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Abstract 
 
In the financial markets, there is a well established portfolio optimization model called generalized 
mean-variance model (or generalized Markowitz model). This model considers that a typical investor, 
while expecting returns to be high, also expects returns to be as certain as possible. In this paper we 
introduce a new media optimization system based on the mean-variance model, a novel approach in 
media planning. After presenting the model in its full generality, we discuss possible advantages of the 
mean-variance paradigm, such as its flexibility in modeling the optimization problem, its ability of 
dealing with many media performance indices – satisfying most of the media plan needs – and, most 
important, the property of diversifying the media portfolios in a natural way, without the need to set up 
ad hoc constraints to enforce diversification. 
 
Keywords:  media planning; mean-variance optimization; parametric quadratic programming. 
 
 

Resumo 
 
No mercado financeiro, existem modelos de otimização de portfólios já bem estabelecidos, deno-
minados modelos de média-variância generalizados, ou modelos de Markowitz generalizados. Este 
modelo considera que um investidor típico, enquanto espera altos retornos, espera também que estes 
retornos sejam tão certos quanto possível. Neste artigo introduzimos um novo sistema otimizador de 
mídia baseado no modelo de média-variância, uma abordagem inovadora na área de planejamento de 
mídia. Após apresentar o modelo em sua máxima generalidade, discutimos possíveis vantagens do 
paradigma de média-variância, como sua flexibilidade na modelagem do problema de otimização, sua 
habilidade de lidar com vários índices de performance – satisfazendo a maioria dos requisitos de 
planejamento – e, o mais importante, a propriedade de diversificar os portfólios de mídia de uma forma 
natural, sem a necessidade de estipular restrições ad hoc para forçar a diversificação. 
 
Palavras-chave:  planejamento de mídia; otimização de média-variância; programação 
quadrática paramétrica. 
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1. Introduction 

In every media advertising campaign, after the several strategic aspects like market, target, 
timing, budget, expected coverage, frequency of exposition and other parameters are defined, 
media planners must build the media portfolio, a schedule that determines where, when and 
how many advertisement insertions should be part of the media plan (Surmanek, 1993). The 
planner's challenge is to obtain a media portfolio within budget that reaches the target 
audience at the right time. Usually previous information (like product, marketing objectives, 
target, budget and eventually special tactics) helps the media planners to decide what media 
types would be effective in reaching the planned target. 

Currently, several models for media optimization are available, constituting valuable tools 
for media planners (Leckenby & Ju, 1990). Their goal is to suggest budgets allocations, 
based on performance indices of vehicles like rating, reach, cost per thousand, coverage, 
composition and others. However, most of these models are based on two major paradigms: 

a) Greedy algorithms (Nie & Kambhampati, 2001): these algorithms start from a beginning 
(small) media portfolio and fill it incrementally by including vehicles (i.e. programs, 
newspapers, magazines) insertions with greater marginal gain until the desired reach-
frequency level is achieved; 

b) Linear programming (Brown & Warshaw, 1965): optimizers based on this model return 
media portfolios with optimum expected return, usually expressed as a linear 
combination of cost, exposures and other indexes. Linear constraints like maximum 
investment in a media vehicle, minimum TRP in a particular TV day-part, etc, may be 
imposed. 

The major limitation of these paradigms is that they only take into account the expected 
returns (first statistical moment), see Leckenby & Ju (1990). The variance of the returns 
(second statistical moment) is not considered. Since in general the vehicles with the greatest 
expected returns are also those with the greatest variances, these algorithms tend to return 
media portfolios with high risk, i.e. with high probability of not achieving the expected 
reach-frequency rates at the campaign exhibition time. This forces the planners to diversify 
their media plans by means of ad hoc constraints and bounds. 

In the financial markets, there is a well established portfolio optimization model called 
generalized mean-variance model, or generalized Markowitz model (Markowitz, 1987; 
Sharpe & Alexander, 1990; Stern & Silva, 1995). This model considers that a typical 
investor, while expecting returns to be high, also expects returns to be as certain as possible. 
This means that the investor, in seeking both to maximize expected return and minimize 
uncertainty (that is, risk), has two conflicting objectives that must be balanced against each 
other when making the purchase decision. One interesting consequence of having these two 
conflicting objectives is that the investor should diversify by purchasing not just one asset 
but several ones. In the Markowitz model, assets expected returns are expressed as their 
mean returns and assets risks are expressed as their covariance matrix. Optimizers of this 
family usually return a set of efficient portfolios: an efficient portfolio is one which gives a 
certain expected (mean) return with the lowest risk (variance). 

It is possible to establish an analogy between financial and media portfolios. In a way similar 
to investors, media planners must purchase assets (advertisement insertions in vehicles) with 
high cost effectiveness and high probability of achieving the desired goals (reach-frequency 
results). 
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In this paper we introduce a new media optimization system based on Markowitz model, a 
novel approach in media planning. After presenting the model in its full generality, we 
discuss possible advantages of the mean-variance paradigm, such as its flexibility in 
modeling the optimization problem, its ability of dealing with many media performance 
indices – satisfying most of the media plan needs – and, more important, the property of 
diversifying the media portfolios in a natural way, without the need of set up ad hoc 
constraints to enforce diversification. 

In Section 2 we present the Markowitz financial model, and in Section 3 we discuss its 
formulation in the media optimization problem. In Section 4, an application to media 
planning in Brazilian market is analyzed in details, on real data (which will be available at 
the corresponding author’s web page). In the Appendix, we present a brief summary of the 
media planning terms used in this article (Surmanek, 1993). 

 
2. Mean-variance optimization concepts 

In the Markowitz financial model (Markowitz, 1987), the objective function describes a 
trade-off between expected return and the corresponding risk (or volatility) of each portfolio. 
One expects to maximize the expected return and simultaneously to minimize the volatility. 
The decision variables are interpreted as amounts to be invested in several assets from a 
universe of potential candidate assets (i.e. stocks, bonds, commodities, currencies, etc.). 

Formally, the investor should choose fractions x1, x2,…, xM  to be invested in the assets 
1 M… , subject to the constraints 0 ( 1 )jx j M≥ = …  and 

1...
1jj M

x
=

=∑ . 

We consider the returns on investment of individual assets r1, r2,…, rM  as random variables 
with a joint probability distribution, where the following notation is adopted. The expectation 
of rj is denoted by ( )j jE rµ ≡ . The covariance between ir  e jr  is defined by 

2 (( )( ))ij i i j jE r rσ µ µ= − − . 

In particular, 

( )2 2( )jj j jE rσ µ= −  and 2
jj jjσ σ=  

are the variance and standard deviation of jr . 

The correlation coefficient between ir  e jr  is 

2
ij

ij
ii jj

σ
ρ

σ σ
= . 

Our main interest is on the portfolio return, 

1
( ) M

j jj
R x r x

=
=∑ , 

a random variable whose mean, variance and standard deviation can be computed from jµ  

and 2
ijσ . The mean expected return of the portfolio is 

1
( ) ( ( )) M

j jj
e x E R x xµ

=
≡ =∑ . 
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The variance and standard deviation of the return on the investment are 

2 2
1 1

( ) ( ( )) M M
ij i ji j

x Var R x x xσ σ
= =

≡ =∑ ∑  and 2( ) ( )x xσ σ= . 

In matrix notation we have: 

[ ]1 2, ,..., ' ,Mx x x x=  

[ ]

2 2
11 1

1 2
2 2

1

, ,..., ' , ,
M

M

M MM

Cov
σ σ

µ µ µ µ

σ σ

 
 = =  
  

"
# % #

"

 

2

( ) ' ,

( ) ' ,

e x x

x x Cov x

µ

σ

=

=
 

where vectors are represented as column matrices and the symbol '  indicates matrix/vector 
transpose. 

As presented in next section, we use as estimators for  and  Covµ  the sample mean and 
covariance. For a general convergence analysis and estimation errors, see Lauretto et al. 
(2003). As usual in this class of models, we consider a stationary stochastic process. In a 
more general case, stabilization techniques, like those described in Brockwell (1991), can be 
used. 

Usually, portfolio must respect some constraints, which are imposed by existing laws and 
regulation or simply demanded by the investors to their agents (Alexander & Francis, 1986). 
Markowitz model is capable of dealing with equality and inequality linear constraints. Some 
examples include: 

- Pension funds managers are obliged by law to respect investment upper bounds in certain 
classes of assets, like junk bonds and common stocks. 

- Investors could require that a certain minimum percentage of their money should be 
allocated to more conservative assets or specific sectors of the economy, such as govern 
bonds. 

The linear equality constraints have the form: 

H x h=  

where H  is a K M×  matrix of constraints coefficients, h  is a 1K ×  vector of bounds and 
K  is the number of equality constraints. 

The linear inequality constraints are formulated as: 

G x g≤  

where G  is a L M×  matrix of constraints coefficients, g  is a 1L×  vector of bounds and L  
is the number of inequality constraints. 
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2.1 The objective function and efficient portfolios 

It is well known that portfolios with higher expected returns have large risk (variances), see 
Sharpe & Alexander (1990). So, portfolio optimization based only on the expected return 
brings solutions with high risks and low effectiveness. In the Markowitz model, the objective 
function to be maximized is a trade-off between the expected return of the portfolio and its 
variance. 

A portfolio ( )x α  is optimal if it maximizes the objective function 

2( ) arg max ( ) ( ) ( )

' '
x

x x e x x

x x Cov x

α ϕ α σ

α µ

∈ = −

= −
 

subject to the established linear constrains 

0 | ' 1 , ,x x H x h , G x g≥ = = ≤1  

where 1  denotes a (column) unitary vector and the symbol '  denotes matrix or vector 
transposition. 

The parameter α  can be interpreted as a measure of the investor's risk tolerance. In other 
words, α  is a measure of how much maximizing the expected return is preferred in contrast 
to minimizing the investment risk. The higher the α  value, the higher the importance 
(for the investor) of the expected return as compared with the portfolio risk. 

Each value of the parameter α  determines a portfolio ( )x α  that maximizes ( )xϕ . An 
optimal solution ( )x α  is called an efficient solution or efficient portfolio. A portfolio x  is 
efficient if: 

- There are not portfolios with expected return equal to the one of x  and with smaller 
variance; 

- There are not portfolios with variance equal to the one of x  and with a higher expected 
return. 

For simplicity, we denote the expected return, variance and standard deviation of the 
efficient portfolio ( )x α  by ( ) ( ( ))e e xα α≡ , 2 2( ) ( ( ))xσ α σ α≡  and ( ) ( ( ))xσ α σ α≡ . The 
curve ( )e α  versus ( )σ α  is called efficient frontier. 

Figure 1 shows the graph of expected returns ( e ) vs. risk (σ ) and the efficient frontier for a 
specific portfolio optimization problem. Points A, B, C and D on the efficient frontier 
represent efficient portfolios with expected return and variance ( ( ) , ( ))e α σ α . Point A is 
determined by a high α  value and point D is determined by a low α  value. 
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Figure 1 – Example of efficient frontier and some points of interest. 

 
Any portfolio x  whose pair ( ( ) , ( ))e x xσ  is below the efficient frontier is dominated by 
portfolios lying on the frontier. For example, portfolio E is dominated by portfolio B (which 
has the same risk but a higher expected return) and portfolio C (which has the same expected 
return but a lower expected risk). 

By varying the value of α , an optimization solver based on Markowitz model offers to the 
investor a set of efficient portfolios, letting him choose the most suitable for his purposes (for 
example, the investor may elect the efficient portfolio which achieves the desired expected 
return). Furthermore, analyzing the efficient frontier, the investor may evaluate the 
return/risk rate of his choice and revise his demands. Let us take the chart on Figure 1 and 
consider, for example, an investor who wants an expected return ( e ) about 0.18. Then the 
chosen efficient portfolio should be near the point A and achieve a standard deviation (σ ) 
about 0.28. However, if the investor accepts a return slightly lower as 0.16, the 
corresponding efficient portfolio will be near point C and achieve a standard deviation about 
0.23. He would conclude that by reducing his expected return demand by 11% he gets a 
portfolio with a 18% lower standard deviation. 

 
2.2 Risk protection through diversification 

In the financial markets, investors look for diversification as a means of reducing risk, and 
devise portfolios containing assets which tend to have opposite price behaviors. As we 
briefly discuss below, the main differential aspect of the mean-variance model is that 
diversification is attained naturally, as a consequence of the trade-off between expected 
return and risk, without the need of setting up ad hoc constraints to enforce diversification 
(Alexander & Francis, 1986). 

The objective function ( )xϕ  seeks portfolios with high expected return and low variance. 
Using the definition of ( )xσ , it is easy to see that the standard deviation is lower when the 
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correlation coefficients ijρ  of the selected assets are negative. Two assets i and j have a 
negative correlation when ri and rj behave in opposite directions, i.e., an increase in ri 
suggests a simultaneous decrease in rj and conversely. 

 

3. The Markowitz model and the optimization problem in media planning 

The main topic of this section is the application of the general approach described in section 
2 to media optimization. 

We shall define a “vehicle” as the smallest unit on which one can take a media purchase 
decision. It could be an issue of a magazine, newspaper or a particular program in a TV 
channel. The set of vehicles (“decision units”) will be denoted by: 

{1,2,..., },U M=  

where M is the total number of vehicles considered. Two different vehicles will be denoted 
by u  and v . 

We assume that the data comes from a sample of interviewees belonging to the campaign 
target, i.e. the subgroup of the population which constitutes the consumer market of the 
product to be announced. This set is denoted by I. 

{1,..., },I N=  

where N is the number of interviewees in the sample. We can assume also that to each 
interviewee we associate a “weight” wi. This can be viewed as if each individual in the 
sample were a representative of a sub-population with weight wi. We will denote by Pop the 
total size of the target, and then ii I

Pop w
∈

=∑ . 

 
3.1 Some basic statistics 

For each person in the sample of interviewees, several social-demographic and media 
consumption data are collected. Several questions are included in order to get a better 
understanding of the chance that one particular individual consumes a given vehicle. To 
know for example that a person saw/read the last edition of a magazine is not enough to 
ascertain the frequency with which this person actually does it. In this respect, questions 
related to habits are relevant. So, the media consumption data usually consist of several 
questions like: 

- Consumption of the last issue. 
- Time since last consumption. 
- Number of saw/read/listened issues among the last ten, for example. 

From these questions we compute a single measure of how much a person sees/listens/reads 
a particular vehicle, or in other words the probability that person i consumes vehicle v. Here 
we denote this measure by F(i,v) ∈ [0,1]. This index will represent a fraction of the total 
number of opportunities to see/listen/read the vehicle v by the individual i: F(i,v) = 0 means 
that the individual i never sees/listens/reads the vehicle v. F(i,v) = 1 means the opposite, i.e., 
the individual i always see/listen/reads vehicle v. In our work, F(i,v) may be interpreted as an 
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estimate of the probability that the individual i in the population would see/listen/read an 
advertisement exhibited in vehicle v. The computation of F(i,v) is an ad-hoc procedure, 
which depends on the available data and the importance assigned by the media planner for 
each question. Section 4 presents a particular computation of F(i,v) for the case study of this 
work. 

The estimated return of a vehicle v is the mean of the values of F(i,v), weighted by wi, over 
all members of the sample. We denote this mean by ˆvµ . 

1
1ˆ ( , ) .N

v ii
w F i v

Pop
µ

=
= ∑  

The value ˆvµ ∈ [0,1] is an estimate of the coverage (also called rating, see appendix) of 
vehicle v, or the probability that an individual from the population will be exposed to an 
advertisement placed in vehicle v. If xv advertising insertions are purchased in vehicle v, the 
average expected number of exposures per individual in that vehicle is 

ˆv vxµ . 

The estimated covariance between two vehicles u and v is computed by: 

2
, 1

1ˆ ˆ ˆ( ( , ) ) ( ( , ) )N
u v i u vi

w F i u F i v
Pop

σ µ µ
=

= − −∑ . 

In particular, 

2 2
, 1

1ˆ ˆ( ( , ) )N
v v i vi

w F i v
Pop

σ µ
=

= −∑  and 2
, ,ˆ ˆv v v vσ σ=  

are the estimated variance and standard deviation. 

The correlation coefficient, 
2
,

,
, ,

ˆ
ˆ

ˆ ˆ
u v

u v
u u v v

σ
ρ

σ σ
= , 

varies within the interval [ 1, 1]− + . When two vehicles u  and v  have a high positive 
correlation, that means that both reach approximately the same universe (an individual who 
likes vehicle u  also likes vehicle v , and vice versa). On the other hand, when u  and v  have 
high negative correlation coefficient, that means that the vehicles have a tendency to reach 
different or even exclusive targets (an individual who likes vehicle u  doesn’t like vehicle v  
and vice versa). 

Similarly to what happens in the financial markets, if we base our optimization procedure 
exclusively on the expected return (which, in our case is represented by ˆvµ ) we will produce 
schedules with lower reach if the selected vehicles have positive correlation coefficients 
among them. In this sense, a rational optimization procedure will naturally select vehicles 
with negative correlation, increasing in this way the probability of obtaining a higher reach. 

The Target Rating Point (or simply TRP), another common measure of a schedule’s 
efficiency, represents the cumulative rating points, on a specific target, of all vehicles 
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scheduled, i.e., the sum of the expected rating of each insertion. Its estimation is quite similar 
to the average expected number of exposures per individual, except the fact it is presented in 
a percentage scale: 
 ˆ100 'TRP xµ= . (1) 

 
3.2 Objective functions 

In our model, the decision variable is a vector 1 2[ , ,..., ]'Mx x x x= , where vx  is the number of 
ads to be inserted in vehicle v . 

We denote by vc  the cost of each advertisement insertion in vehicle v  and by c  the vector 

1 2[ , ,..., ]'Mc c c c= . The total cost of schedule x  is: 

1
M

v vv
c x

=∑  or, in matrix notation, 'c x . 

The expected return of a schedule x  is the average number of exposures per individual in 
the population, and this is obtained by: 

 ˆ ˆ( ) 'e x xµ= . (2) 

The variance and standard deviation (in hits/individual) of the return are obtained by: 

2ˆ ( ) 'x x Cov xσ =  and 2ˆ ˆ( ) ( )x xσ σ= , 

where Cov is the matrix of estimated covariances among vehicles, 
2 2
11 1

2 2
1

ˆ ˆ

ˆ ˆ

M

M MM

Cov
σ σ

σ σ

 
 =  
  

"
# % #

"

. 

The interpretation of standard deviation in the present context is the following. Suppose a 
schedule x  with ( )e x m=  and ˆ ( )x sdσ = . The average number of impressions per 
individual is in the interval [ , ]m sd m sd− +  with 67% of confidence (assuming a normal 
approximation). So, when two distinct schedules give the same expected return and same 
cost but different standard deviations, the one with smaller standard deviation (and 
consequently, smaller variance) is preferable, because its probability of success (achieving 
the desired average of impressions per individual) is larger. 

It is worthwhile to discuss the importance of trade-off between cost-effectiveness and 
variance. Here we call cost-effectiveness the amount of exposures per monetary unit paid in 
a vehicle or a schedule. Most of media optimizers are oriented by cost-effectiveness, i.e. they 
seek schedules composed by vehicles cheaper and with more expected exposures. Since 
practice shows that these vehicles have in general a large variance, the built schedules 
variance is also large. 

The Markowitz model allows several distinct optimization formulations. Currently, our 
media optimization tool under development has two optimization modes, described below. 
Both of them are based on the equilibrium between the cost-effectiveness (which has to be 
maximized) and the variance (to be minimized). 



Fernandez, Lauretto, Pereira & Stern  –  A new media optimizer based on the mean-variance model 

436 Pesquisa Operacional, v.27, n.3, p.427-456, Setembro a Dezembro de 2007 

3.2.1 TRP maximization at a fixed budget: 

In this optimization mode, the planner sets up the available budget and the optimizer goal is 
to return a set of schedules with optimal trade-off between TRP (to be maximized) and 
variance (to be minimized). 

From equations (1) and (2), we see that maximizing expected TRP(x) is equivalent to 
maximizing ˆ( )e x . So, a portfolio ( )x α  is optimal if it maximizes the objective function 

2ˆ ˆ( ) arg max ( ) ( ) ( )

ˆ ' '
x

x x e x x

x x Cov x

α ϕ α σ

α µ

∈ = −

= −
 

subject to the linear constraints 

0 | ' , ,x c x B H x h G x g≥ = = ≤ , 

where α  is a “risk tolerance” parameter, B is the advertisement budget and H, h, G, g are 
matrices and vectors for equality and inequality constraints presented in section 2. 

The parameter α, already discussed in section 2, plays a similar role in the present objective 
function. The higher the α value, the higher the importance of ˆ( )e x  component as compared 

with the 2ˆ ( )σ α  component. The solver automatically varies α, returning not just a unique 
schedule, but a set of schedules with different expected TRP and variances, i.e. the efficient 
frontier. 

 
3.2.2 Cost minimization at fixed TRP: 

In this optimization mode, the planner sets up the desired TRP and the optimizer goal is to 
return a schedule set with optimal trade-off between cost and variance (both to be 
minimized). 

A portfolio ( )x α  is optimal if it maximizes the objective function 

( ) arg max ( ) ' '
x

x x c x x Cov xα ϕ α∈ = − −  

subject to the linear constraints 

ˆ0 | 100 ' , ,x x R H x h G x gµ≥ = = ≤ , 

where α  is a “risk tolerance”, R is the desired TRP and H, h, G, g are matrices and vectors 
for equality and inequality constraints presented in section 2. 

Analogously to the previous optimization mode, the solver automatically varies α , returning 
a set of schedules with different costs and variances. 

 
3.3 Linear constraints in media optimization 

The constraints ,H x h G x g= ≤  are general enough for covering a large set of restrictions 
found in problems of media optimization. One kind of restriction has been already shown: 
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the reader may notice that the available budget or the desired TRP (see previous section) are 
particular cases of linear equality constraints. At least two other classes of constraints 
commonly found in media planning also can be formulated as linear constraints through the 
appropriated setup of H, h, G and g, as we show in the sequence. 

 
3.3.1 Upper and lower bounds 

The media planner may set up the minimum (xv ≥ mv), maximum (xv ≤ Mv) or exact (xv = Ev) 
number of advertisements to be placed in some vehicles. The media planner could define a 
set of vehicles and specify the bound to be satisfied for each vehicle belonging to this set. 

This functionality is desirable in several cases: for example, when there are pre-purchased 
spaces in some vehicles, or when the advertiser wants concentrate focus in some specific 
magazines. 

 
3.3.2 Constraints over entire sets 

Instead of specifying bounds for each vehicle in a set, the media planner frequently may 
specify bounds to be satisfied for the group of vehicles. For sake of clarity, we give two 
hypothetical examples: 

- At least 40% of the available budget must be applied in women magazines; 
- No more than 20% of the budget may be applied in tabloids. 
 

3.4 Linear × Integer Programming 

The Markowitz model belongs to a so-called Quadratic Programming class – since 2 ( )σ α  is 
quadratic. However, Wolfe (1959) demonstrates how to solve the quadratic programming 
problem using an adaptation of the Simplex algorithm for linear programming problems, 
namely the LC-Simplex (Linear-Complementarity Simplex). The average running time of 
LC-Simplex method is polynomial (Schrijver, 1986), what in practice means that LC-
Simplex is fast enough for solving a large family of linear optimization problems. An 
available (improved) implementation of Wolfe’s method is the Critical Point, see Stern 
(1995). 

One of the main mathematical differences between portfolio and media optimization 
problems is that in portfolio optimization the decision variables are fractions of a total 
amount to be invested in the several available assets, and in practical terms these decision 
variables can be seen as rational numbers. On the other hand, in media optimization the 
decision variables are the number of advertisements in each vehicle, i.e., integer numbers. 
So, media optimization is an integer programming problem. 

Since integer programming algorithms are much more computer intensive than LC-Simplex 
(Schrijver, 1986), in some cases their use in media optimization could be unfeasible. Salkin 
& Mathur (1989) discuss the possibility of solving first the continuous formulation of the 
problem via linear programming and then rounding the result. In our approach, we solve the 
optimization problem using a solver based on LC-Simplex and apply the following rounding 
method for each efficient solution x: 
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a) Round all elements of x(α) using the traditional nearest integer criteria, (Graham 
et al., 1994, chap. 3); let y denote the vector of rounded elements of x(α); 

b) Supposing the optimization problem is that described in subsection 3.2.1, i.e. 
optimization of trade-off between TRP and variance at a fixed budget, we verify three 
(mutually exclusive) conditions: 

- If the relative difference between the cost achieved by y and the budget is less 
than 2%, i.e. if abs( ' ) / 0.02c y B B− < , then we use y as the final schedule 
integer approximation for x(α). 

- If ( ' ) / 0.02B c y B− > , we set a vector [ ]1 Mr r r= … , where 
( ) ( )i i ir x xα α= −    if ( )i iy x α=     or 1ir =  otherwise; we sort this vector in 

increasing order, getting the indexes (1) ( )Mi i…  such that (1) (2) ( )... Mi i i
r r r≤ ≤ ≤ ; 

beginning from j=1, if ( )( ' ) / 0.02ji
c y c B B+ − < , then increment ( )ji

y  by 1; 
if 'c y B>  then stop, otherwise increment j and repeat the process. 

- If ( ' ) / 0.02c y B B− > , we set a vector [ ]1 Mr r r= … , where 
( ) ( )i i ir x xα α= −     if ( )i iy x α=     or 1ir =  otherwise; we sort this vector in 

increasing order, getting the indexes (1) ( )Mi i…  such that (1) (2) ( )... Mi i i
r r r≤ ≤ ≤ ; 

beginning from j=1, if ( )( ' ) / 0.02ji
B c y c B− − < , then decrement ( )ji

y  by 1; 
if 'c y B<  then stop, otherwise increment j and repeat the process. 

If the optimization problem is optimization of trade-off between cost and variance at a 
fixed TRP (described in subsection 3.2.2), the rationale is the same as above, simply 
replacing c by µ̂  and B by R. 

There is no theoretical guarantee that after applying this rounding method the final solution 
is optimal (and frequently it is not), but as discussed in Section 4, in our practical 
experiments, this approach has given very good approximations for the exact quadratic 
integer programming problem. 

 
3.5 Clustering vehicles with high similarities in consumption and price 

In media planning, it is usual to find groups of vehicles with very similar patterns of 
consumption and prices. A typical case occurs in Radio and Television media: in contrast to 
specialized institutes of TV audience research which install “people meters” in the sample 
households and maintain an updated database of programs schedules, the media research 
institutes based on interviews do not collect data of audience by programs, but audience by 
broadcast station, day of week and intervals of time in the day (e.g. half hour intervals). In 
these cases, each vehicle is defined in terms of a channel, interval of time of the day and day 
of week (e.g. Channel 5/Monday/18:00-18:30). 

If a program at Channel 5 is exhibited on Mondays from 18:00 to 19:00, then almost 
everyone who watches this channel on Monday from 18:00 to 18:30 also watches it from 
18:30 to 19:00, and conversely. Therefore, these two vehicles (Channel 5/Monday/18:00-
18:30 and Channel 5/Monday/18:30-19:00) tend to have the same cost per insertion and a 
high coefficient of correlation. 
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In order to improve numerical stability at optimization phase (Stern et al., 2006, chap. 3-4), 
we adopt the following strategy: 

1. cluster the vehicles with very high correlation coefficients, creating a new set of 
“composite vehicles”; 

2. solve the optimization problem over the composite vehicles; 
3. after optimization phase, spread the insertions of each composite vehicle among its 

original vehicles. 

For the vehicles clustering, we define an undirected graph whose vertices represent the 
vehicles, and each edge (u, v) exists if and only if all of the conditions below hold: 

- the vehicles u and v pertain to the media group (i.e. the same broadcast station, same 
journal, etc); 

- 2
,

ˆ ˆ( ) ( )0.05 , 0.05 and 0.95 .
ˆ ˆmin( , ) min( , )
u v u v

u v
u v u v

abs abs c c
c c

µ µ σ
µ µ
− −

< < >  

On this graph we perform a breadth-first search algorithm to find connected components 
(Cormen et al., 1999, chap. 23). From the connected components, we define new “composite 
vehicles”, with the following attributes. Let A  be a connected component containing p 
vehicles. We assume that the index of individual consumption for the composite vehicle A, 
F(i, A), is the average of values for the indexes F(i,u) for the vehicles pertaining to A: 

1( , ) ( , ) , {1... }
v A

F i A F i v i I
p ∈

= ∀ ∈∑ . 

In this case, the estimated coverage of A, ˆAµ , can be computed by: 

1ˆ ˆ .A v
v Ap

µ µ
∈

= ∑  

If B is a second connected component containing q vehicles, the estimated covariance 
between A and B, 2

,ˆ A Bσ , can be easily estimated (DeGroot, 1986, chap. 4): 

2 2
, ,

1ˆ ˆA B u v
v A u Bpq

σ σ
∈ ∈

= ∑ ∑ . 

The cost per insertion, Ac , is taken as the average between the costs of original vehicles 
pertaining to A: 

1
A v

v A
c c

p ∈

= ∑  

Finally, the minimum and maximum number of allowed insertions, mA and MA , are 
computed by: 

 ,  if  
;

  ,  if  |

v v
v AA v A

v A
v

M M v A
m m M

v A M
∈

∈

< ∞ ∀ ∈= = 
∞ ∃ ∈ = ∞

∑
∑ . 
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The next step is to solve the optimization problem defined in previous sections, on the 
composite vehicles. After the optimization, the next step is to spread the insertions allocated 
to each composite vehicle into its corresponding original vehicles. Given a composite vehicle 
A with xA insertions, we compute the difference between xA and the sum of the minimum 
numbers of insertions required vehicles belonging to A: 

A A v
v A

y x m
∈

= −∑  

The quantity yA is then spread among the original vehicles by a Multinomial distribution 
(DeGroot, 1986, chap. 5), where the probability of one insertion be allocated to vehicle v ∈ A 
is proportional to the size of interval between the maximum and minimum numbers of 
insertions allowed: 

min( , ) ,
min( , )

A v v
v

A v v
v A

y M mp v A
y M m

∈

−
= ∀ ∈

−∑
. 

Let yv be the quantity generated from the Multinomial process described above, for all 
vehicles v ∈ A. Then the final number of insertions to be allocated to each vehicle v is given 
by v v vx m y= + . 

 
3.6 Estimation of reach-frequency distribution 

In this paper, the schedule’s reach-frequency distribution is computed by estimating the 
expected number of times each individual will be exposed to the advertising insertions. 
Consider a schedule 1 2[ , ,..., ]'Mx x x x= , where xv is the number of advertisements in vehicle 
v. If F(i,v) is the estimated probability of interviewee i be exposed to one advertisement in 
vehicle v, then the expected number of advertisements seen/listened by interviewee i in 
vehicle v is F(i,v) xv. Therefore, the expected total number of advertisements seen/listened by 
interviewee i in the schedule is 

1
( , )M

i vv
f F i v x

=
=∑ . 

The reach-frequency distribution is computed by a histogram (weighted by wi) of fi , 
i = 1,…,N. 

 

4. A case study: results and discussion 

To exemplify the methodology and evaluate its results, in this section we show the 
application of the proposed model to a set of real data. We present some cases where the 
objective is to find optimal schedules for advertising in four media: TV, radio, newspapers 
and magazines. The information source is a database containing media consumption habits 
and related information collected through a sample in São Paulo metropolitan area (the 
largest one of Brazil), between January and March of 2005. The original sample consists of 
2,062 interviewees of both sexes and 10 years old or more. 

Beyond media consumption habits (to be detailed below), other social-demographics 
characteristics like sex, age, income and others were collected for each interviewee. Brazilian 



Fernandez, Lauretto, Pereira & Stern  –  A new media optimizer based on the mean-variance model 

Pesquisa Operacional, v.27, n.3, p.427-456, Setembro a Dezembro de 2007 441 

research institutes employ some default criteria – based on some of these features – for 
grouping population in five social class: A (the highest), B, C, D and E (the lowest). The 
target for our numerical experiments is composed by adults (20 or more years old) of both 
sexes from social classes A or B, which corresponds to 36.2% of the total population of São 
Paulo metropolitan area. The filtered sample contains 759 interviewees. 

 
4.1 Estimating individual consumption of vehicles 

In section 3.1 we introduced the vehicle individual consumption function, ( , )F i v , as an 
estimator for the probability that an interviewee i will see/listen an advertisement insertion 
on vehicle v. In this section we show the criteria adopted to define ( , )F i v  in our case study. 
We notice that the chosen criteria is just an example created by the authors, only for purpose 
of illustrating the practical application of the proposed optimization model. Many other 
criteria satisfying the conditions described in 3.1 could be used. 

In our dataset, each question about a vehicle’s consumption has two or more alternative 
answers, generally in ascending order to degree of consumption, and the interviewee can 
choose only one answer. In our criteria, the first step is to assign values to these possible 
alternatives, in order to get a quantitative measure of the vehicle consumption. For 
convenience, these values are set in the [0,1] interval. The second step is to define ( , )F i v  as 
a combination of the questions related to the vehicles – more specifically, a convex 
combination. 

In the sequence we show the detailed definition of ( , )F i v  for each media. For sake of 
clarity, we take as example one specific vehicle in each media, thus avoiding unnecessary 
formalization. 

 
a) Magazines: 

Example: Veja Magazine 

The computation of F(i,v) is: 

F(i,v) = 0.3 LastIssueRead + 0.5 Frequency + 0.1 BoughtQuantity + 0.1 SpentTimeReading, (2) 

where each variable’s value is set accordingly to the answers: 

LastIssueRead: Have you read the last issue of Veja? 
a) No: LastIssueRead = 0.0 
b) Yes: LastIssueRead = 1.0 

Frequency: Of the last 5 issues, how many issues did you read? 
a) 0: Frequency = 0.0 
b) 1: Frequency = 0.2 
c) 2: Frequency = 0.4 
d) 3: Frequency = 0.6 
e) 4: Frequency = 0.8 
f) 5: Frequency = 1.0 
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BoughtQuantity: Of the last 5 issues, how many issues did you buy? 
a) 0: BoughtQuantity = 0.0 
b) 1: BoughtQuantity = 0.2 
c) 2: BoughtQuantity = 0.4 
d) 3: BoughtQuantity = 0.6 
e) 4: BoughtQuantity = 0.8 
f) 5: BoughtQuantity = 1.0 

SpentTimeReading: On average, how much time do you spend reading a Veja’s issue? 
a) I don’t read it:  SpentTimeReading = 0.00 
b) Less than 15 min: SpentTimeReading = 0.15 
c) 16 to 30 min:  SpentTimeReading = 0.30 
d) 31 to 45 min:  SpentTimeReading = 0.45 
e) 46 min to 1 hour: SpentTimeReading = 0.60 
f) 1 to 2 hours:  SpentTimeReading = 0.80 
g) More than 2 hours: SpentTimeReading = 1.00 
h) I don’t know:  SpentTimeReading = 0.30 

 

b) Newspapers: 

Example: Folha de São Paulo, Mondays. 

 F(i,v) = 0.3 LastIssueRead + 0.5 Frequency + 0.2 SpentTimeReading, (2) 

where each variable’s value is set accordingly to the answers: 

LastIssueRead: In the last 7 days, have you read Folha de São Paulo on Monday? 
a) No: LastIssueRead = 0.0 
b) Yes: LastIssueRead = 1.0 

Frequency: Of the last 5 issues, how many issues did you read? 
a) 0: Frequency = 0.0 
b) 1: Frequency = 0.2 
c) 2: Frequency = 0.4 
d) 3: Frequency = 0.6 
e) 4: Frequency = 0.8 
f) 5: Frequency = 1.0 

SpentTimeReading: On average, how much time do you spend reading an issue of this 
newspaper on Mondays? 

a) I don’t read it:  SpentTimeReading = 0.00 
b) Less than 15 min: SpentTimeReading = 0.15 
c) 16 to 30 min:  SpentTimeReading = 0.30 
d) 31 to 45 min:  SpentTimeReading = 0.45 
e) 46 min to 1 hour: SpentTimeReading = 0.60 
f) 1 to 2 hours:  SpentTimeReading = 0.80 
g) More than 2 hours: SpentTimeReading = 1.00 
h) I don’t know:  SpentTimeReading = 0.30 



Fernandez, Lauretto, Pereira & Stern  –  A new media optimizer based on the mean-variance model 

Pesquisa Operacional, v.27, n.3, p.427-456, Setembro a Dezembro de 2007 443 

c) Radio: 

Example: Station CBN FM Mondays-Fridays 6:00-6:30 

 F(i,v) = 0.4 ListenedYesterday + 0.6 Frequency (4) 

ListenedYesterday: Have you listened CBN FM yesterday from 6:00 to 6:30? 
a) No: ListenedYesterday = 0.0 
b) Yes: ListenedYesterday = 1.0 

Frequency: On the last 30 days, how frequently have you listened CBN FM from 5:00 to 
9:00 on Mondays-Fridays? 

a) Never:  Frequency = 0.0 
b) Rarely:  Frequency = 0.3 
c) Sometimes: Frequency = 0.7 
d) Very often: Frequency = 1.0 

 

d) TV: 

Example: Station Globo Mondays-Fridays 6:00-6:30 

 F(i,v) = 0.4 SawYesterday + 0.6 Frequency (4) 

SawYesterday: Have you watched Globo Station yesterday from 6:00 to 6:30? 
a) No:  SawYesterday = 0.0 
b) Yes:  SawYesterday = 1.0 

Frequency: On the last 30 days, how frequently have you watched Globo Station from 
6:00 to 7:00 on Mondays-Fridays? 

a) Never:  Frequency = 0.0 
b) Rarely:  Frequency = 0.3 
c) Sometimes: Frequency = 0.7 
d) Very often: Frequency = 1.0 

 

4.2 Pre-selection of vehicles 

The dataset contains 4681 vehicles. In this study, we ignore those vehicles whose coverage 
rates on the target are below minimum thresholds: 4% for TV and Radio, and 0.5% for 
newspapers and magazines. This pre-selection results in a set of 718 vehicles, distributed 
among the media in the following way: 58 newspapers (considering distinct days of week), 
244 radio programs (distinct broadcast stations, days of week and half-hour intervals), 72 
magazines and 344 TV programs. 

Figure 2 shows the histograms of pre-selected vehicles according to coverage rates over the 
selected target, by each kind of medium. In this set of vehicles, newspapers and radio 
programs seem to be better distributed in terms of coverage than other media. Magazines and 
radio programs have the smallest coverage rates (below 8%, except by one magazine with 
coverage rate about 18%). Some TV programs have large coverage rates, some of them 
greater than 50%. 
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Figure 3 shows the histograms of pre-selected vehicles according to the cost per insertion. 
The symbol R$ represents the Real, Brazilian monetary unit. Among the four media, radio 
programs are the cheaper vehicles, with costs below R$ 1,100. TV medium has the largest 
range of variation, from R$ 1,000 to R$ 200,000. Magazines costs are more concentrated 
below R$ 60,000, although one of them reaches about R$ 120,000. 
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Figure 2 – Histograms of vehicles in each medium, according to coverage rates. 
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Figure 3 – Histograms of vehicles in each medium, according to cost per insertion. 
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4.3 Numerical Results 

4.3.1 Case 1 

In order to illustrate the features of the model and show its effectiveness as a decision-
support tool in media planning, we run two hypothetical case studies. In the first case, the 
specified budget is R$ 1 million and the goal is to find schedules with optimal TRP–variance 
balance. No additional constraints or bounds are established, in order to show the 
diversification provided by the mean-variance model as a natural consequence of balance 
between expected return and risk. 

The algorithm returned a set of 107 distinct efficient schedules. As discussed in section 2, the 
solver automatically varies α and finds the solutions that maximize the objective function 

2ˆ ˆ( ) ( ) ( )x e x xϕ α σ= − . So, each efficient schedule corresponds to a distinct trade-off between 

the expected return ˆ( )e x  and the variance 2ˆ ( )xσ , controlled by the value of the parameter α. 

Figure 4 presents the efficient frontier for this case study, where the schedules expected 
returns ˆ( )e x  are plotted against the standard deviations ˆ ( )xσ . More specifically, the vertical 
axis represents the average frequency of exposures per individual of target, and the 
horizontal axis represents the standard deviation of number of exposures per individual. Each 
marker represents an efficient schedule returned by the solver. Two curves are plotted: the 
first representing the continuous solutions provided by the optimization solver, and the 
second representing the integer approximations provided by the rounding method described 
in section 3.4. We notice that in this case study the integer approximations are very close the 
continuous solutions in terms of mean-variance balance. 
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Figure 4 – Efficient frontier for case 1 (continuous dotted curve),  

and sequence of schedules in decreasing order of α (dashed arrow). 
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The points plotted in the top right corner of the graph represent efficient schedules where the 
values of the “risk tolerance” parameter α in the objective function are high, and therefore 
these are schedules with high average number of exposures per individual and (very) high 
standard deviation in the number of exposures per individual. As the α value becomes lower, 
the average number of exposures (and consequently the TRP) becomes gradually less 
important as compared with the standard deviation. So the efficient schedules become 
gradually more “conservative”, i.e., they tend to minimize the standard deviations in number 
of exposures, at the cost of achieve lower average numbers of exposures. The dashed arrow 
indicates the order of schedules, as α decreases. 

In the sequence, we analyse the efficient schedules by means of some of the most common 
indicators used in media planning, and discuss some possible criteria to select the most 
appropriate schedules. 

Table 1 shows some indicators computed for some efficient schedules: the schedule number, 
its total cost (in R$ thousands), the average number of exposures per individual (analogous to 
TRP, as discussed in Section 3.1), the standard deviation in number of exposures per 
individual, the total number of purchased insertions, the reach 1+, average frequency 1+, 
Reach 3-10 (percentage of target exposed between 3 and 10 times to the schedule), cost per 
thousand exposures and cost per thousand exposed people. As shown in Figure 4, many 
schedules are almost superposed, suggesting high similarities. Due to these similarities, we 
choose to show only a subset of the efficient schedules, taken in steps of 10, including the 
last one (naturally, in an optimization system, all efficient schedules must be shown so that 
the media planner can choose the best ones, but for our purposes in this paper, we consider 
this subset good enough). 
 

Table 1 – Some efficient schedules for fixed cost of R$ 1 million. 

Sched. 
number

Cost 
(R$000)

Average 
exposures 
per indiv.

Std Dev 
exposures 
per indiv.

Purchased 
Insertions

Reach 
1+ Freq. 1+

Reach    
3-10

Cost per 
thousand 
exposures

Cost per 
thousand 

people
1 1,000 106.2 482.7 2,470 5% 2,129.3 0% 2,279 4,852,064

11 1,000 77.9 128.9 1,533 39% 198.2 0% 3,104 615,412
21 1,001 68.5 99.8 1,378 52% 132.5 0% 3,535 468,505
31 999 25.1 27.9 387 70% 36.0 5% 9,646 347,178
41 991 15.1 13.7 184 86% 17.4 21% 15,915 277,708
51 1,002 8.9 6.1 81 95% 9.4 46% 27,158 253,927
61 1,001 7.3 4.4 62 97% 7.5 64% 33,289 250,615
71 998 5.4 2.8 32 97% 5.6 79% 44,743 249,123
81 1,013 4.1 2.0 29 97% 4.2 76% 59,967 252,238
91 1,007 3.2 1.7 30 96% 3.4 67% 75,091 252,378

101 1,018 2.5 1.4 26 94% 2.6 44% 100,225 261,518
107 1,013 1.6 1.2 22 90% 1.7 14% 156,884 271,210  

 
Figure 5 presents the frequency distribution for the schedules presented in Table 1. In each 
graph, the horizontal line represents the number of exposures, and each bar in position k 
represents the expected percentage of people in the target exposed k times to the advertisements 
of the schedule. The last bar represents the percentage of people exposed 30 or more times. 

We notice that all schedules costs are close the specified budget (R$ 1 million). The small 
observed differences are below the tolerance limit of 2% established by the rounding method 
adopted. 
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The first schedule in Table 1 corresponds to the right top point in Figure 4, discussed above. 
In this schedule, the component ˆ( )e x  is overweighted and therefore the efficient schedule is 
that with maximum TRP (despite the variance). All advertisements are concentrated only in 
vehicles with low cost per thousand exposures, as shown in column 9. Columns 6 and 7 
(reach 1+ and frequency 1+) show that a few people (5%) are overexposed to the ads (2129 
exposures on average), while the remaining (95%) are not exposed at all. This schedule 
exemplifies the behavior of linear optimizers based just on the cost-effectiveness. When 
using those optimizers, the media planner must set up several constraints and bounds in order 
to attain diversified schedules. 

It can be observed that the expected number of exposures and the standard deviation tend to 
decrease as the value of α decreases, as discussed. The number of insertions also decreases, 
since the schedules start incorporating more expensive vehicles with higher coverage rates or 
vehicles negatively correlated (e.g. vehicles of different media) in order to decrease the 
standard deviation. As a consequence, the reach increases and the frequency 1+ decreases – 
more people are exposed, less people are overexposed. The extreme cases are the last 
schedules, where α is so small that the variance component 2 ( )σ α  dominates the objective 
function. In these cases, the solver return schedules with minimum variance, although with 
small TRP. So, the last schedules are too conservative. Therefore, the most suitable 
schedules are those located in the medium region of the table, as we discuss below. 

From the media planner’s point of view, the concept of standard deviation in exposures per 
individual is directly connected to the shape of frequency distribution. Schedules with high 
standard deviations are those where the frequency distribution is concentrated on the 
extremes, i.e. many people are not exposed, while others are exposed many times. 
Conversely, schedules with low standard deviations are those where the frequency 
distribution is concentrated around its average, what means to expose people more 
homogeneously to the campaign. Figure 5 illustrate this fact: each schedule provides a 
frequency distribution progressively more concentrated than its predecessor, what explains 
the decreasing in standard deviations observed in Table 1. 

Since the model provides many efficient schedules, one natural question is how to choose the 
best one. Many different criteria could be adopted. For example, a possible criterion is 
choosing the schedule with largest percentage of people in a given interval of exposures. In 
our case study, if we establish the interval of 3 to 10 exposures, the schedule 71 should be 
chosen, since its reach in this interval is the largest (79%). 

Finally, we discuss briefly the diversification provided by the mean-variance model in media 
planning, as a natural consequence of trade-off between expected return and variance in 
exposures per individual. Figure 6 shows, for each schedule of Table 1, the relative 
proportions of each media in the total number of TRPs provided by the schedule. Each 
column corresponds to a schedule and is consisted by four areas, relative to the four medium 
(newspapers, radio, magazines, TV). The height of each area represents the relative 
participation of the corresponding medium in the total TRP of schedule. We notice that the 
first schedule is composed only by insertions in radio, the most cost-effective medium; then, 
other media are being gradually incorporated, in reverse order of cost-effectiveness: TV, 
magazines and newspapers. 
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Figure 5 – Frequency distributions for efficient schedules of Table 1. 
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Figure 6 – Relative participation of each medium in total TRP for schedules of Table 1. 
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4.3.2 Case 2 

In this case, the goal is to find schedules with optimal cost-variance balance, such that the 
schedules attain a fixed amount of 500 TRPs, which means an average of 5 exposures per 
individual in the target. The only additional constraint is that the schedules can not exceed 
the cost of R$ 1.5 millions. 

Figure 7 presents the efficient frontier for this case study, where the schedules costs are 
plotted against the standard deviations in expositions per individual, ˆ ( )xσ . In order to make 
the reading of graph more similar to that of Figure 4 and more intuitive, the sign of the costs 
are inverted. So, the vertical axis represents the schedules costs (with inverted sign) and the 
horizontal axis represents the standard deviation on number of exposures per individual. As 
it can be noticed, both curves representing respectively the continuous optimal solutions and 
the integer approximations are very close, suggesting that the rounding method adopted is a 
good approximation. 

Analogously to Figure 4, the points plotted in the top right corner of the graph represent 
efficient schedules where the values of “risk tolerance” parameter α in the objective function 
are high, and therefore these are schedules with low cost and (very) high standard deviation 
in the number of exposures per individual. As the α value becomes lower, the cost becomes 
gradually less important as compared with the standard deviation. So the efficient schedules 
become gradually more “conservative”, i.e., they tend to minimize the standard deviations in 
number of exposures, by purchasing more expensive vehicles with higher coverage rates. 

Table 2 shows the indicators computed for some of efficient schedules provided by the 
system (see Table 1 description for details on these indicators). For this case, a larger subset 
is shown, since after a certain point the schedules costs increase quickly (see Figure 7). 
Figure 8 shows the frequency distribution for some selected schedules. 
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We notice that, for all schedules, the average number of exposures per individual is close to 
the goal (5 exposures per individual), and the small observed differences are within the 
tolerance limit established. 

The first schedule in Table 2 is the cheapest one, and therefore that with lower cost per 
thousand exposures. Columns 6 and 7 (reach 1+ and frequency 1+) show that a few people 
(5%) are overexposed to the ads (100 exposures on average), while the remaining (95%) are 
not exposed at all. In the subsequent schedules, the cost is approximately increasing and the 
standard deviation are approximately decreasing, as consequence of decreasing the value of 
α (small oscillations in the monotonicity of these curves are due to the rounding process). 
We also can notice that after schedule 61 the number of insertions, reach and frequency 
become stable. Incidentally, this fact may suggest a simple criterion for choosing the most 
appropriate schedule: choose the cheapest schedule which satisfies some indicator threshold. 
For example, if we are interested in schedules with a minimum 95% of reach, we can choose 
schedule 51, which is the cheapest one to satisfy this condition. Schedule 65 is the cheapest 
one to attain more than 80% of reach 3-10. 

 
Table 2 – Some efficient schedules for 500 TRPs and maximum cost of R$ 1,5 million. 

Sched. 
number

Cost 
(R$000)

Average 
exposures 
per indiv.

Std Dev 
exposures 
per indiv.

Purchased 
Insertions

Reach 
1+ Freq. 1+

Reach    
3-10

Cost per 
thousand 
exposures

Cost per 
thousand 

people
1 47 5.0 22.7 116 5% 100.0 0% 2,279 227,870
6 55 5.0 12.6 105 25% 19.7 7% 2,672 52,762

11 64 5.0 8.3 99 39% 12.7 19% 3,090 39,202
16 67 5.0 7.8 100 44% 11.3 19% 3,256 36,928
21 72 4.9 7.2 100 51% 9.7 27% 3,510 33,947
26 82 5.0 7.0 100 53% 9.5 32% 3,956 37,640
31 200 5.0 5.6 77 69% 7.3 48% 9,639 70,199
36 396 5.0 4.2 54 86% 5.8 60% 19,159 111,423
41 482 5.1 3.8 50 88% 5.7 65% 23,061 132,235
46 650 5.0 3.1 38 94% 5.3 72% 31,627 166,383
51 705 5.0 3.0 42 96% 5.3 75% 33,985 178,443
56 805 4.9 2.7 33 96% 5.1 76% 39,477 203,099
61 880 4.9 2.6 33 97% 5.1 77% 43,192 219,523
62 947 5.1 2.7 36 97% 5.2 79% 45,007 235,885
63 946 5.1 2.6 35 97% 5.2 78% 45,264 235,679
64 964 5.0 2.6 38 97% 5.2 79% 46,244 240,153
65 983 5.0 2.6 38 97% 5.2 80% 47,132 244,855
66 1,013 5.0 2.6 37 97% 5.2 80% 48,855 252,271
67 1,127 5.0 2.4 32 97% 5.2 83% 54,138 280,899
68 1,213 5.0 2.4 33 97% 5.1 83% 58,690 301,246
69 1,227 5.1 2.4 35 97% 5.2 82% 58,657 304,597
70 1,196 5.0 2.4 35 97% 5.2 82% 57,315 297,013
71 1,234 5.0 2.4 36 97% 5.1 83% 59,481 306,324
72 1,305 5.0 2.4 27 97% 5.2 82% 63,446 326,882
73 1,331 5.0 2.4 35 97% 5.2 83% 64,051 331,903
74 1,422 5.0 2.3 34 98% 5.1 84% 68,581 352,505
75 1,486 5.1 2.3 35 98% 5.2 84% 70,603 368,116
76 1,473 5.0 2.3 34 98% 5.1 84% 70,929 364,964
77 1,489 5.0 2.3 35 98% 5.2 84% 71,647 369,004  
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Figure 8 – Frequency distributions for some efficient schedules of Table 2. 

 

5. Conclusions and future research 

In this paper we establish an analogy between financial and media portfolios. In a way 
similar to investors, planners must purchase assets (vehicles spots) with high cost 
effectiveness and high probability of achieving the desired gains (reach-frequency results). 

A new media optimization system based on generalized mean-variance model was 
introduced. We presented several possible advantages of the mean-variance paradigm over 
other methods like linear programming and greedy algorithms: the flexibility in modeling the 
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optimization problem, the ability of dealing with many media performance indices – 
satisfying most of the media plan needs – and, most important, the property of diversifying 
the media portfolios in a natural way. The case studies presented here show that the real 
world behavior of the model corresponds to what is expected. 

An area of possible improvement lies in the definition of F(i,v) and its main statistics µ 
(mean vector) and Cov (covariance matrix). The idea is to estimate µ and Cov as mean and 
covariance of a multivariate normal distribution. This distribution would be the “latent” 
continuous distribution that determines (by truncation) the values in the observed sample of 
respondents. 
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Appendix – Brief glossary of terms used in media planning 

Target: A specific universe of population to which an advertisement campaign is oriented. 
The target is specified according to affinities between the product and certain personal 
features like sex, age, social status, etc. For example, the target for a doll campaign could be 
the universe of girls less than 10 years old. 

Rating / Coverage: Expected percentage of people in the target who are exposed to a vehicle 
in a period of time. For example, when 30% of the target is watching a TV program in a 
certain instant, we say that this program has 30 points of rating. The term Rating is 
commonly used for TV and radio, while Coverage is commonly used for magazine and 
newspapers. In this paper, the reach of a vehicle v is denoted by µv (see section 3.1). 

Reach 1+: Given a media schedule, its reach (or reach 1+) is the expected percentage of the 
target exposed one or more times to the scheduled spots. A more general term is Reach s1 – 
s2, which means the expected percentage of the target who shall see/hear between s1 and s2 
spots among the total of scheduled spots (s1≤s2). For example, Reach 3-6 means the 
percentage of target expected to see between 3 and 6 of the scheduled spots. 

Frequency 1+: Is the average number of spots seen by each individual exposed at least once 
to the scheduled spots. 

TRP (Target Rating Points): Cumulative rating points provided by a schedule in a specific 
target, i.e., the sum of products of vehicle ratings (computed on the target) by their 
corresponding number of scheduled insertions. Section 3.1 contains the exact formulation of 
TRP in this work. 

Frequency distribution: Given a schedule, its frequency distribution consists on estimated 
percentages of people exposed 0, 1, 2, 3… times to the scheduled ads. 
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Cost per thousand exposures: Ratio between one schedule’s cost and the expected number of 
exposures, multiplied by 1000: 

'
ˆ ' . /1000

c xCPTI
x Popµ

=  

Cost per thousand exposed people: Ratio between one schedule’s cost and the expected 
number of exposed people, multiplied by 1000. 

 


