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Abstract 
 
Directed hypergraphs are generalizations of digraphs and can be used to model binary relations among 
subsets of a given set. Planarity of hypergraphs was studied by Johnson and Pollak; in this paper we 
extend the planarity concept to directed hypergraphs. It is known that the planarity of a digraph relies 
on the planarity of its underlying graph. However, for directed hypergraphs, this property do not apply 
and we propose a new approach which generalizes the usual concept. We also show that the complexity 
of the recognition of a directed hypergraph as planar is linear on the size of the hypergraph. 
 
Keywords:  directed hypergraphs; planarity; algorithms. 
 
 

Resumo 
 
Hipergrafos direcionados são generalizações de digrafos, e são utilizados na modelagem de relações 
binárias entre subconjuntos de um dado conjunto. O problema da planaridade em hipergrafos foi 
estudado por Johnson e Pollak; neste trabalho estendemos o conceito de planaridade para hipergrafos 
direcionados. É noção conhecida que a planaridade de hipergrafos depende da planaridade de seu grafo 
subjacente. Entretanto, para hipergrafos direcionados, esta propriedade não pode ser aplicada e 
propomos uma nova abordagem que generaliza o conceito tradicional. Mostramos também que a 
complexidade de testar a planaridade de um hipergrafo direcionado é linear no tamanho do hipergrafo. 
 
Palavras-chave:  hipergrafos direcionados; planaridade; algoritmos. 
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1. Introduction 

Directed hypergraphs (Ausiello et al., 1985; Gallo et al., 1993) are a generalization of 
directed graphs (digraphs) and they can model binary relations among subsets of a given set. 
Such relationships appear in different areas of Computer Science such as database systems 
(Ausiello et al., 1985), expert systems (Ramaswamy et al., 1997), parallel programming 
(Nguyen et al., 1998), scheduling (Lin & Sarrafzadeh, 1995; Gallo & Scutellà, 2002), routing 
in dynamic networks (Pretolani, 2000) and, more recently, data mining (Chawla et al., 2004) 
and bioinformatics (Krishnamurthy et al., 2003). 

It is interesting to note that even such distinct applications may share a common concern: the 
need for constructing geometric representations of the abstract graphs used in their models. 
The study of theoretical and algorithmic problems related to this field, known as graph 
drawing, is an area of growing interest with several important publications, as surveyed by 
Di Battista et al. (1999). One of the most important problems of graph drawing is the study 
of planarity and related problems, such as the determination of minimum number of 
crossings in a drawing and the hierarchical drawing of a digraph. Although graphs and 
digraphs are widely studied in graph drawing, the same cannot be said about directed 
hypergraphs. Planarity of hypergraphs was studied by Johnson & Pollak (1987) and their 
paper yields our theoretical approach. Mäkinen (1990) gives emphasis to the drawing of 
hypergraphs, where planarity plays an important role. He includes some remarks about 
directed hypergraph drawing, assuming a restricted definition. 

In this paper we extend the planarity concept to directed hypergraphs. A possible 
theoretical approach would be to look for some sort of extension of a solution already 
existent for digraphs. It is known that the planarity of a digraph relies on the planarity of 
its underlying graph. We show that for directed hypergraphs the same reasoning do not 
apply, and we propose a new approach. In Section 2 some basic definitions about directed 
hypergraphs and hypergraph drawing are presented; in Section 3 the concept of hypergraph 
planarity is reviewed and the directed case is presented, showing that previous results are 
particular cases of a more general concept. Previous results were presented in Guedes & 
Markenzon (2001). 

 

2. Basic Notions 

This section introduces the hypergraph notation used throughout the paper. Basic graph 
concepts are assumed to be known and can be found in McHugh (1990). 

A directed hypergraph (Gallo et al., 1993; Guedes, 2001) is defined as follows: 

Definition 1. A directed hypergraph H = (V, A) is a pair, where V is a finite set of vertices 
and A is a set of hyperarcs. A hyperarc a ∈ A is an ordered pair (X, Y) where X and Y are 
disjoint not empty subsets of V. Set X (Y) is called the origin (destination) of a and denoted 
Org(a) (Dest(a)). 

A directed hypergraph H = (V, A) with no isolated vertices has size |H| = Σ a = (X, Y) ∈ A |X| + |Y|. 

Figure 1 shows an example of a directed hypergraph H = (V, A). 
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Figure 1 – Directed hypergraph H = (V, A). 

 
In the undirected version of hypergraphs each hyperarc is considered as a set instead of a pair 
of sets, and is named hyperedge. 

Definition 2. Let H = (V, A) be a directed hypergraph. The underlying hypergraph of H is 
the hypergraph Hu = (V, Au) where for every hyperarc  a = (X, Y) ∈ A  there is a hyperedge 
e = X ∪ Y ∈ Au, and every hyperedge of Hu  has a corresponding hyperarc in H. 

Subfamilies of directed hypergraphs, as defined in Gallo et al. (1993), can be associated with 
some earlier definitions, as the one presented in Ausiello et al. (1985). Such subfamilies can 
be defined as follows: 

Definition 3. Let H = (V, A) be a directed hypergraph. 

1. If  every hyperarc a ∈ A  is such that  |Dest(a)| = 1  than  H  is called a B-graph; 
2. If  every hyperarc a ∈ A  is such that  |Org(a)| = 1  than  H  is called a F-graph; 
3. If  every hyperarc a ∈ A  is such that  |Dest(a)| = 1  or  |Org(a)| = 1   than  H  is called a 

BF-graph. 
 
A digraph is a particular case of BF-graphs, with |Org(a)| = 1 and |Dest(a)| = 1 for all arcs. 

The visual representation of a hypergraph is as important as the same problem for graphs and 
digraphs. Mäkinen (1990) introduced two notions of hypergraph drawing based on methods 
for describing a hypergraph: the subset standard and the edge standard. The first one uses 
the fact that a hypergraph is a collection of subsets, which can be viewed as a Venn diagram. 
Bertault & Eades (2001) presented a drawing system that focuses on the representation of 
hypergraphs with this standard. In the edge standard a hyperedge e is represented by 
connecting the points that represent the vertices that define e by curve lines which must 
intersect in a unique point, emphasizing the image of a unique edge. 

The edge standard is the best choice for directed hypergraphs, as we can draw the hyperarcs 
as two sets connected by lines. In fact this pictorial representation has been used by almost 
all papers related to the subject. The drawing shown in Figure 1 is an example. In view of 
that, we can apply the usual concept of planarity to this structure, trying to avoid crossing 
lines. 



Guedes & Markenzon  –  Directed hypergraph planarity 

386 Pesquisa Operacional, v.25, n.3, p.383-390, Setembro a Dezembro de 2005 

3. Directed Hypergraph Planarity 

Planarity of (undirected) hypergraphs was studied by Johnson & Pollak (1987), on a paper 
that presents three approaches of planarity. The first one, based on Zycov planarity, is very 
convenient for the edge standard. The other two, introduced in their paper, are based on Venn 
diagrams, and thus are related to the subset standard. Definitions of hyperedge-based and 
vertex-based Venn diagrams of an arbitrary hypergraph are presented. These new concepts 
support definitions of hyperedge-planar and vertex-planar hypergraphs. It is also shown that 
the two problems, Hyperedge-Based Venn Diagram (“given a hypergraph H, is it hyperedge-
planar?”) and Vertex-Based Venn Diagram (“given a hypergraph H, is it hypervertex-planar?”) 
are both NP-complete. As so, these extensions of the planarity concept are predominantly of 
theoretical interest. Choosing the first approach, we are able to extend it, presenting a new 
concept of planarity of directed hypergraphs with an efficiently testable criterion. 

Zykov planarity associates hyperedges with faces (regions) of a planar subdivision. Let 
H = (V, E) be a hypergraph. Each vertex of V is represented by a vertex and each hyperedge 
is represented by a face of the planar map. Johnson & Pollak (1987) define Zykov planarity 
using a bipartite graph associated with the hypergraph (see also Walsh, 1975). 

Definition 4.  A hypergraph H = (V, E)  is Zykov-planar if the bipartite graph HB = (U, F) is 
planar, where U = V ∪ E and F = {{v, e} | e ∈ E and  v ∈ e}. 

The planar representation of the bipartite graph HB can be seen as a refinement of the planar 
subdivision used on the original definition from Zykov. The vertices representing the 
hyperedges can be drawn inside the faces. 

The recognition of a hypergraph H = (V, E) as a Zykov-planar hypergraph is equivalent to 
the recognition of the bipartite graph HB = (U, F) as a planar graph and it can be done in 
linear time. It is important to observe that an ordinary graph is planar under Definition 4 
(when viewed as a hypergraph) if and only if it is planar in the ordinary sense. So, Zykov 
planarity is a true generalization of the planarity concept to hypergraphs. 

As it was mentioned earlier in this paper, testing the planarity of a digraph is the same as 
testing the planarity of the underlying graph. So, it would be nice if the solution presented 
above could also be extended to directed hypergraphs. Unfortunately this is not possible due 
to the imposed partition of the vertices that define a hyperarc (the origin and the destination). 
Figure 2 shows a counter-example: directed hypergraph H cannot be drawn without crossing 
edges, but its underlying hypergraph Hu is planar (Figure 2(b) presents the bipartite planar 
graph constructed in order to apply Definition 4). 

 
1

24

3

a

b

c

d

e

1

4

3

2

a

b

d

c

e

(b)(a)  
Figure 2 – Directed hypergraph H is not planar. 
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So, the vertices that define a hyperarc must be grouped when drawn in the plane. A solution 
that forces such grouping to happen is to use two new vertices instead of just one to represent 
the hyperarc. One of these vertices is used to group the origin and the other to group the 
destination of the hyperarc. Figure 3 shows this approach. 
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Figure 3 – Grouping origin and destination of a hyperarc. 

 
The directed hypergraph planarity can now be defined. First, we need to define a new 
transformation of the directed hypergraph. 

 
Definition 5.  Let H = (V, A) be a directed hypergraph. The structure graph associated with 
H  is the digraph HS = (V ∪U, B), where U = A × {1,2}, and the elements of U are denoted 
by ai, with a ∈ A and i = 1, 2; and B = BO ∪ BD ∪ {(a1, a2) | a ∈ A}, where BO  and BD  are 
defined as 

BO  = {(v, a1) | a ∈ A and  v ∈ Org(a)},  and 
BD  = {(a2, v) | a ∈ A and  v ∈ Dest(a)}. 

 
Definition 6 (Planarity).  A directed hypergraph H is planar if its structure graph HS  is 
planar. 

Figure 4(a) shows again the directed hypergraph H; Figure 4(b) presents (HS)u, the 
underlying graph of the structure graph HS associated with H, which is clearly not planar, 
since it is homeomorphic to K3,3. 
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Figure 4 – H and (HS)u. 
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The relation between this concept of planarity and the Zykov planarity can now be 
established. 

Given a graph G = (V, E), the contraction of an edge is defined as the operation of 
removing e = (x, y) ∈ E from G and identifying x and y (with a single new vertex xy) so 
that every edge (other than (x, y)) originally incident to either x or y becomes incident to 
xy. By the Contraction Form of Kuratowski Theorem (McHugh, 1990), we know that this 
operation preserves planarity, that is, if G is planar than the resulting contracted graph is 
also planar. 

 
Theorem 1. Let H = (V, A) be a directed hypergraph. If H is planar then the underlying 
hypergraph of H is Zykov-planar. 

Proof. If H is planar then HS, the structure graph associated with H, is planar and its 
underlying graph (HS)u  is also planar. 

Let HB  be the bipartite graph of Definition 4 applied to Hu, the underlying hypergraph of H. 

Let a be a hyperarc of H; (a1, a2) is an edge of (HS)u. The contraction of each one of these 
edges generates a new graph, isomorphic to HB. Since the contraction preserves planarity, if 
(HS)u  is planar, so is HB. Finally, as HB is planar, by Definition 4, the underlying hypergraph 
of H is Zykov-planar.  □ 

 
The converse of Theorem 1 is not true, as shows the counter-example in Figure 2. 

It is important to observe that when Definition 6 is applied to particular cases as BF-graphs 
the result is equivalent to the usual concept of planarity for digraphs. 

 
Theorem 2. Let H be BF-graph. Then H is planar if and only if its underlying hypergraph is 
Zykov-planar. 

Proof. Every hyperarc a of H has |Org(a)| = 1 or |Dest(a)| = 1. Let us suppose, without loss 
of generality, that the hyperarc a has only one vertex at its destination. 

When constructing HS (by Definition 6), vertex a2 has degree 2 (as in Figure 5(b)). We must 
recognize if (HS)u  is planar. Vertex a2 together with its incident edges can be replaced by a 
single edge. A similar operation can be performed on all vertices with degree 2 generated by 
the hyperarcs of H. In other words, we construct a homeomorphic graph with a smaller 
number of vertices. After such operations, the resulting graph is isomorphic to HB. So, (HS)u 
is homeomorphic to HB. As homeomorphism does not interfere with planarity, HS  is planar if 
and only if HB is planar. Consequently, H is planar if and only if its underlying hypergraph is 
Zykov-planar.  □ 
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Figure 5 – The transformation of a hyperarc with one vertex as destination. 

 
Corollary 1. If G is a digraph then G is planar if and only if its underlying graph is Zykov-
planar. 

Proof. G is a BF-graph.  □ 

Finally, it is interesting to observe that the complexity of the recognition of planarity for 
directed hypergraphs is also linear on the size of the hypergraph. 

Theorem 3. Let H = (V, A) be a directed hypergraph. Then the time needed to test the 
planarity of H is O(|H|). 

Proof. Let H = (V, A) be a directed hypergraph. The number of vertices of HS , nS , is equal to 
|V| + 2 |A|. As |V| ≤ |H| and 2|A| ≤ |H|, then nS ≤ 2|H|. 

As the construction of the structure graph HS can be done in linear time in the size of the 
hypergraph (|H|), and testing the planarity of a digraph can be done in linear time on the 
number of vertices (nS), the test whether a directed hypergraph is planar can be done in linear 
time on its size (O(|H|)).  □ 
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