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Abstract 
 
Some authors, considering deterministic or stochastic demand patterns and different forecasting formulations, 
have studied the classical problem of optimally meeting a growing demand for capacity, over an infinite 
horizon. With this approach, only investment costs discounted with a predefined interest rate are considered 
in the analysis. Adding other expenditures and revenues, managers usually estimate the discounted cash 
flow of the project, and assume the organization will follow a predetermined plan when investing, regardless 
of how events unfold in the future. The real options approach, on the other hand, introduces the possibility 
of incorporating other decision alternatives in the economic analysis, such as the option of waiting or 
postponing, abandoning, switching, etc. In this paper we first review the classical capacity expansion 
models. Then, the concepts and properties of the real options approach, with emphasis on the Black-
Scholes equation, are briefly discussed. Finally, an application example is presented and discussed. 
 
Keywords:  capacity expansion models; economic feasibility; real options. 
 
 

Resumo 
 
Alguns autores vêm estudando o problema clássico de atender otimamente a demanda por capacidade 
crescente ao longo de um horizonte infinito, considerando, para isso, formas determinísticas ou 
estocásticas de expansão da demanda, bem como diferentes formulações de previsão. Com esse 
enfoque, somente os custos de investimento, descontados a uma taxa predefinida de juros, são 
considerados na análise. Adicionando outros desembolsos e receitas, os administradores usualmente 
estimam o fluxo de caixa descontado do projeto, admitindo que a empresa seguirá um plano 
predeterminado, independentemente da forma como os eventos se desenrolarão no futuro. O enfoque de 
opções reais, por outro lado, introduz a possibilidade de incorporar outras alternativas de decisão na 
análise econômica, tais como a opção de esperar ou postergar, abandonar, trocar, etc. Neste artigo se 
faz, em primeiro lugar, uma revisão dos modelos clássicos de expansão de capacidade. A seguir, os 
conceitos e propriedades do enfoque de opções reais, com ênfase na equação de Black-Scholes, são 
brevemente discutidos. Finalmente é apresentado e discutido um exemplo de aplicação. 
 
Palavras-chave:  modelos de expansão de capacidade; viabilidade econômica; opções reais. 
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1. Introduction 

This paper deals with two important topics in the area of finance and economics, namely the 
capacity expansion problem and the real options approach. Our objective is to make a 
survey, yet partial, of both topics, stressing the theoretical and practical connections between 
them. In fact, since the classical models of capacity expansion problems assume a 
continuous, ever-increasing demand curve and irreversible investments, they do not include 
all the practical variables usually encountered in present-day investment problems. In a 
volatile global economy, decisions such as to postpone investments, to contract projects, to 
shutdown and later restart operations, to close factories, to leave markets (even on a 
temporary basis), are usually taken today by leading businessmen. The real options approach 
opens a way to the analyst to correctly evaluate the economic impacts of such actions. 

Apart from a review of the related literature, the main contribution of this paper is to show 
how to introduce the abandoning option into the classical capacity expansion problem. The 
abandoning option has been frequently used in real life by leading multinational firms. In the 
automotive industry, for example, one can observe the displacement of entire assembly lines 
across the borders. For instance, Daimler-Chrysler phased out the production of the Dodge 
Dakota in Brazil, the Volkswagen Polo, which was produced in Argentina is now produced 
in Brazil, etc. We intend to show that the treatment of some capacity expansion problems, 
associated with the real options approach, can yield more realistic and sound solutions. 

 
1.1 Capacity expansion problems 

Capacity expansion is the process of adding facilities over time in order to satisfy rising 
demand (Manne, 1961; Freidenfelds, 1980, 1981). Capacity expansion decisions in the 
business sector generally add up to a massive commitment of capital. The efficient 
investment of capital depends on making appropriate decisions in individual expansion 
undertakings. On the other hand, capacity expansion decisions can be improved through the 
use of Operations Research models. While real capacity expansion problems are very often 
more complex than the models studied in this paper, a robust, albeit simplified mathematical 
model, can capture aspects that are important in many applications. 

Since the 1960s, quite a number of quantitative studies have been conducted on capacity 
expansion problems (Manne, 1961; Freidenfelds, 1980, 1981; Luss, 1982, Lieberman, 1989, 
Higle & Corrado, 1992; Bean et al., 1992; Li & Tirupati, 1994; Souza, 1996). Apart from 
physical additions, the time when expansions occur is of interest for planning purposes. An 
important characteristic of most capacity problems is the recognition of economies of scale, 
i.e. large installations usually cost less per produced unit than small ones. But, if the demand 
level is continuously rising on the long run and backlogging of demand is not permitted, 
excess capacity will occur (Figure 1). Thus, there is a tradeoff between scale economies and 
excess capacity cost, leading to a compromised optimal solution. Apart from expansion size 
and expansion time, other decision variables may be added to the problem, such as the 
alternative locations of the facilities and/or facility types (Luss, 1982; Fong & Srinivasan, 
1986; Dixit & Pindyck, 1994; Souza, 1996). 

This paper deals with a specific expansion problem, namely the one initially treated by 
Manne in 1961, and subject to classical extensions by Srinivasan (1967), Freidenfelds (1980, 
1981), Lieberman (1989), and Bean et al. (1992). Figure 1 depicts the problem in general 
terms: given a deterministic or stochastic function of growing demand over time, and 
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knowing how capital cost varies as a function of capacity, the objective is to determine the 
optimal expansion times. Manne (1961), considering a linear demand function, showed that 
when demand is a Bachelier-Wiener diffusion process in continuous time, the effect of 
randomness can be equivalently represented by a reduction in the discounting interest rate. 
Later, Srinivasan (1967) showed that this property is also valid for geometric rate of growth 
of demand. Freidenfelds (1980), analyzing the case of an arbitrary birth-death demand 
process, discussed how one can leave the interest rate unchanged and replace the forecasted 
original demand values by larger quantities, building an “equivalent deterministic demand” 
model. Bean et al. (1992) generalized the demand processes under which the “equivalent 
interest rate” approach applies. 

This treatment of capacity expansion problems, however, assumes that one continues to 
place additional facilities in the indefinite future as soon as the facilities are fully utilized. In 
other words, postponement or abandonment options are not contemplated in such models. 

 

 
Figure 1 – The capacity expansion process. 

 
1.2 The real options approach 

A key element at the present stage of the global Economy is the growing flexibility that the 
world’s leading enterprises are inserting in their globalized manufacturing and logistics 
strategies (Kogut & Kulatilaka, 1994; Vidal & Goetschalckx, 1997; Novaes, 2000; Cohen & 
Huchzermeier, 2002). Today, large global corporations are increasingly adopting more 
flexible supply chain and production strategies based on real compound options. Dynamic 
investment strategies generally include options to wait, to exit, to expand, to switch, and to 
improve, among others. In general, a firm’s ability to anticipate and to respond flexibly to 
such changes reduces its expected downside risk and thus lowers costs, and/or raises its 
revenues, which in turn enhances the firm’s shareholder value (Cohen & Huchzermeier, 1999). 

Irreversible investments, in our risky world, require a higher level of expected returns 
because, once the assets are in place, the investment cannot be reversed without losing much 
of its value. The value of an investment project with options, on the other hand, is usually 
greater than the one obtained by the traditional approach because the options truncate 
possible losses at some point. In order to reduce the negative effects, some measures are 
taken beforehand in order to limit losses to a pre-defined value (Trigeorgis, 1996; Amram 
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& Kulatilaka, 1999; Hull, 1997). Thus, one is able to withstand riskier situations, limiting 
losses to a bearable, pre-established level. 

When solving real options problems the first task is to establish the mathematical frame, a 
representation of the stochastic processes, the payoff functions, and the decision rules in 
mathematical terms (Amram & Kulatilaka, 1999). Next, the solution method is chosen. 
There are three general solution methods (Amram & Kulatilaka, 1999): 

• The pde approach, in which one solves a partial differential equation (the pde) that 
equates the change in option value with the change in the value of the tracking portfolio; 

• The dynamic programming approach, often associated with binomial models, which 
lays out possible future outcomes and folds back the value of optimal future strategy; 

• The simulation approach, which averages the value of the optimal strategy at the 
decision date for a great number of possible outcomes (often associated with decision 
trees). 

The book by Trigeorgis (1996) is an important reference on real options. An introductory 
text is Amram & Kulatilaka (1999). Other introductory texts of interest are Luehrman, (1995, 
1998a, 1998b) & Edleson (1999). The book by Hull (1997), focusing on the analysis of 
financial derivatives (stock options, futures, etc.) is an important reference, although it does 
not deal with real assets (business units, real estate properties, new products, etc.). The book 
by Copeland & Antikarov (2001) treats specific real options problems using decision trees. 
In this paper we adopt the pde approach to calculate the value of an option of abandoning a 
project after a predefined time horizon. 

In section 2 we review the classical capacity expansion models. Then, the concepts and basic 
properties of the real options approach, with emphasis on the Black-Scholes equation 
(pde approach), are discussed in section 3. Section 4 establishes the connection between the 
capacity expansion models and the real options approach. Finally, in section 5, an application 
example is presented and discussed. 

 

2. Capacity Expansion Problems with Irreversible Investment Decisions 

We consider the class of problems of optimally planning for the periodic expansion of 
productive capacity to meet a growing demand for product or service over an infinite 
horizon. It is assumed throughout this section that the analyzed projects have infinite 
economic life, with irreversible investment decisions. 

 
2.1 The deterministic linear model 

The basic Manne model (Manne, 1961) considers the investment decision for a single firm 
where demand is deterministic and grows at a constant linear rate (Figure 2). Under this 
approach it is assumed that the facility has an infinite economic life and, whenever demand 
catches up with the existing capacity, x additional unities of new capacity are installed. 
Consequently, no backlogs in demand are admitted in this model. The objective is to 
determine the optimal capacity addition x, and the consequent time interval T. As a time 
origin let us take the point , followed by regeneration points at t T0t 0 + , , , 
that represent instants at which the previously existing excess capacity has just been wiped 

0 2t T+ 0 3t T+
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out (Figure 2). Note that when the system has reached 0t T+ , the future looks identical with 
the way it appeared T  units of time previously. 

1)< <

tµ

)

The investment that is necessary to add a capacity increment of size x, is assumed to be given 
by a relationship in the form of a power function, with economies of scale 

  (1) ( ) ( 0 ; 0aI x k x k a= >

 

 
Figure 2 – Growth of demand and capacity over time. 

 
The demand, in this case, is expressed as ( )p t = , with 0µ > . Admitting that the 
production cost per unit of product is constant, and since all demand is satisfied (no demand 
backlogs are permitted), the total operating cost over the project lifetime is also constant. 
Thus, it does not affect the resulting optimum value of x  and therefore it is not included in 
the model. Let  be a function of x that represents the sum of all discounted future costs 
looking forward from a point of regeneration. We may write down the following recursive 
equation (Manne, 1961) 

( )C x

  (2) ( ) (a rtC x k x e C x−= +

The first term on the right hand side indicates the investment cost incurred at the beginning 
of the current cycle. The second term represents the sum of all installation costs incurred in 
subsequent cycles, discounted from the next point of regeneration back to the present with an 
instantaneous rate r, and covering a time span of t  years. It follows directly that 

 ( )
1 exp( )

ak xC x
r t

=
− −

 (3) 

But, since t x / µ= , expression (3) becomes 

 ( )
1 exp( / )

ak xC x
r x µ

=
− −

 (4) 
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The optimal expansion size x  is obtained by minimizing C(x) with respect to x, and the 
optimal expansion time interval t

 
 is given by t x / µ= . 

 
2.2 Stochastic model with linearly-growing expected demand 

Works such Manne (1961, 1967), Freidenfelds (1980, 1981), and Bean et al. (1992) 
presented models in which a stochastic demand process is solved by a deterministic 
equivalent problem in place of the original stochastic model. Such models are based on 
Brownian motion theory, specifically the Wiener diffusion process in continuous time 
(Feller, 1957). Suppose a one-dimensional, unrestricted random walk starting at the origin 
and let ,x nv  be the probability that the n th step takes the process to the position x . If  r among 
the n  steps are directed to the right, and n r= −  are directed to the left, the total 
displacement is ( ) 2r n r r n− − = −  units. This displacement can equal x  only if n and x are 
either both even or both odd. If this condition is respected, then 

      and    
2 2

x nr n+
= = −

n xr −
=

p q

 (5) 

Out of n  steps r  can be selected in 
  ways, and therefore 

n
r




 

 , (6) ,
r

x n
n

v
r

 =  
 

where p  is the probability that one step is directed to the right, and q = 1 – p is the 
probability that it is directed to the left. Let us now change the unit of length so that each step 
has length x∆ , and suppose that the time between any two consecutive steps is . During 
time t  the process performs about t

t∆
/ t∆  jumps, and a displacement x  is now equivalent to 

/x x∆  units. Only multiples of x∆  and t∆  represent meaningful coordinates, but in the limit 
,  every displacement and all times become possible. However, one must not 

expect sensible results if 
0x∆ → 0t∆ →

x∆  and t∆  approach zero in an arbitrary manner, for the maximum 
possible displacement in time t amounts to t x / t∆ ∆ , so that in the limit no motion exists if 

. Physically speaking, one must keep the x  and t  scales in an appropriate ratio or 
the process will degenerate in the limit, the variances tending to zero or infinity. To find the 
proper ratio one considers the total displacement during time t, which is the sum of about 

 mutually independent random variables. The mean and the variance of the resulting 
displacement x is (Feller, 1957) 

/ 0x t∆ ∆

/t t∆

→

 ( ) ( ) ( / )E x t p q x t= − ∆ ∆  (7) 

 
2( )( ) 4 xVar x t p q

t
∆

=
∆

 (8) 

The finiteness of the variance requires that 2( ) /x t∆ ∆  should remain bounded. The finiteness 
of the mean implies that  must be of the order of magnitude of p q− x∆ . These 
requirements are satisfied by putting (Feller, 1957; Manne, 1961) 
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2

2
2

( ) 1 1,            ,             ,
2 22 2

x p x q
t

µσ
σ σ

∆
2 xµ

= = + ∆ = − ∆
∆

 (9) 

where σ  and µ  are constants. The norm (9) is used to pass to the limit 0x∆ → , . 
The total displacement at time t n

0t∆ →
t≈ ∆  is determined by n Bernoulli trials, and therefore 

the limiting form of ,x nv  is given by the normal distribution. The mean of the resulting 
normal distribution is obtained by combining expressions (7) and (9), and simplifying 

 [ ( )] ( ) ( / )E x t t p q x t tµ= − ∆ ∆ =  (10) 

The variance is obtained similarly, combining expressions (8) and (9) 

 
2 2

2
2

( ) ( )[ ( )] 4 x xVar x t t p q t t
t

µσ
σ

∆ ∆
= = −

∆

2

)

, 

but, since , 0x∆ →

  (11) 2   [ ( )]   Var x t tσ→

We are interested in determining the instant t where demand first exceeds the installed 
capacity. At that time additional facilities will be supplied. In stochastic process terminology, 
we seek the first passage time at point x, with probability . The following difference 
equation applies (Manne, 1961) 

( , )u t x

  (12) ( , ) ( , )  ( ,u t t x p u t x x q u t x x+ ∆ = − ∆ + + ∆

Expanding expression (12) according to Taylor’ theorem up to terms of second order 

 
2 2

2
( , ) ( , ) ( ) ( , )( )

2
u t x u t x x u t xt q p x

t x x
∂ ∂ ∆

∆ = − ∆ +
∂ ∂ ∂

∂ , 

or dividing both sides by ∆ , one gets t

 
2 2

2
( , ) ( , ) ( ) ( , )( )

2 
u t x x u t x x u t xq p

t t x t x
∂ ∆ ∂ ∆ ∂

= − +
∂ ∆ ∂ ∆ ∂

 (13) 

From (9) we get ( ) ( /q p x t)µ− = − ∆ ∆  and 2 2/ 2 ( ) / (2 )x tσ = ∆ ∆ . Substituting into (13) one 
has 

 
2 2

2
( , ) ( , ) ( , )

2 
u t x u t x u t x

t x x
σµ∂ ∂ ∂

= − +
∂ ∂ ∂

 (14) 

The Laplace transform of u t , indicated by ( , )x ( , )xU s , is 

 
0

( , ) ( , ) st

t

U s x u t x e dt
∞

−

=

= ∫  (15) 

where s is the transform variable. Taking the Laplace transform of (14) 

 
2 2

2
( , ) ( , )( , )

2
U s x U s xs U s x

x x
σµ ∂ ∂

= − +
∂ ∂

 , (16) 
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which is rearranged as follows 

 
2

2 2 2
( , ) 2 ( , ) 2 ( , ) 0U s x U s x s U s x

xx
µ

σ σ
∂ ∂

− −
∂∂

=  (17) 

The characteristic equation of (17) has two real roots 

 
2

1 2 2
21 1 sµ σλ

σ µ

 
= + + 

  
,    

2

2 2
21 1 sµλ

σ µ 2
σ 

= − + 
  

. (18) 

The general solution for the differential equation (17) is of the form 

 1( , ) ( ) ( ) 2x xU s x A s e B s eλ λ= + , (19) 

where A(s) and B(s) are constants whose values depend upon the boundary conditions, which 
are (Manne, 1961): (a) ( , )xU s  must lie between zero and unit, for ; (b) since  is 

a probability density function over t, one has 

0s ≥ ( , )u t x

0

( , ) 1
t

u t x dt
∞

=

=∫  and consequently, putting 

 into (15), one gets the second boundary condition 0s = (0, ) 1U x = . These conditions lead 
to  and , yielding ( ) 0=A s ( ) 1B s =

 2( , ) xU s x eλ=  (20) 

Now, since x is a random variable, the probabilistic equivalent of (2) is 

 , (21) 
0

( ) ( , ) ( )a rtC x k x u t x e C x dt
∞

−= + ∫

but  
0

( , ) ( , )rtu t x e dt U r x
∞

− =∫ , and then 

 ( ) ( , ) ( )aC x k x U r x C x= + , (22) 

which yields 

 
2

( )
1 ( , ) 1 exp(

a ak x k xC x
U r x x)λ

= =
− −

 , (23) 

Again, the optimal expansion size x  is obtained by minimizing C(x) with respect to x, and 
the optimal expansion time interval t  is given by /t x µ= . 

 

2.3 More general stochastic demand models 

2.3.1 Equivalent deterministic model for linearly-increasing expected demand 

In order to study more general stochastic demand models, Freidenfelds (1980) wrote the 
Laplace transform (20) in a somewhat different form. He introduced an equivalent growth 
rate g, putting 

166 Pesquisa Operacional, v.25, n.2, p.159-181, Maio a Agosto de 2005 



Novaes & Souza  –  A real options approach to a classical capacity expansion problem 

 2
 ( , ) exp( ) exp( )s xU s x x
g

λ= − = , (24) 

which, combined with (18) with s r= , yields 

 2 2( 2g rµ µ σ= + + ) / 2  (25) 

Expression (23) is accordingly rewritten 

 ( )
1 exp( / )

ak xC x
r x g

=
− −

 (26) 

Comparing expressions (4) and (26) one deducts that the stochastic model with linearly-
increasing expected demand can be solved with the equivalent deterministic model by 
making a simple substitution in equation (4). This motivates us to define the equivalent 
deterministic demand process by creating the following equivalent interest rate (Freidenfelds, 
1980) 

 *  /r r gµ=  (27) 

 

2.3.2 Generalization of the equivalent deterministic solution approach 

Assume now that D(t), the demand for product or service, is a continuous stochastic process 
. One is interested in selecting a sequence of capacity expansions to satisfy the 

demand D(t) over an infinite horizon at minimum expected discounted cost using interest 
rate r. A continuous state stochastic process { (  is said to be transformed 

Brownian motion with underlying rate 

{ ( ), 0}D t t ≥

), 0}D t t ≥

µ  and variance 2σ  if there exists a nonnegative 
increasing deterministic transformation h such that ( ) (D t h d ( ))t= , where { (  is a 

linear Brownian motion with drift 

), 0}d t t ≥

0µ >  and variance  (Bean et al., 1992). The 
function h is referred to as the transforming function. 

2σ > 0

Bean et al. (1992) demonstrated that if { (  is transformed Brownian motion as 
defined above, the equivalent interest rate r* to be used in the equivalent deterministic 
problem is given by 

), 0}D t t ≥

 
22

* 1 2r rµ σ
σ µ

    = +        
1−  (28) 

Bean et al. (1992) demonstrated that every optimal capacity expansion sequence for the 
deterministic problem with demand ( ) ( ( ))D t h d t= , in which all costs are continuously 
discounted using the interest rate r*, is optimal for the stochastic equivalent problem. In 
other words, equation (4) is written as 

 ( )
1 exp( * / )

ak yC y
r y µ

=
− −

 , (29) 
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with . It can be shown that, for ( )y h x= ( )h t tµ=  (i.e. linearly increasing expected 
demand), the equivalent interest rate derived by Freidenfelds (1980) and defined in equation 
(27) yields the same result as the one obtained through equation (29). Bean et al. (1992) 
showed that *r r≤ . Therefore, the qualitative effect of demand uncertainty is summarized 
by a drop in the effective rate of interest. Consequently one would optimally install larger 
facilities than one would in the absence of demand uncertainty (Bean et al., 1992). 

Srinivasan (1967) analyzed the deterministic problem with geometric rate of growth of 
demand with a somewhat different approach. He further showed that the optimal policy is to 
install facilities in equal-time intervals between installation epochs. 

 
2.3.3 First passage time 

The Laplace transform of the probability distribution , given by equation (20), allows 
us to compute the expected value and the variance of the first passage time to the level x. 
One has (Souza, 1996) 

( , )u t x

 0
( , )[ ] s

U s x xE t
s µ=

∂
= − =

∂
, (30) 

 and     
2 2

2
02 3

( , )var[ ] {E[t]} ( ) [ ]s
U s x xt E

s
σ σ

µµ=
∂

= − = =
∂

2 t  (31) 

For the general case with  one has (Souza, 1996) ( ) ( ( ))P t h p t=

 ( )[ ] h xE t
µ

=  ,   and (32) 

 and 2r[ ] ( ) [ ]tva E tσ
µ

=  (33) 

 

3. Economic Evaluation with the Real Options Approach 

3.1 Flexibility, globalization and the real options approach 

A key element at the present stage of the global Economy is the growing flexibility that the 
world’s leading enterprises are inserting in their manufacturing and logistics strategies 
(Verter & Dincer, 1995; Vidal & Goerschalckx, 1997; Kogut & Kulatilaka, 1994; Novaes, 
2000). The emphasis on flexibility is due to fierce business competition, with firms 
struggling to increase their market share and their margins. The environment where global 
firms operate is fuzzy and full of uncertainties, with exchange-rate variations and oscillating 
demand levels. 

Today, large global corporations are increasingly adopting supply chain and production 
strategies based on real compound options (Cohen & Huchzermeier, 1999, 2002). 
Operational flexibility through global coordination of value-adding activities and the timing 
of investment decisions can enhance the firm’s shareholder value significantly. Dynamic 
investment strategies generally include options to wait, to exit, to expand, to switch, and to 
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improve, among others. And the literature on real options has demonstrated that in most 
cases the option value of operational flexibility is greater than zero (Dixit & Pindyck, 1994). 
In general, a firm’s ability to anticipate and to respond flexibly to such changes reduces its 
expected downside risk and thus lowers costs, and/or raises its revenues (Cohen & 
Huchzermeier, 1999). 

Managers who make strategic investment decisions in the globalized economy often view 
uncertainty as a negative and costly variable. But they also recognize that many valuable 
opportunities come with a great deal of uncertainty. Thus, in order to obtain good economic 
and financial results, they have to proactively expand the set of strategic decision alternatives 
before them, aggregating project value and risk. Once our way of thinking includes 
uncertainty, the decision-making framework unfolds, leading to a broader range of 
investment opportunities. The option approach is a new form of evaluating investment 
alternatives, providing consistent project valuations, and making possible comparisons of 
diverse strategic opportunities (Luehrman, 1995, 1998; Edleson, 1999; Amram & Kulatilaka, 
1999; Bengtsson, 1999; Copeland & Antikarov, 2001). 

In general terms, an option is the right, but not an obligation, to take an action in the future. 
Options are valuable when there is uncertainty. For example, a call option contract traded on 
the financial exchanges gives the buyer the opportunity to buy a stock at a certain date and 
will be exercised only if the price of the stock on that date exceeds the previously specified 
price. When the transaction involves the right to buy an underlying asset at a fixed price on a 
future date, one has a call option. Conversely, a put option occurs when it involves the right 
to sell the underlying asset at a fixed price. A European option is exercised at a predefined 
date; conversely, an American option may be exercised at any date prior to the 
predetermined deadline. 

In addition to financial options (stock options, forwards, and future contracts), that were first 
studied by analysts and researchers, the term real options refer to the extension of financial 
option theory to real, no financial assets (Amran & Kulatilaka, 1999). Real options amplify 
management’s flexibility and ability to respond to external developments over time. The 
main categories of real options are: (1) growth options, (2) the option to expand scale, (3) 
timing (the option to wait), (4) the option to switch inputs, outputs, or processes, (5) the 
option to reduce scale (contract), and (6) abandonment options (Cohen & Huchzermeier, 
1999). Abandonment options are important in capital-intensive industries where management 
would like to have the flexibility to capture some resale value for assets if their in-use value 
to the company falls (Edleson, 1999). This is the kind of real option that will be applied and 
discussed in this paper. 

 
3.2 The Wiener and Ito processes 

As mentioned in the introduction, there are three general methods to solve real options 
problems: the partial differential equation (pde) approach, the dynamic programming 
approach, and the simulation approach. In the sequel we will analyze the first method, more 
specifically the Black and Scholes equation, which is based on the Wiener-Ito process. 

A Wiener process is a particular Markov process, called Brownian motion, originally used in 
Physics to describe the movement of a particle subject to small sequential perturbations 
(Feller, 1957; Hull, 1997). The Wiener diffusion process has been already applied to analyze 
demand variations associated with stochastic modeling in Section 2.2 of this paper. Let z be a 
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variable that follows a Wiener process, and let dz be an infinitesimal variation of z in the 
interval dt. The two basic properties of the Wiener process are: 

a) dz is related to dt  according to 

 dz dtε=  , (34) 

 where ε  is a normally distributed random variable with zero mean and standard 
deviation equal to unity (normalized distribution); 

b) the values of dz, for any two different instants of time, are statistically independent. 

 
The Wiener process with drift for a variable x is defined in terms of dt and dz, as follows 

 dx a dt b dz= + , (35) 

where a and b are constants. When a and b depend on the values of t and x, one has the Ito 
process 

  (36) ( , ) ( , )dx a x t dt b x t dz= +

Growth models of money-related variables generally presuppose that deviations are not 
linear, being expressed as a proportion (a percentage) of the asset value. Let S be a money-
related variable for which we want to study the variation dS

S . One writes the corresponding 

Ito process equation 

 dS dt dz
S

µ σ= +      or     dS S dt S dzµ σ= + , (37) 

where Sµ  is the expected instantaneous deviation rate and  is the corresponding 
variance rate. When (37) is observed, the value S of the asset follows a log-normal process 
(Hull, 1997). Departing from equation (37), and considering a generic function G of S and t, 
Ito derived a lemma that bears his name (Hull, 1997) 

2 2Sσ

 
2

2 2
2

1
2

G G G GdG S S dt S dz
S t SS

µ σ
 ∂ ∂ ∂ ∂

= + + + ∂ ∂ ∂∂ 
σ . (38) 

It is important to note that G also follows an Ito process, with a drift rate of 
2

2 2
2

1
2

G G GS
S t S

µ∂ ∂ ∂
+ +

∂ ∂ ∂
Sσ  and a variance rate of 

2
2 2G S

S
σ∂

∂ 
 
  . 

 
3.3 Uncertainty, risk and volatility 

Uncertainty is the randomness observed in the external environment. Managers cannot 
change its level. The adverse, possible economic consequences of a firm’s exposure to 
external uncertainty is risk (Amran & Kulatilaka, 1999). Volatility, on the other hand, is a 
numerical measure of uncertainty. Suppose that the actual growth rate of a certain variable 
under consideration is a random variable. Its standard deviation σ , expressed in annual 
terms, is called volatility, and reflects the range of uncertainty over the growth rate. 
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The integration of (37), making 0σ = , yields the expected growth function of  S 

 0( ) exp( )S t S tµ= , (39) 

where  is the value of S at . Considering the process evolution from instant t  to 
instant t, one has 

0S 0t = 1−

 ( ) ( 1) exp( )tS t S t u= − , (40) 

leading to 

  (41) ln[ ( )] ln[ ( 1)]tu S t S t= − −

Taking a time series containing n values of u , one estimates its mean and standard 
deviation. The time t is usually measured in days, weeks, or months, so we have to compute 
the equivalent annual standard deviation in order to evaluate the volatility 

t

σ  to be used in 
the calculations (Hull, 1997). 

 

3.4 The Black-Scholes equation 

Let  S  be the value of an asset such that the variable dS
S  follows the Ito process given by 

(37). Suppose f is the price of an option or another derivative of the asset under 
consideration, with its value depending on S and t. Departing from the Ito’s lemma, putting  
G = f  in (38), and taking the discrete versions of relations (37) and (38), one has (Hull, 1997) 

 zS S t Sµ σ∆ = ∆ + ∆   and (42) 

 
2

2 2
2

1
2

f f f ff S S t
S t SS

µ σ
 ∂ ∂ ∂ ∂

∆ = + + ∆ + ∆ ∂ ∂ ∂∂ 
S zσ , (43) 

where S represents a stock and  f  a derivative on S. Finding an appropriate portfolio of the 
stock and the derivative, it is possible to eliminate the Wiener process z∆ . Let π  be the 
value of this equivalent portfolio. Its variation is (Hull, 1997) 

 ff S
S

π ∂
∆ = − ∆ + ∆

∂
 . (44) 

Putting (42) and (43) into (44), one gets 

 
2

2 2
2

1
2

f f fS t r f
t SS

σ
 ∂ ∂ ∂− − ∆ = − + ∆ ∂ ∂∂   

t
  (45) 

We observe that the resulting equation (45) does not contain z∆ , which is responsible for the 
risk variation in the Wiener-Ito process, as indicated in equation (37). This is an important 
result because it indicates that the value π  of the portfolio is not subject to risk at time 

, and consequently the portfolio will instantly yield a risk-free rate of return t + ∆t fr  (Hull, 
1997). Thus, π∆  can be simply expressed as 

 fr tπ π∆ = ∆ . (46) 
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Putting (44) and (45) into (46), one gets 

 
2

2 2
2

1
2 f

f f fS t r f
t SS

σ
 ∂ ∂ ∂− − ∆ = − + ∆ ∂ ∂∂   

t
 , (47) 

which leads, after simplifications, to the Black and Scholes differential equation (Hull, 1997; 
Amram & Kulatilaka, 1999) 

 
2

2 2
2

1
2 f

f f fr S S r f
t S S

σ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (48) 

where: 
S - the present value of the asset; 
f  - the price of the derivative, which is a function of S, t, r and σ ; 
fr  - the risk-free interest rate. 

It is interesting to observe that the Black-Scholes equation separates the risk-free return on 
the investment, represented by rf , from the risk generated by the market variability, 
represented by the volatility σ . In the sequel, we will see how the Black-Scholes concepts 
compare with the traditional discounted cash flow (DCF) method to evaluate investment 
projects. For a European put option, which will be used in the application, the boundary 
condition to solve (48) is (Hull, 1997) 

   for  t = T, (49) max{ ,0}f X S= −

where  X  is the exercise price and T is the time to expiration. The integration of (48), subject 
to (49), yields 

 { }2exp(  ) { }ff X r T N d S N d= − − − − 1  (50) 

where { }N w  is the integral of the standard normal distribution at point w, with 

 2
1

1ln( ) ( 0.5 )f
Sd r T
X T

σ
σ

 = + +  
 
  

 , (51) 

and 

 2 1d d Tσ= −  (52) 

The value of a European call option is similarly determined assuming the appropriate 
boundary condition (Hull, 1997). The Black-Scholes equation gives a way of computing the 
economic impact, on the project under study, of real options as, for example, the exiting or 
abandonment option. Many authors have developed variations of the Black-Scholes equation 
in order to solve specific financial problems (Margrabe, 1978; Myers & Majd, 1990; Hull, 
1997). In particular, Margrabe (1978) developed a special model to evaluate an abandonment 
option. Suppose a firm is evaluating an investment proposal at time zero. At time T, the firm 
has the option to abandon or retain the project. If the project is abandoned, the cash flow 
realized by the firm is X. On the other hand, if the project is retained, the value realized by 
the firm at that time is S. Admitting that both X and S are lognormally distributed (Schnabel, 
1992), Margrabe’s exchange option pricing model is (Margrabe, 1978) 

 , (53) 0 1 0( ) ( )f X N d S N d= − 2
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where 

 20
1

0

1ln ( ) 0.5Xd T
S T

σ
σ

   = +     
   and    2 1d d Tσ= − , (54) 

and where 0X  is the discounted value of the project asset’s abandonment value,  is the 
discounted value of the project’s value-in-use, and 

0S
( )N ⋅  is the cumulative unit normal 

probability distribution (Schnabel, 1992). Here f is a call option on the abandonment value, 
and a put option on the project’s value-in-use (Margrabe, 1978; Schnabel, 1992). Margrabe 
(1978) shows that the option (53) is worth more alive than dead, which implies that its holder 
will not exercise it until the last possible moment. In other words, the option  f  is of a 
European type. 

Margrabe (1978) decomposes 2σ  into two components, 2
Xσ  and 2

Sσ , according to the 
following formula 

 2 2 2X X S
2
Sσ σ σ σ ρ= − + σ , (55) 

where Xσ  is the coefficient of variation associated with the abandonment value of the project, 

Sσ  is the coefficient of variation associated with the value-in-use of the project, and ρ  is 
the correlation between X and S (Margrabe, 1978; Schnabel, 1992). If 0Xσ = , Margrabe’s 
model reduces itself to the Black and Scholes original formulation (Margrabe, 1978). Since 
in practical applications the abandonment value is not deterministic (i.e, 0Xσ > ), the use of 
Margrabe’s model is of advantage when analyzing abandonment options. 

 

4. Real Options and the Discounted Cash-Flow Method 

The financial tool traditionally used to estimate the economic value of a project – discounted 
cash flow (DCF) – assumes that the enterprise will follow a predetermined plan when 
investing, regardless of how events unfold in the future. By computing the net present value 
of a project (NPV), the corporation will increase its own value by making the investment 
when the NPV is positive. Otherwise, the corporation should not make the investment. NPV 
calculation presupposes that unknown risky future cash flows be summarized by their 
expected values, discounted to the present at a risk-adjusted discount rate, leading to a single, 
simple measure for decision making. The net present value is given by 

 0
1 (1 ) (1 )

T
t t T

t
t

R E SVNPV I
r r=

−
= − + +

+ +∑ T , (56) 

where 0I  is the investment at time zero, r is the annual interest rate, T is the duration of the 
project,  is the sum of all revenues at year  t,  is the sum of all expenditures at year t, 
and  is the salvage value of the project at time T. The project is economically feasible if 

. 

tR

T

0>

tE
SV

VNP

One of the questions about the validity of this method, when applied to real-world problems, 
is how to incorporate risk in the evaluation of a project. One way to do this is to use the 
Capital Asset Pricing Model (CAPM) developed by Sharpe and Lintner forty years ago 
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(Campbell et al., 1997). The CAPM was developed, at least in part, to explain the differences 
in risk premium across assets. According to the CAPM, these differences are due to 
differences in the risk of the returns on the assets (Jagannathan & McGrattan, 1995). Let fr  
be the rate of return on the risk-free asset. Consider, next, a portfolio involving all types of 
assets traded in the economy. Let Mr  be the average rate of return of such a portfolio. The 
risk assets contemplated by the investor have returns that are not known with certainty at the 
time the investments are made. The CAPM asserts that the correct measure of riskness of the 
asset i is a coefficient called beta. The basic equation is 

 ( )i f M fr r r r iβ= + − , (57) 

where  is the expected return of the asset i , ir fr  is the risk-free rate of return, and iβ  is a 
measure of the relative risk of asset  with reference to the whole portfolio, given by 
(Campbell et al., 1997) 

i

 [ , ]
[ ]
i M

i
M

Cov r r
Var r

β = . (58) 

The risk-free return is the interest rate earned by entities that are entirely creditworthy during 
the period of a loan, such as the rates paid by the US Treasury and the rates of EU’s 
government bonds. Many large companies have incorporated into their capital budgeting 
process the CAPM, although it is not free of some academic criticism (Jagannathan & 
McGrattan, 1995). But the model is simple and robust, and as Jagannathan & McGrattan 
(1995) have shown, it is useful in many practical applications. 

A drawback of the classical models of capacity expansion is the duration assumed for the 
project. In fact, they assume a continuous, ever-increasing demand curve. In other words, it 
is assumed that the project lasts forever, with irreversible investment decisions. The investor 
may admit the hypothesis of abandoning the project after a period of T years, selling the asset 
for a discounted salvage value , as in equation (56), but the decision to continue or to 
abandon the project is an all or nothing initiative to be taken at time zero. 

TSV

The real options approach, on the other hand, treats this question in a different manner. If 
market conditions turn out to be poor without any chance of recovery after a certain period of 
time, the management has an option to abandon the project and sell it for salvage value 
(Trigeorgis, 1996). The management can use this option as an insurance against failure in the 
market. The perspective of abandoning the project at time T can be seen as analogous to 
issuing a put option at instant zero, to be exerted at time T (Trigeorgis, 1996). Suppose an 
industry has invested an amount 0I  in a new project, at time zero, and suppose the firm is 
contemplating two alternatives: (a) abandoning the project after T years for its salvage value; 
(b) further proceeding with the project. Adopting alternative (a), the exercise price would be 
the present value of the salvage value (Schnabel, 1992) 

 0
1 (1 ) (1 )

T
t t t

t
t

R E SVX
r r=

−
= +

+ +∑ T  (59) 

At t = T the firm may proceed further with the project. In case the project is retained, the 
discounted value realized by the firm at time T is , the project’s value-in-use, which is 
equal to the present value of the cash flows after year T (Schnabel, 1992) 

0S
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 0
1 (1 ) (1 )

t t t
t

t T t T

R E IS
r r

∞ ∞

= + =

−
= −

+ +∑ ∑ t  (60) 

where the tI  are the periodical investments necessary to increase production capacity. 

An important conceptual difference between the DCF method and the real options approach 
is the meaning of the salvage value at the end of period T. The value P of the put-call option, 
given by (53), reflects what the market is presently willing to pay to have the right to buy the 
asset for a price X at the end of period T. Thus, P it is not merely a discounted value, but 
rather a current market evaluation of the future value of the asset. The modified present value 
of the project is the sum of the NPV given by (56) and the value P of the put-call option, 
given by (53) 

 ´ NPVNPV P= + , (61) 

which, if positive, will indicate that the project is economically feasible, at least for a period 
of T  years. 

 

5. An Application 

When applying traditional capacity expansion models, associated with classical economic 
feasibility analysis methods, one gets unfeasible solutions sometimes. This can happen 
because a good part of the forecasted variables (sales, for example) present a high degree of 
variability. As a consequence, investment decisions must incorporate other possible actions 
and outcomes, and the economic analysis methodology must be changed accordingly. 

Our hypothetical example involves a large global automaker that is planning to build a plant 
in Brazil to produce small cars. Performing regression analysis on the data extracted from the 
Statistical Yearbook of the Brazilian Automotive Industry (Anfavea, 2002), the industry 
defined the following project framework: 

• current local market: 1,300,000 automobile sales per year; 
• company expected market share: 10%; 
• market average expansion rate: α = 6 % per year; 
• demand volatility, expressed by the coefficient of variation ( /σ µ ): 
  (taken from the time series indicated in Figure 3). 0.34CV =

Demand is expressed in cars per year. Total investment is a function of plant capacity 
(cars/year), and is given by 

 0.65( ) 0.436I x = x                   (million US $). (62) 

The production target for the firm under analysis is 0 0.10 1,300,000D = × =

0D
130,000 

cars/year at t = 0. The linear annual expansion rate at time zero is 7,800µ α= × =  
cars, and 0.34 7,800 2,652CVσ µ= × = × = . 

In order to compute the optimal expansion period, we analyze four different models as 
indicated in Table 1. For the deterministic linear model (Manne, 1961) we minimize C x , 
given by (4), with respect to x. For the stochastic model with linear expansion of demand we 

( )
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minimize (29) with respect to y (Bean et al., 1992). For the stochastic model with geometric 
rate of growth of demand we put (Higle & Corrado, 1992) 

 0( ) [exp( ) 1]y h x D xα= = − , (63) 

into (29), and minimize (29) with respect to x. For the deterministic model with geometric 
rate of growth we apply the latter formulation, with 0σ = . 

 

 
Figure 3 – Domestic sales of Brazilian manufactured automobiles (1960-2001). 

 
The risk-free annual interest rate is 6fr = %, the risk premium, represented by M fr r−  in 
equation (57) is approximately equal to 10% in Brazil, and the value of β  for the project 
was assumed to be 1.2. Thus, equation (57) yields 18r = % for the project under analysis. 
The application of the capacity expansion models led to the results exhibited in Table 1. The 
optimal capacity expansion interval, for the stochastic model with geometric rate of demand 
growth, is 4.7 years. Rounding off to T 5=  years, the firm has to initially install a plant with 
capacity to manufacture 130,000 + 45,482 = 175,282 cars per year, which will require an 
investment of 1,117.5 million US dollars (equation 62). 

 
Table 1 – Optimal capacity expansion results. 

Process Demand 
expansion 

[ ]E t  
(years) 

[ ]Var t  

= 2
tσ  

Demand, 
first year 

(cars/year) 

Opt. 
capacity 

expansion x 
(cars/year) 

Total 
capacity to 

install 
(cars/year) 

Deterministic Linear 5.38 0.00 130,000 41,986 171,986 
Stochastic Linear 5.45 0.87 130,000 42,474 172,474 
Deterministic Geometric 5.21 0.00 130,000 47,732 177,732 
Stochastic Geometric 4,71 0.87 130,000 42,480 172,480 
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Let us assume, for the sake of simplicity, that the industry will make one type of car only, 
whose price in the Brazilian market will be 7,275 dollars per unit. Assume further that the 
net margin obtained by the carmaker represents 16% of the revenues. Thus, the net margin is 
US$ 1,180.00 per car sold. The company has to invest  million dollars at time 
zero. Let us assume, as in Manne (1961), Freidenfelds (1980, 1981), and Bean et al. (1992), 
that the industry will continue to place additional facilities at equal-time intervals, as 
discussed in Section 2. Thus 

0 1,117.5I =

 0
1 1(1 ) (1 )

t
t

t t

t
t

M INPV I
r r

∞ ∞

= =

= − + −
+ +∑ ∑ , (64) 

where tM  is the net margin at year t, given by 1,180t tM D= × , where  is the demand at 
time t, and 

tD

tI  is the investment to add an additional capacity at time t. It can be shown that 
the geometric progressions in (64) are convergent. Putting r = 0.18 in (64), one gets 

 million dollars, meaning the project is unfeasible when analyzed under 
the traditional DCF method. On the other hand, the present value of the abandonment 
alternative under the DCF approach, at time T = 5, is 

 29= − 6.63NPV

 
5

5
0 5

1 (1 ) (1 )
t t

AB t
t

R E SVNPV I
r r=

−
= − + +

+ +∑ , (65) 

where  is the salvage value at T = 5. We assume that the salvage value of the project is 
basically formed by its real estate value, and that all the machinery and equipment can be 
transferred to another facility, the firm incurring displacement costs only. The value 

 was assumed. Putting it into equation (65), one gets 

5SV

5 0.75 0SV I= 188.74ABNPV = −  million 
dollars. Therefore, under the DCF approach, the firm would not undertake the project at all. 

Now, let us analyze the problem with the real options approach. Suppose the car factory is 
ready to start operation, i.e. the project has passed all the planning, analysis and installation 
phases, being a real asset now. One possibility is to keep the project running after T = 5, and 
consequently we have to analyze the cash flow of the project considering all future revenues 
and expenditures after that time horizon, which is given by 

 0
6 5

496.11
(1 ) (1 )

t t
t t

t t

M IS
r r

∞ ∞

= =

= − =
+ +∑ ∑  million dollars. (66) 

The other alternative is to abandon the project at T = 5, leading to a discounted salvage value 
given by 

 
5

0 5
1 (1 ) (1 )

t t t
t

t

R E SVX
r r=

−
= +

+ +∑  =  1,021.34 million dollars. (67) 

In order to apply Margrabe’s equation (53), it is necessary to choose an appropriate value for 
σ . The leading car manufacturers in Brazil are owned by international holding enterprises, 
and consequently their shares are not negotiated in the Brazilian stock market. Thus, the 
volatility of the project value-in-use cannot be estimated from the stock values of the firm. 
One approximation is to assume Sσ  to be approximately equal to the volatility of the local 
stock market index, which is approximately 20% (Ibovespa, São Paulo). The salvage value, 
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on the other hand, is less volatile since is represented mostly by the real estate value. We 
assumed Xσ = 0.10, with a low correlation coefficient ρ = 0.3 between 0X  and . Thus, 
relation (55) yields 

0S

σ

0S

0I + 1.43

 2 2 2X X S
2
Sσ σ σ σ ρ= − + σ ,   yielding = 0.195 (68) 

Putting , , T = 5, and 6496.11 10= × 0 1,021.34X = σ = 0.195 into (53), one gets 
f = 531.43 million dollars. This is the value of the put-call option (Margrabe, 1978) to be 
added to the project cash flow 

1 1
' 296.63 53 234.80

(1 ) (1 )
t t

t t
t t

M INPV f
r r

∞ ∞

= =

= − − + = − + =
+ +∑ ∑  million dollars (69) 

Thus, with the real-options approach, the project is economically feasible, since its net 
present value is positive. The introduction of the put-call option has added a significant value 
to the project. This is equivalent to say that, if market conditions turn out to be poor without 
any chance of recovery after a period of five years, the management can abandon the project 
and sell it for salvage value. Of course, this type of action is acceptable for large 
organizations that have a portfolio of investments in different international settings. The 
economic loss when abandoning one specific project is compensated by positive payoffs in 
other parts of the world. 

 

6. Conclusions 

The real options approach offers a wide spectrum of application possibilities. It can be 
combined with optimization models such as the capacity expansion modeling, as well as 
other kinds of formulations, being a small sample of what can be accomplished with this 
methodology. The application presented in this paper should be seen as a hypothetical 
example, since it is an extension to a classical capacity expansion problem, also hypothetical 
in nature. Apart from the unlikely infinite and ever-growing time horizon hypothesis present 
in the classical model, the plant may become technologically obsolete, and a finite horizon 
should be considered accordingly. Technology advances would also influence investment 
levels, production costs, market share, etc., thus requiring consequent changes in the variable 
values. Nevertheless, albeit simplified, the model brings some light on new ways of 
analyzing projects under volatile conditions. 

Other authors have also investigated the abandonment-option problem associated with 
project life. For instance, we adopted a five-year time span to reanalyze the project in order 
to decide whether or not to abandon it. But, in fact, such a variable can also be subject to a 
real-options analysis. For instance, Song (2001) developed a stochastic real-options model to 
compute optimal exercise timing (first passage time). She demonstrated that there exists a 
threshold value for the reselling price of the asset bellow that the asset should be sold. A 
more comprehensive approach is due to Cohen & Huchzermeier (1999, 2002). They state 
that global supply chain strategies should be viewed as compound options. They developed 
stochastic Dynamic Programming models focusing on dynamic investment strategies that 
include the option to wait, to abandon, to expand, to retract, to switch, and to improve 
(Cohen & Huchzermeier, 1999). The objective of this kind of model is to optimize the 
supply-chain network integration with real options pricing methods. 
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