. 
• Ncount, number of iterations without having found new solutions. 
• α (<1), cooling factor. The updating of the temperature depends on it. If the decreasing of 

the temperature is slow, the performance is also slow. The usual scheme is to maintain 
the temperature for a number of iterations, in this case Nstep iterations. After that, 
decreases by multiplying it by α. A typical value for α is 0.95, Hajek (1988). 

• Tstop, final temperature. 
• Nstop, maximum number of iterations without improvement. It is used as stopping rule. 

More information of these parameters and stopping conditions for the standard algorithm can 
be found in Pirlot (1996). 

Now, MSA algorithm can be formulated as follows: 

• Initialisation: We set Ncount = n = 0 and A(PZ, u) = {p0}, where p0 is drawn at PZ . 
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• Step n: Let pn be the solution in the current iteration, V(pn) a neighbourhood of pn and q a 
solution drawn at random in V(pn). Let us consider the difference between the imprecise 
expected utilities in each component k, for k=1,..,m. Given the respective imprecise 
expectations 

 pn = EI (u, pn) = ([E( Lu1 , pn), E( Uu1 , pn)],...,[E( L
mu , pn), E( U

mu , pn)]) , 

 q = EI (u, q) = ([E( Lu1 , q), E( Uu1 , q)],...,[E( L
mu , q), E( U

mu , q)]) , 

there will be the next three possibilities, see Figure 3: 

 

q

pn 

q dominates to pn

E( U
ku , pn ) 

E( L
ku , q) pn 

q

pn dominates to q 

E( L
ku , pn )

E( U
ku , q) 

q

pn

Non dominance between q  and pn 

E( U
ku , pn )

E( L
ku , q)

pn

q 

E( L
ku ' , pn ) 

E( U
ku '  , q) 

1. 

2. 

3.

- for some  k’ - for some k

for all  k for all  k

 
Figure 3 – Possible relations between two strategies pn and q 

 
1. For all k, E( L

ku , q) – E( U
ku , pn) ≥ 0, what implies that q dominates to pn. Then pn+1 ← q. 

2. There are k, k’ such that E( L
ku , q) – E( U

ku , pn) < 0 and E( U
ku ' , q) – E( L

ku ' , pn) > 0, i.e., 
no dominance between q and pn is fulfilled. Then pn+1 ← q. 

3. For all k, E( U
ku , q) – E( L

ku , pn) ≤ 0, what implies that pn dominates to q. In this case 
we have: 

(a) pn+1← q  with probability τ. 

(b) pn+1← pn  with probability 1–τ. 

In both cases the number of consecutive iterations without having obtained a new 
solution is increased: Ncount = Ncount + 1. 

Probability τ depends on the differences E( U
ku , q) – E( L

ku , pn) and on the 
temperature, as we shall next see. 
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Moreover, in the first two cases, the A(PZ, u) is updated by comparing q with the 
solutions in the list: 

• If q is not dominated by any solution in A(PZ, u)  we add q to the set A(PZ, u), 
throw out any solution in A(PZ, u) dominated by q and Ncount = 0. 

• Else  Ncount = Ncount + 1. 

One possible difficulty related to the dominance principle is the fact that it could be far too 
strict in the sense that, for real applications, cases 1 and 3 arise in a very reduced number of 
occasions, not allowing an adequate search in the utility efficient set. 

To overcome this inconvenience, we propose to relax these kind of comparisons allowing the 
DM to introduce a percentage quantity σ. Observe that whether the percentage quantity is 
equal to zero, we are in the initial setting. Thus, for a given pn, instead of the intervals 
[E( L

ku , pn), E( U
ku , pn)], for each k=1,...,m , we would use the intervals 

[E( L
ku , pn) + (σ/100) k

pn
ψ ,  E( U

ku , pn) – (σ/100) k
pn

ψ ], 

where k
pn

ψ = (E( U
ku , pn)–E( L

ku , pn))/2, i.e., is the half of the expected utility interval length 
in component k for the solution pn. Figure 4 displays the involvement of this consideration 
for case 2. We have the relationship between pn and q before (including the dotted lines) and 
after introducing a percentage quantity σ (only the continuous lines). 
 

 

q

pn

E( U
ku , pn)

E( L
ku  , q)

E( U
ku , pn) - (σ/100) k

pn
ψ  

E( L
ku  , q)+( σ /100) ψk

q  

q dominates to pn for a given σ  
Figure 4 – Less strict dominance principle 

 
The stopping condition makes reference to the present value of the temperature and to the 
number of iterations carried out without having obtained new solutions. The algorithm stops 
when the temperature takes a value under Tstop or after Ncount consecutive iterations without 
having obtained new solutions. 

• (Updating of temperature) If (n mod Nstep) = 0 then Tn= α Tn-1, 
otherwise, Tn= Tn-1. 

• (Stopping condition) If Ncount = Nstop or T < Tstop, then stop. 

Fortemps et al. (1994) have proposed several multi-objective rules for the acceptance 
probability to deal with the third case. These rules are based on two different criteria to 
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accept with probability one the chosen point in the neighbourhood. On the one hand, we have 
the strong criterion in which only points q that dominates to pn will be accepted with 
probability one and, on the other, the weak criterion in which only dominated points will be 
accepted with probability strictly smaller than one. 

A rule based on the strong criterion is P-rule (Product) defined in our context as: 

P(pn, q, T, λ) = ∏
=

−







m

i

TpuEquE n
L
j

U
jjemin

1

/)),(),((
,1

λ
, 

where the amount T/λj plays the role of the temperature Tj. This is like having a different 
temperature factor for each component. 

Another rule is the W-rule (Weak) that as its own name indicates it uses the weak criterion. It 
is defined as: 

W(pn, q, T, λ) = 






 − TpuEquE

j
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j

U
jjemaxmin

/)),(),((
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λ
. 

By reasons described in Serafini (1992), we have decided to use a combination of both rules, 
that keeps the advantages of both, leading to the M-rule (Mixed), defined as: 

M(pn, q, T, λ) = ∏
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where ρ is a weighting factor provided by the DM. 

In all the formulas, T represents the temperature parameter and a set of weights λ is 
necessary to define each function. Moreover, taking into account the less strict dominance 
principle, see Figure 4, we obtain the next modified M-rule: 

M(pn, q, T, λ) = 
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where j
pn

ψ = (E( U
ju , pn)–E( L

ju , pn))/2  and  j
qψ = (E( U

ju , q)–E( L
ju , q))/2. 

The set A(PZ, u) depends on λ, so we denote it from now on by A(PZ, u, λ). Thus, A(PZ, u, λ) 
contains all the potential efficient imprecise utility vector solutions generated by MSA using 
the weights λ. Note that by controlling the weights, we can increase or decrease the 
acceptance probability of new solutions, which means to select a certain set of weights that 
could lead us towards certain region formed by the potential efficient imprecise utility vector 
solutions. 

The procedure for obtaining a good approximation of the set A(PZ, u) could be as follows: 
A(PZ, u, λ) is the list of potential efficient imprecise utility vectors obtained with the weights 
λ. Taking several sets of weights λ(l), l∈L generated in an extensively diversified way, for 
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each one, we obtain a list A(PZ, u, λ(l)), that contains the potential efficient utility solutions in 
the direction induced by λ(l). So, to obtain a good approximation A(PZ, u) of ε I (PZ, u), we 
need to filter the set ||

1
L

lU = A(PZ, u, λ(l)) by pairwise comparisons to throw out the dominated 
solutions. This filtering process is denoted by ∆, in such a way that 

A(PZ, u) = ||
1

L
lU =∆ A(PZ, u, λ(l)) . 

There is a concept that must be clarified, the definition of neighbourhood V(pn) of pn. For this 
purpose, we make use of the notion of Euclidean distance between two solutions. Thus, 
solutions whose distance to pn are smaller than certain threshold, d, will belong to its 
neighbourhood. 

Given two solutions p and q, with imprecise expected utility vectors 

p = EI (u, p) = ([E( Lu1 , p), E( Uu1 , p)],...,[E( L
mu , p), E( U

mu , p)]) , 

q = EI (u, q) = ([E( Lu1 , q), E( Uu1 , q)],...,[E( L
mu , q), E( U

mu , q)]) , 

the Euclidean distance between them, assessed taking into account the midpoints in the 
respective imprecise components, should be smaller or equal than d, i.e., 

d(p, q) = ,)(
1

2 dqp
m

j

jAjA ≤−∑
=

 

where 2/)),(),(( puEpuEp U
j

L
j

jA += ,  j = 1,..., m, and similarly for qjA, j = 1,...,m. 

With respect to the distance threshold d, it is dynamic and depends on the temperature 
updating and on the cardinality of the neighbourhood, in such a way that in the first iterations 
is high and decreases along them. 

 
4. Interactive procedure 

As mentioned above, the DM is usually interested not in the complete generation of the 
approximation set but in obtaining one or several compromise solutions that satisfy him with 
respect to his preferences. For this purpose, we propose an interactive method based on MSA 
adapted from Teghem et al. (2000), that allows the DM to build in a progressive way a 
subset of the approximation set of the imprecise utility efficient vector set εI (PZ, u). 

 
4.1 Initial phase 

Next points must be firstly considered: 

• We assign values to the parameters of the MSA, i.e., T0, α, Nstep, Tstop and Nstop, for its 
later use as inputs of the algorithm. 

• We apply the simulated annealing on each objective, obtaining the higher expected upper 
utility for each component that we denote by U

kp~ , being k the optimised component, i.e., 

for each k = 1,...,m, ),(~ puEmaxp U
kPp

U
k z∈= . The best solution found for objective k is 

noted kx~ . 
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• We define a variation interval [mk, Mk] for each component k, with Mk = U
kp~  and 

mk = minl=1,..,m E( L
ku , lx~ ) the minimum value of component k of all solutions U

lp~ , with 
l = 1,...,m. Thus Mk and mk are approximations of the co-ordinates of the ideal and nadir 
points, respectively. 

• We initialise the set of minimal satisfaction levels εk for the different attributes Zk. In our 
problem, as we start from a set of imprecise expected utility vectors, what the DM will 
provide through these minimal satisfaction levels are some bounds within each one of the 
utilities of the different components satisfies him individually. 
The DM can fix a unique satisfaction level applicable to all the attributes or else to 
provide one for each attribute. We suggest to initialise these quantities with a value into 
the corresponding variation interval, i.e., εk = vk, vk ∈ [mk, Mk]. However, it would be 
possible to fix such quantities as the lower bounds of the variation interval for the 
attribute, vk = mk, k=1,...,m, in such a way that in the first iteration the entire efficient 
frontier will be explored. Through the interactive process posed in this section, the DM 
will modify the satisfaction levels accordingly with his preferences as a reply to the 
obtained information. 

• We establish the set W(0) with |L| (|⋅| means cardinality) weighting vectors, where 

W(0)={( )(
1
lλ ,…, )(l

mλ ), l∈L} . 

Note that these sets of weights should be widely diversified to make possible to explore the 
set of potentially efficient solutions. Each set of weights will be uniformly generated, i.e., 

∈)(l
kλ {0, 1/r, 2/r,..., (r–1)/r, 1}      Ll

k
l

k ∈∀=∑ ,1)(λ . 

The number r can be defined by the DM, in such a way that 







−

−+
=

1
1

m
mr

L . 

• We apply the MSA to obtain A(PZ, u) above explained, except that for λ(l) we limit the 
input of a solution to A(PZ, u, λ(l)) as follows 

p = ([E( Lu1 , p), E( Uu1 , p)],...,[E( L
mu , p), E( U

mu , p)]) ∈ A(PZ, u, λ(l)) 

if and only if  E( L
ku , p) ≥ εk  ∀k. 

Another less strict possibility could be to substitute the last condition considering the 
average utility (M) instead of the lower one, i.e., E( M

ku , p) ≥ εk, ∀k. 

• In this way, we generate an initial list L0 = )0()( W lU 
∈

∆
λ

A(PZ, u, λ(l)) as a result of the 
filtering operation considered above. 

 
4.2 Mth iteration 

Dialog phase with the DM 

The list LM-1 is presented to the DM who: 

• Discards from LM-1 those solutions that do not satisfy him, maintaining only the most 
preferred one(s). 



Jiménez, Ríos-Insua & Mateos  –  Interactive simulated annealing for solving imprecise discrete multiattribute problems under risk 

Pesquisa Operacional, v.22, n.2, p.265-280, julho a dezembro de 2002 277 

• Modifies the minimal satisfaction levels, εk, taking into account the information or 
characteristics furnished by the preferred solution(s). Based on this new information 
provided by the DM and whether the condition that there exists one or several k=1,...,m 
such that εk ≠ mk is fulfilled, then we define a new set of weights λ|L|+1 as follows 

)/()( kkkkk mMm −−= εα  and ∑ ∀=+
k kk

L
k kααλ /1  

• Updates the parameters of the MSA if the DM considers suitable. In each iteration, he 
can choose to intensify (increasing Nstep and α) or not (decreasing these values) the search 
of new solutions potentially optimal of interest. 

 
Computation phase 

• Based on the new satisfaction levels supplied by the DM in the dialog phase, we use a 
new restricted list of weights. We define the bounds 

)/( mkk ⋅= γαβ ,  where  ∑ ≤≤k k m 1/)( γα , 

and the new set of weights is 

{ }( ))()()1()( },,...,1{:\ l
kk

lMM mkLlWW λβλ ≥∈∃∈= −  U λ|L|+1 . 

We have the relationship 0 ≤ ∑kαk ≤ m. When ∑kαk = 0 or εk = mk ∀k (the DM has not 
provided satisfaction levels), no new set of weights is defined, we use the complete set W 
of weights and in this case it is explored all the efficient frontier. The restricted W(M) 
allows eliminating some weights that becomes useless with respect to DM’s satisfaction 
levels. For not being very restrictive in the elimination of the sets of weights and be sure 
to cover the reduced part of the efficient frontier that the DM wants to explore, we should 
assign to parameter γ a non too small value. We use the value γ = 0.9 for our concrete 
problem. A new set of weights λ|L|+1 is also introduced so as not to obtain an empty set of 
weights (when the DM’s satisfaction levels are too strong or the assigned value to γ too 
small). 

• We perform the MSA method with the set of weights W(M) but updating during its 
execution mk and Mk, that were approximations, of the type 

if there exists p such that E(uk
U, p) > Mk, then Mk = E(uk

U, p) 

if there exists p such that E(uk
L, p) < mk, then  mk = E(uk

L, p). 

• We obtain from the MSA the list of solutions LM that we can state in the next way: 

LM = ∆ { LM-1 U { A(PZ, u, λ(l)), λ(l) ∈ W(M)}} ∩ {p : E( L
ku , p) ≥ εk } , 

i.e., we make a filter to the set ||
1

L
lU = A(PZ, u, λ(l)) and LM-1 by means of comparisons 

between pairs to remove the dominated solutions. Moreover, we also remove those 
solutions that do not satisfy the new minimal satisfaction levels defined by the DM (they 
have not been tested for the solutions in the aforementioned iteration, LM-1). 
The interactive MSA ends when the DM is completely satisfied with a solution or set of 
solutions LM. 
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5. Conclusions 

In imprecise multiattribute decision-making problems under risk, the utility efficient set 
plays an important role in its solution. However, its generation can be very difficult or its 
cardinality too big for the DM to choose one solution. To overcome such inconveniences we 
have proposed a method based on an adaptation of the simulated annealing in the multi-
objective framework that aids the DM to find an approximation to the imprecise utility 
efficient set. Finally, through an interactive process where the DM provides progressively 
(depending on the information the decision maker receives) some characteristics that should 
be satisfied by the preferred solution (through the minimal satisfaction levels), one solution 
(or a small set of solutions) satisfying his/her preferences over the approximation set will be 
obtained. 
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