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Abstract 
 
This paper is concerned with an algorithm proposed by Alizadeh for linear semidefinite programming. 
The proof of convergence given by Alizadeh relies on a wrong inequality, we correct the proof. At each 
step, the algorithm uses a line search. To be efficient, such a line search needs the value of the 
derivative, we provide this value. Finally, a few numerical examples are treated. 
 
Keywords:  semidefinite programming; interior point methods. 
 
 

Resumo 
 
Este artigo considera um algoritmo proposto por Alizadeh para programação semidefinida linear. 
A prova de convergência apresentada por Alizadeh baseia-se numa inequação errada, corrigimos a 
demonstração. Em cada passo, o algoritmo utiliza uma busca linear. Para ser eficiente, esta busca linear 
precisa do valor da derivada, apresentamos este valor. Finalmente, alguns exemplos numéricos são 
tratados. 
 
Palavras-chave:  programação semidefinida, métodos de pontos interiores. 
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1. Introduction 

The object of this paper is to present an implementation of an interior point method. 
Alizadeh (1995) has proposed an attractive extension of an interior point algorithm by 
Ye (1991) for linear programming to linear semidefinite programming. Actually, the proof of 
convergence given by Alizadeh relies on a wrong inequality, we provide a counterexample. 
We amend the proof to make it correct. At step k, the algorithm makes use of a line search, 
Goldstein-Price’s methods are efficient to perform such a line search, but they need the 
knowledge of the derivative. We show how to obtain it, allowing an efficient implementation 
of the algorithm. Finally, we treat some numerical examples for solving the so-called linear 
semidefinite program: 

 min , : , for 1, , ,∈ = =  …i iC X X K A X b i m  SDP 

where mRb ∈ , C and miAi ,,1, …= , belong to E, the linear space of nn ×  symmetric 
matrices. The inner product on E of two matrices A and B is the trace of their product, i.e., 

( ) .tr, ijijij BAABBA ∑==  Finally, K denotes the cone of positive semidefinite matrices of 
E and the interior of K denoted by int(K) is the cone of positive definite matrices of E. 

Max-cut problems in a graph, graph bisection problems, the problem of finding a largest 
clique in a graph, min-max eigenvalue problems can be formulated as linear semidefinite 
programs, see for instance Helmberg et al. (1996). 

Linear semidefinite programming presents a great similitarity with linear programming. The 
objective function is linear, the constraint functions are affine, the difference consists of the 
positivity cone. Testing the positive semidefinitess of a nn ×  matrix X requires to check 

, 0≥Xh h  for all h with norm 1, an infinity of linear constraints, while testing that a vector 
belongs to the nonnegative orthant in an euclidean space involves, by definition, a finite 
number of linear constraints. The duality scheme in linear semidefinite programming is about 
the same than the one in linear programming; there are also complementarity slackness 
conditions. It turns out that interior point methods used in linear programming can be easily 
extended to linear semidefinite programming. 

Next, we precise the notation used in the paper. We have already defined the sets E, K,int(K) 
and the scalar product ,  in E. The identity matrix of E is denoted by I. Given EA ∈  its 
Frobenius norm is 

,, 2

1
i

n

i
AAA λ∑==

=
 

where , 1,2, ,λ = …i i n  are the eigenvalues of A. Besides this norm, we will also use the 

spectral norm on ( ): max λ= i isE A . Given a rectangular ×m n  matrix B, vecB is the 

vector of mnℜ  defined by ( ) ( )1+ − = iji j mvecB B  for 1, 2 , , 1, 2, ,= =… …i m j n . For instance 

the set of relations , =i iA X b  for mi ,,1…=  may be written as vec X b=A  where A  is a 
2×m n  matrix, that is row i of A  is vectAi. GF ⊗  is the Kronecker product of matrices: 
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if  F  is a nm ×  matrix and G a qp ×  matrix then GF ⊗  is the nm ×  block matrix whose 
the (i,j) block is the qp ×  matrix FijG. 

Let rvu ℜ∈, , we denote by  utv  their inner product and by 2 , ∞u u  the euclidean and the 

max-norm of u, respectively. Given ( ),∈ℜru Diag u  is the rr ×  diagonal matrix with the 
components of u as the diagonal entries. Conversely, given X an rr ×  matrix (not 
necessarily diagonal), diag(X) is the vector in rℜ  obtained from the diagonal elements of  X. 

 

2. Duality in SDP 

Let us consider the problems: 

 [ ]min , : , , 1,= ∈ = = …p i im C X X K A X b for i m  (SDP) 

and 

 
m 1y R

: .max
=∈

  = − ∈∑    

mt
d i i

i
m b y C y A K  (DSDP) 

X is said to be a strictly feasible solution of (SDP) if )int(KX ∈  and ii bXA =,  for 

mi ,,1…= . my ℜ∈  is said to be a strictly feasible solution of (DSDP) if 

( ) ( )1 int .=− ∈∑m
i iiC y A K  A weak duality result says that d pm m≤ . A strong duality result 

says that if both (SDP) and (DSDP) have strictly feasible solutions, then pd mm =  and both 
problems have optimal solutions. Furthermore, for such optimal solutions X and y, the 
following complementarity slackness condition holds 

.0,
1

=∑−
=

ii
m

i
AyCX  

More information on semidefinite programming can be found in Alizadeh (1995), Helmberg 
et al. (1996) and Vanderbeghe & Boyd (1996). 

 

3. A potential reduction method for (SDP) 

The method proposed by Alizadeh (1995) is a direct extension of a method given by 
Ye (1991) for linear programming. It is based on the reduction of a potential function and 
a projective transform. Let us consider the (SDP) program and his dual (DSDP). Given 

< pz m  and a fixed integer 0>r , the algorithm uses the two following functions: 

( ) ( ) ( ) ( ), log , log detφ = + − −X z n r C X z X  

and 

( ) ( )
1 1

, log , log det .ψ
= =

  = + − − −∑ ∑    

m m
i i i i

i i
X y n r X C y A X C y A  
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It is clear that φ  is well defined for all X  strictly feasible solution of (SDP), while ψ  is well 
defined for all X positive definite and y strictly feasible solution of (DSDP). 

The function φ  (the function ψ) is called the primal (the primal-dual) potential function. The 
convergence of the algorithm is obtained from the decrease of the sequence ( ){ }, .ψ k kX y  

This method needs the knowledge of initial strictly feasible solutions X0  and y0. 

 

3.1 The projective transform 

At step k , the current ( )int .∈kX K  The Cholesky factorization of Xk gives a lower 

triangular matrix Lk with positive diagonal entries such that .k
t
kk XLL =  Then, we consider 

the projective transform 

( ) ( )

:

,

r
k

k

T E E

T X X x

→ ×ℜ

=
 

where 

( ) ( )1

1 1, .
, ,

− −

− −

+ +
= =

+ +

t
k k

r
k k

n r L XL n r
X x e

r X X r X X
 

Here er is the vector of ones in .rℜ  Notice that ( )1 , .kX T X x−=  Via this projective 
transform, (SDP) is equivalent to the problem 

 ( ) ( )
0,

0 min , : ,

, 0.

t t
r

vec X A x

C X c z x tr X e x n r

X K x

 + =
 

= + + = + 
 

∈ ≥  

A

 (TSDP) 

where 

• .ECLLC k
t
k ∈=  

• ( ) r
zc z e
r

 = − 
 

 is a vector of .ℜr  

• .ELALA ki
t
ki ∈=  

• ( )k kL L= ⊗A A  is a 2×m n  matrix. 

• 
1− =  

 
t
rA be

r
 is a ×m r  matrix. 

• , A   A  is a ( )2× +m n r  matrix. 
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Remark:  The potential function associated to (TSDP) is 

( ) ( ) ( )( ) ( )( ) ( )
1

, , log , log det log .
rt

j
j

X x z n r C X c z x X xφ
=

= + + − − ∑  

It is easily proved (see Alizadeh, 1995) that 

( ) ( ) ( ) ( )0, , , , , ,rX z X z X x z I e zφ φ φ ϕ− = − . 

 

4. The algorithm iteration 

In a similar way than in the Karmarkar’s method for classical linear programming, we relax 
the problem (TSDP) in the problem 

 ( ) ( )
2 2 2

2

0,
0 min , : ,

.

t t
r

r

vec X A x
C X c z x tr X e x n r

X I x e β

 
+ = 

 = + + = +
 
 − + − ≤  

A
 (R) 

It is easily seen that, for ] [0,1β ∈ , the constraint 
2 2 2

2rX I x e β− + − ≤  implies that 

( )int∈X K  and 0.x >  Using a matricial formulation, we have 

 ( )
2 2 2

2

0

0 min , :t

r

vec X
n rxC X c z x

X I x e β

    =   +  = + 
 

− + − ≤  

A
 (R) 

where 

( )t t
r

A

vec I e

 
=   

 

A
A  

is a ( ) ( )21+ × +m n r  matrix. 

It results, from a classical optimality condition, that the optimal solution ( )* *,
t

X x  of  (R)  is 

given by 

 ( )
( )

*

*
k

r k

vec I p zvec X
e p zx

β
   = −       

 (1) 

where ( )kp z  is the projection of the vector 
( )

vecC
c z

 
 
 

 on the affine subspace corresponding to 

the equality, i.e., 
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( )
( ) ( )

( ) ( )
( )

( )

1

, ,

, , , , .

,

tt tt t
r r

k

t t

n k

r k

vec I e vec I e
p z I

n r

vec CI A A A A
c z

vec P z
p z

−

    
    = − × + 
 

         −             
 =  
 

A A A A  

where ( )n kP z  is an ×n n  matrix and ( )r kp z  is a vector in ℜr . 

Let 

( ) ( ) ( )
1

, , , .
t vec Cy z A A A

c z

−  
     =       

 
A A A  

Then y(z) is a solution for the linear system 

( )
( )

, , , .
t vec CA A y z A

c z
 

     =       
 

A A A  

This system can be efficiently solved thanks to a Cholesky factorization. 
 

Remark: β may stay fixed during the different iterations, but it is better to adjust β at each 
iteration in order to accelerate the speed of convergence. This can be done thanks to a 
Goldstein-Price line search. For that, it is necessary to know the derivative of the potential 
function at 0. This is the object of the following lemma. 
 

Lemma 1.  Let EP ∈  and 

( ) ( ) ( )
1 1

log , log det
m mt t

i i i i
i i

g n r X LPL C y A X LPL C y Aβ β β
= =

  = + − − − − −∑ ∑    
 

Then 

( )
( ) ( )

( )1

1

0 .

mt
i i

i
m

i i
i

n r tr LPL C y A
g tr P

tr X C y A

=

=

  − + − ∑    ′ = +
  − ∑    

 

Proof.  We have 

( )
( ) ( )

( )

( )
( )

1

1

det

det

mt
i i

i
mt

i i
i

t

t

n r tr LPL C y A
g

tr X LPL C C y A

X LPL

X LPL

β
β

β

β

=

=

  − + − ∑    ′ =
  − − ∑    

′ − −
−
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Set 

( ) ( ) ( ) ( ) ( )det det det det .t t tH X LPL LL LPL X I Pβ β β β= − = − = × −  

P being symmetric, there exist an orthogonal matrix U and a diagonal matrix D such that 
.tP U DU=  Hence, 

( ) ( ) ( )
( ) ( )

( ) ( )
1

det det

det det

det 1 .

t t

n
i

i

H X U U U DU

X I D

X d

β β

β

β
=

= × −

= × −

= × −∏

 

Then 

( ) ( ) ( )
1

det 1
n

i j
i i j

H X d dβ β
= ≠

  ′ = − −∑ ∏  
  

 

( ) ( ) ( ) ( )
1

0 det det
n

i
i

H X d X tr P
=

 ′ = − = − ×∑ 
 

. 

Finally, 

( )
( ) ( )

( )1

1

0 .

mt
i i

i
m

i i
i

n r tr LPL C y A
g tr P

tr X C y A

=

=

  − + − ∑    ′ = +
  − ∑    

 

 
 
4.1 Convergence of the algorithm 

The proof of convergence given by Alizadeh for his algorithm is based on the following 
inequality. 

( ) ( ) ( )
( )

( ) ( ) ( )

2
2, , , , .

2 1tracer t
r

p z
X x z I e z n r

C c z e
βφ φ β

β

 
 − ≤ − + +
  −+ 

 

Actually, this inequality is false as shown by the following counter-example: 

[ ]11 11 22 11 22

0 0

min : 1, 0, 0 .

Take
0.5 0

and 0.5.
0 0.5

x x x x x

X y

+ = ≥ ≥

 = = − 
 

 

In fact, we have: 

Lemma 2.  Let and , 0.rX K x x∈ ∈ℜ ≥  Then 

( ) ( ) ( )
( )

( ) ( ) ( )
2

2, , , , .
trace 2 1 2

r t
r

p z
X x z I e z n r

C c z e
βφ φ β

β

 
 − ≤ − + +
 + − 
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Proof.  Reporting to Alizadeh (1995), the following inequality holds 

( ) ( ) ( )
( )

( ) ( ) ( )
2 2

2
,

, , , , log .
trace 2 1

t
r

r t
r rs

X I x eC X c z x
X x z I e z n r

C c z e X I x e
φ φ

∞

  − + −+
 − ≤ + +
 + − − − − 

 

But 

2 2 2
2

1rX I x e β− + − ≤ ≤  

and 

( )
2

2 2

2
                               2

                               2

r rs

r

X I x e X I x e

X I x e

β

∞
− + − ≤ − + −

≤ − + −

≤

 

Hence 

( )2
1 1 2.rX I x e β− − + − ≥ −  

Finally (1) gives 

( ) ( ) ( )
( )

( ) ( ) ( )
2

2, , , , .
trace 2 1 2

r t
r

p z
X x z I e z n r

C c z e
βφ φ β

β

 
 − ≤ − + +
 + − 

 

If we replace in the proof of Alizadeh ( )
( )

2

2 1
βδ β αβ

β
= −

−
 by ( ) ( )

2

2 1 2
βδ β αβ

β
= −

−
, 

then his proof becomes valid. In particular, we have 

( )( ) ( ) ( ) 2, , when k
k k kX z y X y p z

n r
ψ ψ δ α ∆

− ≤ − ≥
+

 

and 

( )( ) ( ) ( ) 2, , when k
k k kX y z X y p z

n r
ψ ψ δ α ∆

− ≤ − <
+

 

where 

, .t
k k kC X b y∆ = −  

Furthermore, Alizadeh proves the polynomial convergence: 

( ), 2t L
k kC X b y ε− <  

after a number of iteration of order ( )logn εΟ  for .0>ε  

 



Benterki, Crouzeix & Merikhi  –  A numerical implementation of an interior point method for semidefinite programming 

Pesquisa Operacional, v.23, n.1, p.49-59, Janeiro a Abril de 2003 57 

5. Implementation of the Alizadeh algorithm 

In the algorithm, [ ]0,1α ∈  and 0>ε  are fixed. 

 
The Alizadeh algorithm 

a) Initialization: Start with [ ]0 0 0 0, , 0,1 , tX y z b yα ∈ =  and  k=0, 

b) If ( ), t
k kC X b y ε− ≤  STOP: ( ),k kX y  is an  −ε approximate solution 

If not: 

− Compute ( ).kp z  

− If ( ) 2
, t

k k
k

C X b y
p z

n r
α

−
≥

+
 then 

∗ Find ( ) ( )( )( )0 1Argmin , .t
k k n k k kX L P z L y zββ ψ β∗

≤ ≤= −  

∗ Take ( )
( ) 2

.k

r k

vec I p zvec X
e p zx

β
∗

∗

∗

   = −       
 

∗ Take ( )1
1 ,k kX T X x

∗− ∗
+ =  and go to  c). 

− If not: 

∗ Find ( )( )( )Argmin , .kz z kz X y zψ∗
≤=  

∗ Take ( ) ( )1 1, t
k ky y z z b y z∗ ∗

+ += =  and go to  c). 

c) Do  k=k+1  and go to back  b). 

 

6. Numerical examples 

In the treated examples, the initial primal-dual feasible solutions have been given . 

 
6.1 Example 1 

 [ ]min , : , , for 1, 2i iC X X K A X b i∈ = =  (SDP) 

where: 

1 2

1 1 1 1 1 1 1 0 0
1 2 2 , 1 0 0 , 0 1 0 ,
1 2 2 1 0 0 0 0 1

C A A
− −     

     = − − = − =          −     

 

and ( )0,1 .tb =  
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After 4 iterations we obtain the optimal dual solution ( )1,0 ty∗ =  and the optimal primal 
solution 

0 0 0
0 0 0 .
0 0 1

X ∗
 
 =   
 

 

 
6.2 Example 2 

In this example n=2m. 

 [ ]min , : , , for 1, ,k kC X X K A X b k m∈ = = …  (SDP) 

where IC −= . For 1, , , 2kk m b= =…  and the nn ×  matrices kA  are defined by 

[ ]
2

1 if or
if 1 or 1

, if , 1 or , 1
if 1, or 1,

0 otherwise

k

i j k i j k m
i j k i j k m

A i j i k j k i k m j k m
i k j k i k m j k m

λ
λ
λ

= = = = +
 = = + = = + +

=  − = = + = + = + +
 − = + = = + + = +


 

with 1 .k m n+ + ≤  

The following array gives the number of iterations needed to obtain the primal and the dual 
solutions for different sizes. 

 
(m,n) Optimal Value Nbr. of iterations 

(1,2) -1.9955 6 

(2,4) -3.9214 19 

(3,6) -5.5146 30 

(4,8) -7.211 38 

(5,10) -9.1185 30 

(6,12) -11.818 36 

(7,14) -12.516 42 

 

7. Conclusion 

The present paper corrects a small point in the proof of the convergence given by Alizadeh 
(1995) and gives the value of the derivative of the potential function at 0 needed to perform 
an efficient line search. 
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