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Abstract 
 
We present integer linear models with a polynomial number of variables and constraints for 
combinatorial optimization problems in graphs: optimum elementary cycles, optimum elementary paths 
and optimum tree problems. 
 
Keywords:  modeling combinatorial optimization problems; optimization in graphs; 
characterization of connected subgraphs. 
 
 

Resumo 
 
Apresentamos modelos lineares inteiros com um número polinomial de variáveis e restrições para 
problemas de otimização combinatória em grafos: ciclos elementares ótimos, caminhos elementares 
ótimos e problemas em árvores ótimas. 
 
Palavras-chave:  modelos de problemas de otimização combinatória; otimização em grafos; 
caracterização de subgrafos conexos. 
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1. Introduction and Definitions 

Sometimes we have to solve small and median size combinatorial optimization problems 
using commercial codes of mixed linear integer programming as CPLEX, LINDO, OSL, 
XPRESS, etc. The use of branch and cut techniques to solve these problems needs a hard 
work of implementation. For the traveling salesman problem (TSP) and the Steiner tree 
problem (STP) in graphs one uses mathematical models with an exponential number of 
constraints to avoid subtours, these constraints are implicitly considered. The aim of this 
paper is to present 0-1 mixed linear programs with a polynomial number of variables and 
constraints to solve some combinatorial optimization problems using commercial codes. 

When we solve integer linear programming by column generation techniques, we have to 
generate paths, cycles and trees with additional constraints in small graphs, 40 to 60 nodes, 
120 to 180 edges, at each iteration. For this we can use a commercial code to solve the 
master problem and the same code to solve the optimization problem which generates at each 
iteration a new column. 

We define our notation as follows. 

Let G = (V,E) be a connected graph, where V = {1,2,3,...,n} is the set of nodes or vertices and 
E the set of edges. Let Gd = (V, A) be a directed graph derived from G, where A={ (i,j), (j,i) | 

{i,j} ∈ E}, that is, each edge u = {i,j} ∈ E is associated with two arcs (i,j) and (j,i) ∈ A.  

We define two news graphs: 0
0 0G   (V , E )= , and 0

0 0dG   (V , A )=  where { }0 0V V= ∪ , 

{ }{ } ( ){ }0 00, , 0,E E j j V A A j j V= ∪ ∈ ∪ ∈ . 

Let ( ) { } ( ) { } 0

0
0,1 ,   0,1

∈ ∈
= ∈ = ∈V E

i ui V u Ex x y y  two 0-1 vectors, and ( ) 00,  ,≥ ∈k
ijz i j A , 

k V ′∈  where V' is a subset of V, and k
ijz  is a real flow in the arc ( ) 0, Aji ∈  having 0 as 

source and k as terminal. We consider E(i) the set of edges u E∈  such that an endpoint is 

( ) ( ){ }0, ,i i j i j A+Γ = ∈  and ( ) ( ){ }0, ,i j j i A m E−Γ = ∈ =  and .n V=  

All combinatorial optimization problems that will be treated in this paper are associated with 
connected subgraphs of G. In the section 2 we present a nonsimultaneous flow formulation 
based on Claus & Maculan (1983), Beasley (1994), Wong (1984), Guyard (1985), Maculan 
(1986), Maculan (1987) and Maculan, Arpin & Nguyen (1988) for the Steiner tree problem 
in graphs and in Claus (1984) and Figueiredo & Maculan (2000) for the Travelling Salesman 
Problem (TSP) to guarantee that a subgraph has to be connected. We characterize all 
elementary cycles in a graph in section 3, and a particular model is developed for 
Hamiltonian cycles. In section 4 we propose a formulation to characterize all elementary 
paths in a graph. The characterization of subtrees with a fixed number of nodes in a graph is 
shown in section 5. In section 6 we associate with each type of combinatorial optimization 
problem an objective function whose minimum has to be searched; the minimum Steiner tree 
problem in a graph is also formulated by a particular nonsimultaneous flow problem in this 
section. All theorems presented in this paper are easy to be proved. 
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2. Modeling a connected subgraph of G 

The 0-1 vectors ( ) Viixx ∈=  and ( ) Euuyy ∈=  defined above are associated with a subgraph 
of G as follows: if 1=ix  then the node i belongs to the subgraph, 0=ix  otherwise; 
if 1=uy  then the edge u belongs to the subgraph, 0=uy  otherwise. These vectors will 
characterize a subgraph of G. 

The dummy node 0 is included to be a source node for a nonsimultaneous flow problem. Our 
idea is the use of the nonsimultaneous flow problem to obtain connected graphs as follows. 

 
( )

0
0

0, ,k
j k

j
z x k V

+∈Γ

− = ∈∑  (1) 

 
( ) ( )

{ }0, , ,k k
ij ji

j i j i
z z i V k k V

+ −∈Γ ∈Γ

− = ∈ − ∈∑ ∑  (2) 

 
( ) ( )

0, ,k k
kj jk k

j k j k
z z x k V

+ −∈Γ ∈Γ

− + = ∈∑ ∑  (3) 

 { } 0and , , , .k k
ij ij ji ijz y z y i j E k V≤ ≤ ∈ ∈  (4) 

 { }and , , ,ij i ij jy x y x i j E≤ ≤ ∈  (5) 

 0 1j
j V

y
∈

=∑  (6) 

 ( ) 00, , ,k
ijz i j A k V≥ ∈ ∈  (7) 

 { } { } { }00,1 , , , and 0,1 , .ij ky i j E x k V∈ ∈ ∈ ∈  (8) 

Theorem 1:  All vectors x and y satisfying (1-8) are associated with connected subgraphs 
of G. 

We consider that the subgraph associated with 0, for allix V= ∈ , is a connected graph. If 
a connected subgraph has to have at least 2 nodes, then we include a new constraint as 
follows. 

 1,u
u E

y
∈

≥∑  (09) 

or 

 2.i
i Z

x
∈

≥∑  (10) 

Number of variables and constraints for the model defined by (1-8): 
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Type of variables (connected subgraphs) Number 
k
ijz  2mn + n2 

uy  m 

0 jy  n 

ix  n 
Total 2mn + n2 + m + 2n 

 

Type of constraints (connected subgraphs) Number 
(1) - (3) n2+n 

(4) 4mn + 2n2 
(5) 2m 
(6) 1 
(7) 2mn + n2 
(8) m + 2n 

total 6mn+4n2+3m+3n+1 

 

3. Elementary Cycles 

We introduce new constraints which guarantee that each node in the subgraph has degree 2. 

 
( )

2 , ,u i
u E i

y x i V
∈

= ∈∑  (11) 

Constraints in (5) will be replaced by (11). 

Number of variables and constraints for the this last model: 

 
Type of variables (elementary cycles) Number 

k
ijz  2mn + n2 

uy  m 

0 jy  n 

ix  n 
total 2mn + n2 + m + 2n 

 

Type of constraints (elementary cycles) Number 
(1) - (3) n2+n 

(4) 4mn + 2n2 
(11) n 
(6) 1 
(7) 2mn + n2 
(8) m + 2n 

total 6mn+4n2+m+4n+1 
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Theorem 2:  All vectors x and y satisfying (1-4) and (6-11) are associated with 
elementary cycles of G. 

The formulation presented in theorem 2 can be used to describe all x and y associated with 
Hamiltonian cycles, for this we put 1, for allix i V= ∈ . In this case we will be able to 
propose another formulation using only G and dG , it is not necessary to include the 0 
dummy node. We choose any node in V to be the source node, we will take node 1 to be this 
source. Thus we present a new model as follows, where ( ) ( ){ },i j i j A+Γ = ∈  and 

( ) ( ){ },i j j i A−Γ = ∈ . 

 
( )

{ }
( )

1 1
1 1

1, 1 ,
+ −∈Γ ∈Γ

− = ∈ −∑ ∑k k
j j

j j
z z k V  (12) 

 
( ) ( )

{ } { }0, 1, , 1 ,k k
ij ji

j i j i
z z i V k k V

+ −∈Γ ∈Γ

− = ∈ − ∈ −∑ ∑  (13) 

 
( ) ( )

{ }1, 1 ,k k
kj jk

j k j k
z z k V

+ −∈Γ ∈Γ

− = − ∈ −∑ ∑  (14) 

 { } { }and , , , 1 ,k k
ij ij ji ijz y z y i j E k V≤ ≤ ∈ ∈ −  (15) 

 
( )

2, ,u
u E i

y i V
∈

= ∈∑  (16) 

 ( ) { }0, , , 1 ,k
ijz i j A k V≥ ∈ ∈ −  (17) 

 { } { }0,1 , , .ijy i j E∈ ∈  (18) 

Theorem 3: Each vector y satisfying (12 - 18) is associated with a Hamiltonian cycle of G. 

Number of variables and constraints for the Hamiltonian cycle model: 

 
Type of variables (Hamiltonian cycles) Number 

k
ijz  2mn 

uy  m 
total 2mn + m 

 

Type of constraints (Hamiltonian cycles) Number 
(12) - (14) n2 – n 

(15) 2mn – 2m 
(16) n 
(17) 2mn 
(18) m 
total 4mn+n2 – m 
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4. Elementary Paths 

Given two different nodes ,i V∈  and j V∈  we would like to characterize all elementary 
paths in G between i and j. For this xi = xj = 1, and replace in the connected subgraph model 
constrains in (5) by 

 
( )

{ }2 , ,u l
u E l

y x l V i j
∈

= ∈ −∑  (19) 

 
( )

{ }1, , ,u
u E l

y l i j
∈

= ∈∑  (20) 

Theorem 4:  All vectors x and y satisfying (1 - 4), (6 - 8) and (19 - 20) are associated with 
elementary paths of G between nodes i and j. 

 
5. Trees 

First of all we characterize all subtrees in G with a given number p n≤  of nodes, see 
Fischetti et al. (1984). For this we have to consider new constraints as follows. 

 ,i
i V

x p
∈

=∑  (21) 

 1,u
u E

y p
∈

= −∑  (22) 

Theorem 5:  All vectors x and y satisfying (1 - 8) and (21 - 22) are associated with 
subtrees with p ≤ n nodes of G. 

For characterizing all spanning trees of G we just put p=n. In this case we can propose a new 
model, as we did for Hamiltonian cycles in G. Thus we propose the following mathematical 
model. 

 
( )

{ }
( )

1 1
1 1

1, 1 ,k k
j j

j j
z z k V

+ −∈Γ ∈Γ

− = ∈ −∑ ∑  (23) 

 
( ) ( )

{ } { }0, 1, , 1 ,k k
ij ji

j i j i
z z i V k k V

+ −∈Γ ∈Γ

− = ∈ − ∈ −∑ ∑  (24) 

 
( ) ( )

{ }1, 1 ,k k
kj jk

j k j k
z z k V

+ −∈Γ ∈Γ

− = − ∈ −∑ ∑  (25) 

 { } { }and , , , 1 ,k k
ij ij ji ijz y z y i j E k V≤ ≤ ∈ ∈ −  (26) 

 1,u
u E

y n
∈

= −∑  (27) 

 ( ) { }0, , , 1 ,k
ijz i j A k V≥ ∈ ∈ −  (28) 

 { } { }0,1 , , .ijy i j E∈ ∈  (29) 

Theorem 6:  Each vector y satisfying (23 - 29) is associated with a spanning tree of G. 
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6. Combinatorial Optimization 

We associate real numbers (costs, weights, etc.) ci with nodes i ∈ V, and wu (costs, distances, 
weights, etc.) with edges u ∈ E. Thus we are concerned to deal with an objective function f 
as follows. 

 ( ), .i i u u
i V u E

f x y c x w y
∈ ∈

= +∑ ∑  (30) 

That is { } { }: 0,1 0,1V Ef × →ℜ . We would like to find a connected subgraph of G which 
minimizes (30). The connected subgraph optimization problem (CSP) bellow will give an 
optimal solution. 

( ) : minimize ,

subject to
constraints (1 - 8) 

i i u u
i V u E

CSP c x w y
∈ ∈

+∑ ∑
 

The traveling salesman problem (TSP) is to obtain a Hamiltonian cycle of G such that this 
cycle minimizes an objective function which represents the total distance of Hamiltonian 
cycles. Thus 

( ) : minimize ,

subject to
constraints (12 - 18). 

u u
u E

TSP w y
∈
∑

 

Where { }, ,uw u i j E= ∈ , is the distance between the extremes i and j of the edge u. 

If G is not a Hamiltonian graph, we will have no solution. 

This TSP-formulation was used in Figueiredo & Maculan (2000) to solve small and median 
size TSP-problems. 

We can define the minimum Steiner tree problem (MSTP) in G=(V, E) as follows. Given V  
a subset of V. With each edge u ∈ E a cost cu ≥ 0 is associated. Find a minimum total cost 
subtree of G that spans V . The following mathematical programming solves the (MSTP), 
where we suppose that node 1 ∈V . 

 ( ) : minimize ,u u
u E

MSTP c y
∈
∑  (31) 

subject to: 

 
( )

{ }
( )

1 1
1 1

1, 1 ,k k
j j

j j
z z k V

+ −∈Γ ∈Γ

− = ∈ −∑ ∑  (32) 

 
( ) ( )

{ } { }0, 1, , 1 ,k k
ij ji

j i j i
z z i V k k V

+ −∈Γ ∈Γ

− = ∈ − ∈ −∑ ∑  (33) 

 
( ) ( )

{ }1, 1 ,k k
kj jk

j k j k
z z k V

+ −∈Γ ∈Γ

− = − ∈ −∑ ∑  (34) 

 { } { }and , , , 1 ,k k
ij ij ji ijz y z y i j E k V≤ ≤ ∈ ∈ −  (35) 
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 ( ) { }0, , , 1 ,k
ijz i j A k V≥ ∈ ∈ −  (36) 

 { } { }0,1 , , .ijy i j E∈ ∈  (37) 

The linear programming relaxation of this MSTP-formulation has given very good lower 
bounds for large scale Steiner problems in rectangular grid graphs, see Bahiense, Maculan & 
Sagastizábal (2002). 

 
7. Conclusions 

Mathematical programming formulations for small and median size combinatorial 
optimization problems in graphs developed in this paper can give us optimal solutions using 
standard mixed integer programming softwares. Well-known modeling languages as AMPL, 
GAMS, LINGO, MP-MODEL (XPRESS) would be used to create the data of a mixed 
integer programming which will be solved by standard softwares. 
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