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Abstract 
 
We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian 
plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle 
of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by 
constructing a convenient system S of equations and inequations which represents the structure of G, in such 
a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs 
(intersection graphs of chords in a circle), and thus this method provides an analytic way for recognizing 
circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords 
such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000) 
states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds 
(a diamond is a graph formed by four vertices and five edges). Many unsuccessful efforts – mainly based on 
combinatorial and geometrical approaches – have been done in order to validate this conjecture. In this work, 
we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an 
equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it. 
 
Keywords:  circle graph; Helly circle graph. 
 
 

Resumo 
 
Dizemos que G é um grafo e-circular se existe uma bijeção entre seus vértices e retas no plano cartesiano de 
forma que dois vértices são adjacentes em G se e somente se as retas correspondentes se intersectam dentro 
do círculo de raio unitário centrado na origem. Esta definição sugere um método para decidir se um dado 
grafo G é um grafo e-circular, construindo convenientemente um sistema S de equações e inequações que 
representa a estrutura de G, de tal modo que G é um grafo e-circular se e somente se S tem solução. Em 
realidade, grafos e-circulares são exatamente os grafos circulares (grafos de interseção de cordas em um 
círculo), e portanto este método fornece um modo analítico de reconhecimento de grafos circulares. Um grafo 
G é circular Helly se G é um grafo circular e existe um modelo de cordas de G tal que em todo grupo de três 
cordas mutuamente intersectantes existe um ponto comum a todas elas. Uma conjectura de Durán (2000) 
afirma que G é um grafo circular Helly se e somente se G é um grafo circular e não contém diamantes 
induzidos (um diamante é um grafo formado por quatro vértices e cinco arestas). Muitas tentativas 
infrutíferas – baseadas principalmente em abordagens combinatórias e geométricas – foram realizadas para 
tentar validar a conjectura. Neste trabalho, utilizamos as idéias subjacentes à definição de grafos e-circulares 
e reformulamos a conjectura em termos de uma equivalência entre dois sistemas de equações e inequações, 
fornecendo uma nova ferramenta analítica para tratá-la. 
 
Palavras-chave:  grafo circular; grafo circular Helly. 
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1. Introduction 

Let G = (V(G),E(G)) be a graph, and n=|V(G)|. We say that G is a circle graph if there exists 
a family of chords L on a circle and a one-to-one correspondence between vertices of G and 
chords of L such that two distinct vertices are adjacent in G if and only if the corresponding 
chords in L intersect. Such a family of chords representing G is called a chord model for G. 
Circle graphs first appeared in Even & Itai (1971), in the context of a problem proposed in 
Knuth (1969). Polynomial time recognition algorithms for circle graphs can be found in 
Bouchet (1987), Gabor, Supowit & Hsu (1989) and Spinrad (1994). 

Helly circle graphs (Durán, 2000) form a natural subclass of circle graphs. We say that G is a 
Helly circle graph if there exists a chord model L for G satisfying the Helly property. 
(A family L of chords satisfies the Helly property when every subfamily of pairwise 
intersecting chords of L has a common point of intersection.) A conjecture by Durán (2000) 
states that G is a Helly circle graph if and only if G is a circle graph and contains no induced 
diamonds (a graph formed by four vertices and five edges.) 

Many unsuccessful efforts, mainly based on combinatorial and geometrical approaches, have 
been done in order to validate this conjecture. In this work, we define the class of e-circle 
graphs – which is shown to be in fact exactly the class of circle graphs – and we utilize the 
ideas behind this definition to restate this conjecture in terms of an equivalence between two 
systems of equations and inequations, providing a new, analytic tool to deal with it. 

 

2. E-circle graphs 

A graph G is an e-circle graph if we can find a model of straight lines on the cartesian plane 
according to the following procedure. 

Represent each vertex ( )v V G∈  by a line vR , fixing the origin of coordinates at the center 
of the circle of radius r=1. Two lines intersect inside the circle if and only if their respective 
vertices are adjacent in G (Figure 1). Let R(G) be the set of lines corresponding to the 
vertices of G. 
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Figure 1 – System of lines for a three-vertex graph. 
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To formalize this concept, we make the following simplifications: 

• There are no vertical lines in R(G). 
• There are no horizontal lines in R(G). 
• There are no pairs of parallel lines in R(G). 

Let us verify that these simplifications do not imply a loss of generality. Suppose that a graph 
G is represented by a set of lines R(G) such that for every pair of vertices ,i j G∈  with 

, ii j R≠  intersects jR  inside the circle if and only if  i  is adjacent to  j  in G. If there are any 
vertical or horizontal lines in R(G), they can be rotated slightly, until there are no vertical and 
horizontal lines left. If there is a pair of parallel lines, one of them can be rotated slightly in 
order to eliminate that parallelism, and without modifying the crossings that take place inside 
the circle. 

The first simplification allows each straight line iR  to be written as an equation 

i iy m x b= ⋅ + . The second and third ones guarantee that , 0, and ,i i ji m i j m m∀ ≠ ∀ ≠ ≠ . 

As said before, fix the origin of coordinates at the center of the circle of radius r=1, and 
construct a system of equations and inequations in the following way. 

For each pair of vertices ( ) ( ),i j V G i j∈ ≠ , add the following equations: 

• , ,i ii j i jy m x b= ⋅ +  

• , ,j ji j i jy m x b= ⋅ +  

where ,i j  is the point where lines iR  and jR  intersect, and , ,,i j i jx x , are its 
coordinates. Add also the following inequations: 

• 2 2
, , 1i j i jx y+ <  if the edge ( ) ( ),i j E G∈  

• 2 2
, , 1i j i jx y+ >  otherwise 

That is, lines iR  and jR  intersect inside the circle if and only if vertices i and j are adjacent 
in G. Since there cannot be any pair of parallel lines, they must intersect somewhere, either 
inside or outside the circle. The case in which 2 2

, , 1i j i jx y+ =  can be ignored: if there is a 
model M of lines in which this equality holds, M can be slightly modified in order to 
transform the equality into a strict inequality. 

Finally, add the following restrictions to the system, as a consequence of simplifications 
2 and 3: 

• 0im ≠  ( )i V G∀ ∈  

• i jm m≠  ( ), ,  with  i j V G i j∀ ∈ ≠ . 

The number of equations and inequations is 22 2n − . An e-circle graph is formally defined 
as a graph for which the system of equations and inequations constructed in this way has a 
solution. 
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Theorem 1.  A graph G is an e-circle graph if and only if it is a circle graph. 

Just observe that any pair of parallel chords can be moved slightly eliminating thus the 
parallelism without affecting other intersections. The proof of Theorem 1 follows directly. 

 

3. The Diamond’s Conjecture 

A graph G is a diamond if it is isomorphic to { }4K e− . Durán (2000) observed the following 
property: 

Remark 1.  Let G be a Helly circle graph. Then G is a circle graph and contains no induced 
diamonds. 

 
Figure 2 – A diamond 

 
In the same work, Durán conjectured that the converse of this property is also true: 

Conjecture 2.  Let G be a circle graph containing no induced diamonds. Then G is a Helly 
circle graph. 

This interesting conjecture remains open. Note that if it were true, it would give us a 
polynomial recognition algorithm for Helly circle graphs. Here, we show a reformulation of 
this conjecture, using the ideas just presented. 

Let G = (V(G), E(G)) be any graph. First, construct a system GS  of equations and 
inequations for G, following the rules explained above. As we have already seen, GS  has a 
solution if and only if G is a circle graph. In order to complete the reformulation of 
Conjecture 2, we need to be able to express two more facts analytically: that G contains no 
induced diamonds, and that G is a Helly circle graph. We will use the following notations: 

• Given a model of straight lines on the plane for a graph G, and two vertices 
( ),i j V G∈ , let ,i j  denote the point in which the corresponding lines intersect. 

• ,i jx  and ,i jy  are the coordinates of the point ,i j . 
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• ,i j  is the distance from the point ,i j  to the origin of coordinates. That is, 

., 2
,

2
, jiji yxji +=

 

• Given 
if a b

, ,
0 if a b.
a b

a b a b
− ≥

∈ℜ − =  <
�  

Note that 0, , .a b a b− ≥ ∀ ∈ℜ�  

 

3.1 Expressing that G contains no induced diamonds 

In this subsection we show how to express analytically the fact that G contains no induced 
diamonds. 

For each set U of four vertices in V(G), add the following inequations to system GS : 

• For each ,i j U∉ , such that i j≠ : 

 0 1 ,U i jδ ≤ −�  (1) 

• For every possible combination of { } { }{ } ( ), , ,i j k l U⊆ Ρ , such that , ,i j k l≠ ≠  and 

{ } { }, ,i j k l≠ : 

 
,

,

, 1

, 1

ij kl
U

ij kl
U

i j

k l

δ

δ

≤ −

≤ −

�

�
 (2) 

• Finally: 

 
{ } { }{ } ( )

{ } { }

,0

, , , P U
,

, ,

0δ δ
⊆

≠ ≠
≠

+ >∑ ij kl
U U

i j k l
i j k l

i j k l

 (3) 

where 0 ,, ij kl
U Uδ δ ∈ℜ . For a graph G, with 4n ≥ , there are 

4
n 

 
 

 distinct subsets of four vertices 

in V(G). Therefore, the total number of inequations that are added to the system is ( )4nΟ . 

Proposition 3.  The new system ´
GS  constructed from a graph G has a solution if and only 

if G is a circle graph and contains no induced diamonds. 

Proof:  First, suppose that the system ´
GS  has a solution. Recall from last section that if the 

original system GS  has a solution then G is a circle graph. We have to prove that if the new 
inequations can be satisfied then G contains no induced diamonds. 
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For each set U of four vertices in V(G), at least one of the two terms of Inequation (3) must 
be positive: 

• If 0 0Uδ > , then, due to Inequations (1), the lines corresponding to the vertices in U 
intersect each other inside the circle. This means that the subgraph induced by U is 
complete, and not a diamond. 

• If the sum of Inequations (3) is positive, then it is true that , 0ij kl
Uδ >  for some 

combination of { } { } { }{ } ( ), , , , , Pi j k l k l U⊆ , such that ,i j k l≠ ≠ . Inequations (2) 

imply that the points ,i j  and ,k l  lay outside the circle. So, G does not contain 
the two corresponding edges, and this guarantees that the subgraph induced by U is 
not a diamond. 

We have just seen that if the system has a solution, then G is a circle graph and any subgraph 
induced by four vertices in G is either complete or contains at most four edges. In other 
words, if GS  has a solution, then G is a circle graph containing no induced diamonds. 

Suppose now that G is a circle graph and contains no induced diamonds. We know that the 
original system GS  has a solution because G is a circle graph. Let us see that the new 
inequations are satisfied for some choice of δ´s. 

Let U  be a set of four vertices in V(G): 

• If the subgraph induced by U is complete, choose: 

( )

{ } { }{ } ( ) { } { }

0

,

 min ,

0 , , , P : , , , ,

U
ij U

ij kl
U

i j

i j k l U i j k l i j k l

δ

δ

∈
= −

= ∀ ⊆ ≠ ≠ ≠

�
 

As the subgraph induced by U is complete, the lines representing its vertices cross each 
other strictly inside the circle, according to the solution of system GS . Therefore, the 
value chosen for 0

Uδ  is greater than zero, and satisfies the inequations of ´
GS . 

 
• If the subgraph induced by U is not complete, then it contains at most four edges, since G 

contains no induced diamonds. In this case, choose: 

( ) ( ){ } ( )
{ } ( ) ( ){ } ( )

0

,

0

0 , , , 0
min , , , , , , 0

U

ij kl
U

if i j k l E G
i j k l if i j k l E G

δ

δ

=

 ≠=  − =

∩
∩�

 

The last value corresponds to the case in which the edges (i,j) and (k,l) are not in the graph. 
Then, the intersections of the corresponding lines lay outside the circle, which guarantees 
that , 0ij kl

Uδ > . 
� 



Durán, Gravano, Groshaus, Protti & Szwarcfiter  –  On a conjecture concerning Helly circle graphs 

Pesquisa Operacional, v.23, n.1, p.221-229, Janeiro a Abril de 2003 227 

3.2 Expressing that G is a Helly circle graph 

In this section, we show how to express analytically that G is a Helly circle graph. 

For each set U formed by three vertices in V(G), add the following inequations to the original 
system S_G: 

 ( )
,

, 1 U
i j U
i j

i j cη
∈
≠

− ≤ ⋅∑ �  (4) 

 ( ),
,

U Ui j
i j U
i j

x cα η
∈
≠

− ≤ ⋅∑ �  (5) 

 ( ),
,

U Ui j
i j U
i j

y cβ η
∈
≠

− ≤ ⋅∑ �  (6) 

 ( ),
,

U Ui j
i j U
i j

x cα η
∈
≠

− ≤ ⋅∑ �  (7) 

 ( ),
,

U Ui j
i j U
i j

y cβ η
∈
≠

− ≤ ⋅∑ �  (8) 

 ( ) ( )
,

, 1 1 U
i j U
i j

i j cη
∈
≠

− − ≤ − ⋅∑ �  (9) 

 
( ),

,max
i j V G

i j

c i j
∈

≠

= ⋅ 3+1 (10) 

Where { }, , , ; 0,1 .η α β η∈ℜ ∈U U U Uc  For a graph G with 3n ≥ , there are 
3
n 

 
 

 distinct 

subsets of three vertices in V(G). Therefore, the total number of inequations that are added to 
the system is ( )3 .nΟ  

Proposition 4.  The new system ´́
GS  constructed from a graph G has a solution if and only if 

G is a Helly circle graph. 

Proof:  Let G = (V(G), E(G)) be any graph. First, suppose that ´́
GS  has a solution. As we 

have already seen, if the original system GS  has a solution then G is a circle graph. We have 
to prove that if the new inequations are satisfied, then the model of lines for G verifies the 
Helly property. 
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Let U be a set formed by three vertices in V(G). We know that Inequations (4) to (10) are 
satisfied. Uη  can take two different values: 0 or 1. Suppose that 0.Uη =  Then: 

• Inequations (4) imply that , 1i j ≤  for all ,i j , which means that U is complete. 

• Inequations (5) and (7) imply that ,U i jxα =  for all ,i j . 

• Inequations (6) and (8) imply that ,U i jyβ =  for all ,i j . 

Therefore, for every complete subgraph U with three vertices, its corresponding lines cross at 
the same point (at coordinates Ux α= , and Ux β= ). 

Let us now analyze the case 1Uη = . Inequations (9) say that there exists at least one ,i j  

such that , 1i j > . Thus, U is not complete. 

We have just seen that for every set U of three vertices, if the subgraph induced by U is 
complete, then its lines cross each other at the same point. This means that all the lines in 
every complete subgraph of G (of any size) cross at the same point. Therefore, the model of 
lines defined by system ´́

GS  verifies the Helly property. 

Now suppose that G is a Helly circle graph. We know that the original system GS  has a 
solution because G is a circle graph. Let us see that the new inequations are satisfied for 
some choice of values for the variables. 

Again, let U be a set of three vertices in V(G). If the subgraph induced by U is complete, 
choose: 

• 0Uη =  

• Uα  and Uβ  equal to coordinates x and y, respectively, of the point where all lines 
corresponding to vertices in U cross, according to the solution of system GS  

Right terms of Inequations (4) to (8) are equal to 0, thus making left terms also equal to 0. In 
the first case (Inequations (4)), that equality is true because , 1i j >  for all ,i j  
(provided that U is complete). In the other cases, the equalities hold because coordinates x 
and y of all the ,i j  are Uα  and Uβ , respectively. Finally, in order to verify Inequations 
(9), note that the only possible value of c is greater than 0. 

If the subgraph induced by U is not complete, choose: 

• 1Uη =  

• 0U Uα β= =  

In this case, Inequations (9) are satisfied because there must exist some ,i j  such that 

, 1i j > , since U is not complete. Finally, it is easy to see that Inequations (4) to (8) are 
satisfied, because the only possible value of c is an upper bound for each sum. 
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3.3 Restating the Diamond’s Conjecture 

By using Propositions 3 and 4, Conjecture 2 can be restated as follows: 

Conjecture 5.  Let G be any graph. If the system of inequations ´
GS  has a solution, then 

system ´́
GS  also has a solution. 

According Remark 1, the converse is true. 
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