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Abstract 
 
Alidaee and Ahmadian considered a single machine scheduling problem with varying processing times, 
and presented a polynomial algorithm that minimizes the sum of absolute deviations of jobs’ 
completion times from a common due date. In this short note we remark that it is possible to eliminate 
one of the algorithm steps, therefore obtaining a more efficient procedure. We also show that the 
approach used can easily be generalized to the problem with different weights for earliness and 
tardiness. 
 
Keywords:  scheduling; variable speed; common due date. 
 
 

Resumo 
 
Alidaee e Ahmadian analisaram um problema de sequenciamento com um único processador e tempos 
de processamento variáveis, tendo apresentado um algoritmo que minimiza a soma dos desvios 
absolutos dos tempos de finalização das tarefas face a uma data de entrega comum. Neste artigo é 
estabelecido que um dos procedimentos desse algoritmo pode ser eliminado, sendo assim possível obter 
um procedimento mais eficiente. A abordagem utilizada é também generalizada ao problema com 
ponderações diferentes consoante o trabalho é concluído antes ou após a sua data de entrega. 
 
Palavras-chave:  sequenciamento; velocidade variável; data de entrega comum. 
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1. Introduction 

Alidaee & Ahmadian (1996) consider a single machine scheduling problem with variable 
processing times that was introduced by Gawiejnowicz (1996). In this problem the speed of 
the machine is variable and depends on the number of jobs that have already been processed. 
The speed of the machine is described by a function v, which varies in the interval [0,1]. The 
speed starts from an initial value and changes after the completion of each job. After a certain 
number of jobs have been executed, the speed reaches one of its limit values (either 0 or 1). 
At that time, the machine stops for a certain amount of time before resuming the processing 
of the remaining jobs (with the speed v again assuming values in the interval [0,1]). 

Formally, the model can be stated as follows. A set N = {1,…,n} of independent jobs, each 
consisting of a single operation, must be processed without preemption on a single machine. 
Let v: {1,…,n} → [0,1] be a function that specifies the speed of the machine (at the 
beginning of the jth job) according to the number of already executed jobs. It is assumed that 
the speed of the machine does not change while a job is being processed. Let k  be the 
number of jobs that can be executed without breaking the work of the machine, i.e., up to the 
time the speed reaches an end value. Therefore, the machine must stop after k jobs are 
executed. Let 0jp >  denote the processing requirement of job  j, j=1,…,n,  and let bt  be the 
length of each processor break. Assuming that bt  is constant, we can also assume, without 
loss of generality, that 0bt = . Let σ = ([1],…,[n]) be a sequence of the n jobs where [l] 
denotes the lth job in σ and let (i) represent the ith position in the sequence σ. The relative 

processing time of the jth job in the sequence σ is then [ ]
[ ]

( )
j

j

p
p v j= , for j = 1,…,n. 

The case where the speed of the machine depends not only on the number of jobs it has 
already processed, but also on the job currently being processed, was also considered in 
Alidaee & Ahmadian (1996). In that case, associated with each job j∈N there is a speed 
function jv : {1,…,n} → [0,1], where ( )jv i  denotes the speed of the processor when 
processing job j in the ith position. One of the objective functions considered by Alidaee and 
Ahmadian was the sum of deviations of the jobs’ completion times from a common due date, 
which can be stated as follows: find a sequence σ and a common due date d, i.e., a schedule 
(σ,d), that minimizes TET(σ,d) = [ ]1

n
jj C d= −∑ , the total earliness and tardiness. Alidaee & 

Ahmadian (1996) presented an O(n2log n) algorithm for the problem where the speed 
depends only on the number of previously processed jobs, and a O(n4) procedure for the case 
where the speed also depends on the job itself. 

In this short note we first remark that one of the steps included in the procedures proposed by 
Alidaee & Ahmadian (1996) can be eliminated. This leads to improved algorithms with time 
complexities of O(nlog n) and O(n3). We then show that the procedures presented by 
Alidaee and Ahmadian can easily be extended to the problem with different weights for 
earliness and tardiness, which can be stated as follows: find a sequence σ and a common due 
date d, i.e., a schedule (σ,d), that minimizes the total weighted earliness and tardiness 
TWET(σ,d)  = 1 ( ) ( )n

j jj h d C w C d=
+ + − + − ∑ , where h and w are, respectively, the 

earliness and tardiness cost per unit time. 
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2. Sum of absolute deviations of the jobs’ completion times 

In this section we remark that it is possible to improve the efficiency of the algorithms 
proposed by Alidaee & Ahmadian (1996) by eliminating one of their steps. Alidaee & 
Ahmadian (1996) first presented an algorithm with complexity O(nlog n) for the problem 
where the speed depends only on the number of previously processed jobs, and the number 
of early and on time jobs (and therefore the number of late jobs) is given. The problem where 
once again the number of early and on time jobs is given, but the speed depends also on the 
job itself, was formulated as a transportation problem, and can therefore be solved in O(n3) 
time. Alidaee & Ahmadian (1996) then proposed that the general problems, where the 
number of early and on time jobs is not given, could be solved by simply running the above 
algorithms for all the n possible values for the number of early and on time jobs, and 
choosing the best of those n schedules. This resulted in procedures with complexity 
O(n2log n) and O(n4). 

We now remark that there always exists an optimal schedule with a certain number of early 
and on time jobs, so that only that number needs to be considered in the search for an optimal 
schedule. It is well known that the due date must coincide with the completion time of a job, 
and that no unforced idle time should be inserted between the jobs (see, for instance, Baker 
& Scudder (1990)). Let B denote the set of jobs that complete before or at the common due 
date d and A denote the set of jobs that complete after d. The following result was proved by 
Baker & Scudder (1990) and states the number of jobs that will be early or on time in one 
(possibly not unique) optimal schedule. 

Theorem 1 (Baker & Scudder)  There exists an optimal schedule where |B| = 2n   , i.e., 
2n    jobs are completed early or on time. 

Theorem 1 shows that in the search for an optimal solution it suffices to consider schedules 
with 2n    early or on time jobs, so the problems with speed dependent on the number of 
processed jobs only, and with speed also dependent on the particular job being processed, 
can therefore be solved in time O(nlog n) and O(n3), respectively. 

 

3. Weighted earliness and tardiness 

3.1 Speed depends only on the number of previously processed jobs 

We now show that the approach used in Alidaee & Ahmadian (1996) can be adapted to the 
problem with a total weighted earliness and tardiness objective function. Once more the due 
date must coincide with the completion time of a job, and that no unforced idle time should 
be inserted between the jobs (see, for instance, Baker & Scudder (1990)). We first consider 
the number of jobs that will be early or on time in an optimal schedule. Again let B denote 
the set of jobs that complete before or at the common due date d and A denote the set of jobs 
that complete after d. The following result was also proved by Baker & Scudder (1990), 
and states the number of jobs that will be early or on time in one (possibly not unique) 
optimal schedule. 
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Theorem 2 (Baker & Scudder)  There exists an optimal schedule where |B| = wn
h w

 
 + 

 and 

therefore |A| = hn
h w

 
 + 

, i.e., wn
h w

 
 + 

 jobs are completed early or on time and hn
h w

 
 + 

 

jobs are completed late. 

Theorem 2 allows us to consider only schedules with wn
h w

 
 + 

 early or on time jobs. Please 

recall that [l] denotes the lth job in the sequence σ, while v(i) represents the speed of the 
machine when processing the job in the ith position in σ. The objective function can now be 
written as: 

TWET(σ,d) = 1 ( ) ( )n
j jj h d C w C d+ +

=
 − + − ∑ = 

 = [ ] [ ] [ ]1 2 30 2 ... ( 1) wn
h w

wp hp hp n hp
h w   

  +  

 + + + + − + + 
 

 + 
1 2

( ) ( 1) ...w wn n
h w h w

w wn n wp n n wp
h w h w      + +      + +      

   − + − − + +   + +   
 

 + [ ] [ ] [ ]2 13 2n n nwp wp wp− −+ + =  

 = [ ] [ ] [ ]1 2 3

( 1)
0 2 ...
(1) (2) (3) ( )

wn
h w

wn h
h h h wp p p p

wv v v v n
h w

  
  +  

  − + + + + + +
 
 + 

 

 + 
1 2

( ) ( 1)
...

( 1) ( 2)
w wn n

h w h w

w wn n w n n w
h w h wp p
w wv n v n

h w h w

      + +      + +      

   − − −   + +   + + +
   + +   + +   

 

 + [ ] [ ] [ ]2 1
3 2 ,

( 2) ( 1) ( )n n n
w w wp p p

v n v n v n− −+ +
− −

 

with d = [ ]1

wn
h w

jj p
 
 + 
=∑ . 

Note that only the value of [ ]jp  depends on the job sequence. The remaining values in the 

previous equations, which we will call the positional weights, and denote by ∆ (j), are 
independent of the job sequence. These positional weights ∆ (j) are 
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( 1)
0 2, , ,...,
(1) (2) (3) ( )

wn h
h h h w

wv v v v n
h w

  − + 
 
 + 

 

for the early and on time jobs and 

( ) ( 1)
3 2, ,..., , ,

( 2) ( 1) ( )( 1) ( 2)

w wn n w n n w
w w wh w h w

w w v n v n v nv n v n
h w h w

   − − −   + +   
− −   + +   + +   

 

for the tardy jobs. 

 
Theorem 3  An optimal solution can be obtained by successively assigning the unscheduled 
job with the smallest value of p to the free position with the largest value of ∆ until all jobs 
have been scheduled. 

Proof. The proof is identical to the proof of Proposition 1 in Alidaee & Ahmadian (1996). 
The objective function can be seen as a scalar product of two vectors, and it is known that 
such a product is minimised by matching the largest elements in one vector with the smallest 
elements in the other vector. ■ 

The TWET problem can therefore be solved in O(nlog n) time, since sorting the jobs and the 
positional weights requires O(nlog n) time, and the final assignment of jobs to positions can 
be done in O(n) time. 

 

3.2 Speed also depends on the job being processed 

The approach presented in Alidaee & Ahmadian (1996) for the TET problem when the speed 
also depends on the job being processed can once again be adapted to the TWET objective 
function. That approach involves a transformation to an assignment problem. The processing 
time of a job is variable, since it depends on the job’s position in the sequence, while 
theorem 2 applies when the processing times are constant. However, since for any given 
sequence σ the processing times are indeed constant, it is clear that even in this case 
theorem 2 is still valid. Furthermore, it’s still true that not only the due date must coincide 
with the completion time of a job, but also no unforced idle time should be inserted. 

The contribution of job j to TWET is ( 1) ( )j
j

hp i v i−  if it is scheduled in the ith position 

and i ≤ wn
h w

 
 + 

, i.e., if j is early or on time. If job j is tardy and it is scheduled in the ith 

position (i > wn
h w

 
 + 

), its contribution will be ( 1) ( )j
j

wp n i v i− + . We can now define an 
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n n×  matrix Q, composed of two matrices eQ  and tQ  as follows, 

e

t

Q
Q

Q
 

=  
 

, 

where eQ  is an wn n
h w

 × + 
 matrix representing the contributions of the n jobs to the 

objective function when they are early or on time, and tQ  is an ( )wn n n
h w

 − × + 
 matrix 

representing the contributions of the n jobs to TWET when they are tardy. The ijth element 
of eQ  is equal to ( 1) ( )j

j
hp i v i−  and the ijth element of tQ  is equal to ( 1) ( )j

j
wp n i v i− + . 

The TWET problem can then clearly be solved as an assignment problem that has Q as its 
matrix, and an optimal solution can therefore be obtained in O(n3) time. 
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