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Abstract 
 
The operations literature continues on inconclusive as to the most appropriate sales forecasting approach 
(Top-Down or Bottom-up) for the determination of safety inventory levels. This paper presents the 
analytical results for the variance of the sales forecasting errors during the lead-time in both 
approaches. The forecasting method used was the Simple Exponential Smoothing and the results led to 
the identification of two supplementary impacts upon the forecasting error variance, and consequently, 
upon safety inventory levels: the Portfolio Effect and the Anchoring Effect. The first depends upon the 
correlation coefficient of demand between two individual items and the latter, depends upon the 
smoothing constant and upon the participation of the individual item in total sales. It is also analysed 
under which conditions these variables would favour one forecasting approach instead of the other. 
 
Keywords:  forecasting approach; exponential smoothing; safety inventory levels. 
 
 

Resumo 
 
A literatura de operações permanece sem concluir sobre a abordagem mais adequada de previsão de 
vendas (Top-Down ou Bottom-Up) para o dimensionamento de estoques de segurança. Nesse manuscrito 
são apresentados os resultados analíticos para a variância dos erros de previsão no tempo de resposta 
com amortecimento exponencial nessas duas abordagens. Os resultados apontam dois impactos 
complementares na variância do erro de previsão, e conseqüentemente, nos níveis de estoque de 
segurança: Efeito Portifólio e Efeito Ancoragem. O primeiro depende do coeficiente de correlação da 
demanda entre os produtos e o segundo, da constante de amortecimento e da participação das vendas do 
produto nas vendas totais. É analisado sob quais condições essas variáveis favoreceriam uma 
abordagem de previsão em detrimento da outra. 
 
Palavras-chave:  abordagem de previsão; amortecimento exponencial; níveis de estoque de 
segurança. 
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1. Introduction 

The objective of this paper is to analyse the behaviour of the variance of the sales forecasting 
error under the Top-Down and Bottom-Up approaches in order to identify under which 
conditions one approach would be preferred instead of the other in terms of lower safety 
inventory levels. 

In previous studies, analyses were carried out using the Simple Exponential Smoothing 
method on actual sales data (see for example Kahn, 1998 and Lapide, 1998). They led to 
different conclusions about the adequacy of these approaches for different levels of the 
correlation coefficient, the sales variance and the share of a given product in total or 
aggregate sales. In this research, the expressions for the variance of the forecasting errors 
during the lead-time, assumed to be discrete, were analytically demonstrated and the two 
main effects that may favour the Top-Down approach to the detriment of the Bottom-Up 
were identified: the Portfolio Effect and the Anchoring Effect. Differently from previous 
researches, it was considered that sales forecasts were frozen (had the same value) during the 
lead-time. 

The results indicate that a product with small participation in total sales and negatively 
correlated with the aggregate sales of the remaining products (or individual items) tends to 
present lower forecasting error variance under the Top-Down approach due to the 
compensation of part of its variance with the aggregate variance of the remaining items. Even 
when dealing with higher participation in total sales and correlation coefficient, the Top-
Down approach may present better results than Bottom-Up if the product sales variance is 
sufficiently greater than the variance of the aggregate sales of the remaining products, given 
that a less than proportional portion of the total variance is added to the product variance. 

The remainder of the paper is structured as follows: sections 2 and 3 are dedicated to the 
review of the Top-Down and Bottom-Up approaches and to the Simple Exponential 
Smoothing concepts, respectively. In section 4, the expressions for the variance of the sales 
forecasting errors during the lead-time are analytically demonstrated for these two 
approaches and the impacts of the forecasting errors on safety inventories are discussed. 
Readers should recall that sales forecasts were considered to be frozen during the lead-time. 
Finally, in section 5, the adequacy of those approaches to different classes of products or 
items is argued. 

 
2. Top-Down and Bottom-Up Approaches 

There exists great consensus amongst authors about the conceptualisation and 
operationalisation of the Top-Down (TD) and Bottom-Up (BU) sales forecasting approaches. 
For example, according to Lapide (1998), under the TD approach, sales forecasting is done 
first by aggregating all individual items, and then by disaggregating these aggregate data into 
individual items again, generally based on the historical percentage of the item within the 
total group. In this sense, Schwarzkopf et al. (1988) point out that in the TD approach is 
primarily forecasted the aggregate total and the subsequent disaggregation is done based on 
the historical proportions of each individual item. As regards the BU approach, each one of 
the individual items is forecasted separately and then all the forecasts are summed up in case 
an aggregate forecast for the group is deemed necessary (Lapide, 1998). In other words, 
under the BU approach, the forecaster prepares first the forecasts for each individual item, 
aggregating them thereafter under the interest level of the analysis (Jain, 1995). 
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Several authors have tried to relate the adequacy of the TD and BU approaches for different 
characteristics of the sales historical data such as, for example: the correlation coefficient 
between the sales of the individual item being studied and the aggregate sales of the 
remaining items ( ρ ), the share or proportion of the item being studied in the aggregate total 
sales ( f ), and the ratio between the sales variance of the individual item being studied and 

the aggregate sales of the remaining items ( 2k ). An implicit premise in some of the 
researched papers is related to the Portfolio Effect, a concept initially defined by Zinn et al. 
(1989) to evaluate the inventory centralization impact upon the total sales variance. 

According to the Portfolio Effect, inventory centralization minimizes the total variance 
whenever the correlation coefficient of sales between the markets is – 1 and the ratio 
between the sales variance of markets is 1. Generally speaking, the rationale behind the 
variance reduction, according to the authors, is the compensation of the sales fluctuations 
between two markets: when the sales from one market go up, the sales for the other market 
go down by the same amount. 

One example of that is Kahn’s (1998) paper, according to which in the TD approach, the 
peaks and valleys inherent to each item are cancelled off by the aggregation. The negative 
correlation among the individual items would reduce the aggregate sales variance. Also 
corroborating the main conclusions of the Portfolio Effect, Schwarzkopf et al. (1988) point 
out that estimates based on aggregate data are more precise than those based on individual 
forecasts when the individual items present independent sales patterns (null correlation). 

However, Lapide (1998) suggests that, as a rule of thumb, the TD approach makes sense if 
and only if all the individual items sales are growing, decreasing or remaining stable, thus 
characterizing a positive correlation amongst the sales of different items. The author 
continues on ascertaining that a family of products frequently comprises items that 
potentially cannibalise each other, as in the case of a family with new and old products. For 
those items, the sales pattern is very different, given that some items increase to detriment of 
the others (negative correlation), which would render the BU approach preferable. 

Gordon et al. (1998) and Gelly (1999) discourse on the adequacy of the TD and BU 
approaches for other characteristics of the sales historical data. More specifically, these 
authors studied more than 15,000 aggregate and disaggregate historical data series generating 
forecasts with Triple Exponential Smoothing. The BU approach yielded more precise 
forecasts in 75% of the series, and a greater accuracy was verified within individual items 
with strong positive correlation and whenever they represented a large proportion of the 
aggregate total sales. On the other hand, when the data were negatively correlated, the TD 
approach showed itself more accurate regardless of the item’s participation in the aggregate 
total sales. 

Finally, in the case study presented by Gelly (1999), the TD approach revealed itself to be 
more adequate for individual items that present more a predictable sales pattern throughout 
time, as for example, with a small sales coefficient of variation ( CV ). That small CV  could 
result from a large participation of the individual item in the aggregate total sales. It could 
also result from a small ratio between the sales variance of the individual item and the 
variance of the aggregate sales of the remaining items. The characteristics that favour the TD 
and BU approaches are summarized in Table 1. 
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Table 1 – Characteristics that favour the TD and BU approaches. 

Author Top-Down Bottom-Up 

Kahn (1998) Negative correlation ( ρ )  

Lapide (1998) Positive correlation Negative correlation 

Gelly (1999) 

Small coefficient of variation ( CV ) 

High participation in total sales ( f ) 

Low ratio between the sales variance 
of the individual item and the 
aggregate sales variance of the 

remaining items ( k ) 

 

Gordon et al. (1998) 
Negative correlation 

Any participation in total sales 

Positive correlation 

High participation in total sales 

Schwarzkopf et al. 
(1988) Null correlation  

 

3. Simple Exponential Smoothing 

According to Gijbels et al. (1999), the Simple Exponential Smoothing (SES) is the most 
commonly used model in sales forecasting. Its main advantages are related to the fact that it 
is a non-parametric model based on a simple algebraic formula that quickly enables the 
updating of the local level estimation of the sales data. 

In the last twenty years, some researches were carried out to better comprehend and describe 
the SES and its extensions from a statistical perspective. For example, Chatfield et al. (2001) 
compare a variety of potential Exponential Smoothing models derived from autoregressive 
moving averages, structural models and non-linear dynamical spaces and conclude why the 
SES and its extensions are robust even despite changes in the variance of the historical data. 
Blackburn et al. (1995) show that the SES may introduce spurious autocorrelations in series 
that the trend component may have been removed and that these autocorrelations would 
depend upon the average age of the data and of the smoothing constant value. Finally, 
Gijbels et al. (1999) compare the SES with the Kernel Regression enabling a better 
understanding of the equivalence and best adequacy between both approaches. 

The SES and its extensions were developed in the late 1950s by Brown, Winters, and Holt, 
amongst other authors (Chatfield et al., 2001). Among its main premises and limitations, it is 
worth highlighting that in the SES, eventual growth or decrease trends, seasonal fluctuations 
and cyclical variations are not considered. For example, the sales forecast for a random 
variable X  with SES is as follows: 

1 1(1 ) ,t t tF X Fα α− −= ⋅ + − ⋅  

where tF  is the forecast of X  for period t , 1tX −  is the actual sales of X  in period 1t − , 

1tF −  is the forecast of X  in period 1t − , and α  is the smoothing constant, which ranges 
from 0 and 1. 
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4. Forecasting Errors During Lead-Time 

This research predominantly departs from the sample errors that are intrinsic to sales and 
inventory corporate planning systems. When all the historical data are available, estimates 
for the mean and standard deviation may be determined with the desired significance level. 
Inferences about the probability distribution of the sales random variable may also be done. 
However, many corporate systems do not use or have all the historical data, which generates 
uncertainty about if the forecasting errors result from random noises or from a change in one 
or more of the parameters values in the underlying demand model. Unfortunately, a priori, 
it is not possible to clarify those questions regarding the actual sales level; they can only be 
solved a posteriori (Silver et al., 2002). 

Many forecasting models do not use all available historical data. The moving averages use 
only the last n data and the SES attributes declining weights upon past data (Silver & 
Peterson 1985). In these circumstances, according to the authors, the best average sales 
estimate is simply the sales forecast for the next period. As regards estimating the sales 
variance, the variance of the forecasting error should be used. 

According to Silver & Peterson (1985) and Greene (1997), the forecasting error variance and 
the sales variance are not equal. According to these authors, the best adequacy of the 
forecasting error variance is related to the use of forecasting for sales estimation. For 
instance, the safety inventory level must be determined to protect against variations in the 
sales forecasting errors. In general, the forecasting error variance tends to be greater than the 
sales variance (Silver et al., 2002). This is due to the additional sampling error introduced by 
the forecasting models when using only part of the available historical data. 

According to Harrison (1967) and Johnson & Harrison (1986), a more complex situation that 
must be considered occurs when the sales forecasting is considered during the replenishment 
lead-time ( LT ), assumed here to be discrete. In this case, the forecasting error variance 
during the lead-time must be estimated. According to Silver & Peterson (1985), the exact 
relation between the forecasting error variance and the variance of the forecasting error 
during the lead-time depends upon complicated relations between the sales pattern, the 
forecasting review procedures and the value of n used in the moving average, or the value of 
the smoothing constant used in the SES (see Harrison, 1967). According to the authors, one 
of the reasons for such complexity is that the recurrence procedure in the SES introduces a 
certain degree of dependence between the forecast errors at different periods of time 
separated by the lead-time. More recently, Snyder et al. (2004) established formulae for 
calculating means and variances of sales forecasts during lead-time considering several 
exponential smoothing models. Like Johnston & Harrison (1986), these authors considered 
that sales forecasts could vary during the lead-time. 

Using frozen sales forecasts during the lead-time is a very common managerial practice, 
since it tends to be worthless to review sales forecasts values when replenishment orders are 
still being processed (Greene, 1997). Unless it is possible for the decision-makers to change 
previously placed orders during the replenishment lead-time, there is little value in reviewing 
sales forecasts during time interval between the placement and the receipt of an order. This 
research departs from previous studies for considering the sales forecasts frozen during the 
lead-time. In other words, for the purpose of calculating forecast errors mean and variances, 
sales forecasts are supposed not to change during the lead-time. 
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Let the following variables be introduced (source: the authors): 

tA  product A sales at time period t, 

tB  aggregate sales of the remaining products (excluding tA ) at t, 

tT  total aggregate sales ( t tA B+ ) at t, 

Aµ  expected value of tA  (assumed to be constant over t), 

Bµ  expected value of tB  (assumed to be constant over t), 

Tµ  expected value of tT  (assumed to be constant over t), 

Aσ  standard deviation of tA  (assumed to be constant over t), 
( )V A  variance of tA , 

Bσ  standard deviation of tB  (assumed to be constant over t), 
( )V B  variance of tB , 

ABρ  correlation coefficient between tA  and tB  also assumed constant, 

Tσ  standard deviation of tT  ( 2 2 2A B AB A Bσ σ ρ σ σ+ + ⋅ ⋅ ⋅ ), 
( )V T  variance of tT , 

k  ratio between the standard deviations, /A Bσ σ , 
f  historical share of product A  sales, /A Tµ µ , 

,A tF  sales forecast of tA , 

,T tF  sales forecast of tT , 
LT  replenishment lead-time assumed here to be discrete, 

LTµ  expected value of LT , 

LTσ  standard deviation of LT , 
( )V LT  variance of LT , 

ALT  aggregated A sales during the lead-time, 

ALTF  aggregated sales forecast of A during the lead-time, 

ALTE  sales forecast error of A during the lead-time, A A ALTE LT LTF= − . 

In the remaining text, as a rule, ( )E ⋅  denotes the expected value and ( )V ⋅  denotes the 
variance of a given random variable. Also, whenever a variable is constant over time, the 
index t is omitted. 

 

4.1 Bottom-Up Approach 

In this case, the results are derived for an individual item (A). From the above definitions, it 
follows that: 

(a) aggregated A sales during the lead-time: 

,A t
LT

LT A=∑  (1) 



Wanke & Saliby  –  Top-down or bottom-up forecasting? 

Pesquisa Operacional, v.27, n.3, p.591-605, Setembro a Dezembro de 2007 597 

(b) frozen sales forecast of A during lead-time: 

, ,A A tLTF F LT= ⋅  (2) 

(c) sales forecast error of A during the lead-time: 

.A A ALTE LT LTF= −  (3) 

Substituting (1) and (2) into (3), we have: 

, .A t A t
LT

LTE A F LT= − ⋅∑  (4) 

Taking the expected values in equation (4), we have: 

( ) ( ) ( ) ( ).A AE LTE E A E LT E F LT= ⋅ − ⋅  

But ( ) ( )AE A E F= , as shown in Appendix 1. So: 

( ) ( ) ( ) ( ).A A AE LTE E F E LT E F LT= ⋅ − ⋅  

Supposing that AF  and LT  are not correlated, we have: 

( ) 0.AE LTE =  

Taking the variance of ALTE  in equation (4) and supposing that A  and LT  are not 
correlated, just as A  and AF , but that ALT  and ALTF  present correlation given by 

LTA LTFAρ ⋅ , we have: 

( ) ( ) ( ) 2 ( ) ( ).A t A LTA FTLA t A
LT LT

V LTE V A V F LT - ρ V A V F LT⋅= + ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑  (5) 

But LTA LTFAρ ⋅  is equal to: 

( ) ( ) ( )
.

( ) ( )

t A t A
LT LT

LTA FTLA
t A

LT

E A F LT E A E F LT

V A V F LT
ρ ⋅

⋅ ⋅ − ⋅ ⋅
=

⋅ ⋅

∑ ∑

∑
 

That is: 
2( ) ( ) .

( ) ( )
LTA FTLA

t A
LT

E A V LT
V A V F LT

ρ ⋅
⋅

=
⋅ ⋅∑

 (6) 

Substituting (6) into (5), we have: 
2( ) ( ) ( ) 2 ( ) ( ).A t A

LT
V LTE V A V F LT E A V LT= + ⋅ − ⋅ ⋅∑  (7) 

But, as indicated in Appendix 2: 
2( ) ( ) ( ) ( ) ( ).t

LT
V A E A V LT E LT V A= ⋅ + ⋅∑  (8) 
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And according to what is indicated in Appendix 3: 

2 2( ) ( ) ( ) ( ) ( ) ( ) ( ).A A A AV F LT E F V LT E LT V F V F V LT⋅ = ⋅ + ⋅ + ⋅  (9) 

Thus, substituting (8) and (9) into (7) and observing that ( ) ( )AE F E A= , we have: 

2( ) ( ) ( ) ( ) ( ) ( ) ( ).A A AV LTE E LT V A E LT V F V F V LT= ⋅ + ⋅ + ⋅  (10) 

Finally, as shown in Appendix 4: 

( )( ) .
2A
V AV F α
α

⋅
=

−
 (11) 

Substituting (11) into (10), we have: 

{ }2( ) ( ) ( ) ( ) ( ) .
2AV LTE V A E LT E LT V LTα

α
 = ⋅ + ⋅ + −

 

That is: 

2 2 2( ) ( ) .
2A A LT LT LTV LTE ασ µ µ σ

α
 = ⋅ + ⋅ + − 

 (12) 

This result is identical to that obtained by Eppen & Martin (1988) for the variance of the total 
forecast error during the lead-time, considering sales to be essentially a constant process and 
the use of simple exponential smoothing (see their equations (18) and (19)). 

 

4.2 Top-Down Approach 

In the BU approach the variance of the forecasting error during the lead-time is given by 
equation (12). Assuming that f is nearly constant, it must be taken into consideration that the 
forecasting of tA  in the TD approach depends upon the forecasting of tT , and that is 
given by: 

, , .A t T tF f F= ⋅  (13) 

As such, taking the variance of ,A tF  in equation (13), we have: 

2( ) ( ).A TV F f V F= ⋅  (14) 

In a similar way to equation (11) and supposing the same smoothing constant: 

( )( ) .
2T

V TV F α
α

⋅
=

−
 (15) 

Substituting (15) into (14), we have: 
2 ( )( ) .

2A
f V TV F α

α
⋅ ⋅

=
−

 (16) 
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Thus, expanding the term ( )V T  in (16), we have: 

2 ( ) ( ) 2 ( ) ( )
( ) .

2
AB

A

f V A V B V A V B
V F

α ρ

α

 ⋅ ⋅ + + ⋅ ⋅ ⋅ =
−

 (17) 

Substituting (17) into (10) and also considering that /A Bk σ σ= , we have: 

2
2

2
21( ) ( ) ( ) 1 ( ) ( ) .

2
AB

A
fV LTE V A E LT E LT V LT

kk
ρα

α
 ⋅⋅    = ⋅ + ⋅ + + ⋅ +   −   

 

That is: 

2
2 2 2

2
21( ) 1 ( )

2
AB

A A LT LT LT
fV LTE

kk
ρασ µ µ σ

α
 ⋅⋅  = ⋅ + ⋅ + + ⋅ +  −   

 (18) 

As a validation procedure, spreadsheet Monte-Carlo simulations were performed to confirm 
the results of equations (6), (8), (9), (12) and (18). Long-range time series (more than 
1,000 observations) were randomly generated and the forecasts were summed up during 
the lead-time, which was also randomly generated. Specifically, A and B sales were 
generated through correlated normal bivariate distributions and lead-times were supposed to 
be discrete and uniformly distributed. These distributions were chosen for the sake of 
simplicity, since the abovementioned results are non-parametric. Both forecasting 
approaches were applied when generating these data. The average error after 60 replications 
(randomly generated runs) was about 1% of the theoretical results given by these formulae. 
It is worth emphasizing that equations (12) and (18) are the key results for the analysis that 
follows. 

Thus, equalling (12) and (18) and then isolating k  on the left side of the equation in order to 
express it in terms of f  and ABρ  (since the remainder terms are cancelled off during this 
operation) one gets the critical value of k  ( criticalk ). It equals the variances of the forecasting 
error during the lead-time in the TD and BU approaches: 

2 2

2

( 1) 1
.

1
AB AB

critical

f f f
k

f

ρ ρ ⋅ ⋅ + ⋅ − +
 =

−
 (19) 

Finally, a closer look into equations (12) and (18) shows that if k  > criticalk , the variance of 
the forecasting error during the lead-time is smaller under the TD approach. 

 

4.3 Discussion of Results 

According to the results, the smaller the values of ABρ  and ( )E f , the greater the chances 
that the TD approach will minimize the forecasting error variance, and consequently, the 
safety inventory levels. The Portfolio Effect explains part of the result: an individual item 
negatively correlated with the aggregate sales of the remaining items presents lower 
forecasting error variance under the TD approach due to the compensation of part of its 
variance with the aggregate variance of the remaining items. 



Wanke & Saliby  –  Top-down or bottom-up forecasting? 

600 Pesquisa Operacional, v.27, n.3, p.591-605, Setembro a Dezembro de 2007 

Even for higher values of ABρ  and ( )E f , the TD approach may present better results when 
compared to the BU if the value of k  is sufficiently high, that is, if Aσ  is sufficiently higher 
than Bσ . That result is fully explained by the Anchoring Effect (given that the Portfolio 
Effect is not present): a less than proportional portion of the total variance is added to the 
variance of product A. In Figure 1, the Portfolio Effect and the Anchoring Effect are 
illustrated with numerical examples for the particular case where 1LTµ =  and 0LTσ =  
(equations (12) and (18)). 

 
Portfolio and Anchoring Effects Combined:
Let σA = 10, σB = 20, E( f) = 0.30, ρAB = -0.40, and α = 0.10.

BU Variance = 2 · σA
2 / (2 - α) = 2 · 100/(2 – 0.10) = 105.26.

TD Variance = σA
2 + [α · E( f)2/ (2 - α)] · σT

2,
TD Variance = 100 + [0.10 · 0.302 / (2 – 0.10)] · [102 + 202 + 2 · 10 · 20 · (-0.40)],

TD Variance = 100 + 1.61 = 101.61.

kcritical = 0.28, that is, choose the TD approach whenever k > kcritical (k = 0.5). 

The total variance (340) is smaller than the 
sum of the variances of A and B (500) due 
to the Portfolio Effect generated by the 
negative correlation. 

The Anchoring Effect supplements the Portfolio Effect, 
incorporating into the variance of A a portion of the total 
variance less than proportional to that of the Portfolio 
Effect [α · E( f)2 / (2 - α)].

Anchoring Effect Only :
Let σA = 10, σB = 2, E( f) = 0.80, ρAB = +0.40, and α = 0.10.

BU Variance = 2 · σA
2 / (2 - α) = 2 · 100/(2 – 0.10) = 105.26.

TD Variance = σA
2 + [α · E( f)2 / (2 - α) ] · σT

2,
TD Variance = 100 + [0.10 · 0.802 / (2 – 0.10)] · [102 + 22 + 2 · 10 · 2 · (+0.40)],

TD Variance = 100 + 4.04 = 104.04.
kcritical = 2.22 (k = 5).

The total variance (120) is greater than the sum of 
the variances of A and B (104) due to their
positive correlation. There is no Portfolio Effect.

A less than proportional portion of the total variance is 
incorporated into the variance of A [α · E( f)2 / (2 - α)], 
due to the Anchoring Effect.

Portfolio and Anchoring Effects Combined:
Let σA = 10, σB = 20, E( f) = 0.30, ρAB = -0.40, and α = 0.10.

BU Variance = 2 · σA
2 / (2 - α) = 2 · 100/(2 – 0.10) = 105.26.

TD Variance = σA
2 + [α · E( f)2/ (2 - α)] · σT

2,
TD Variance = 100 + [0.10 · 0.302 / (2 – 0.10)] · [102 + 202 + 2 · 10 · 20 · (-0.40)],

TD Variance = 100 + 1.61 = 101.61.

kcritical = 0.28, that is, choose the TD approach whenever k > kcritical (k = 0.5). 

The total variance (340) is smaller than the 
sum of the variances of A and B (500) due 
to the Portfolio Effect generated by the 
negative correlation. 

The Anchoring Effect supplements the Portfolio Effect, 
incorporating into the variance of A a portion of the total 
variance less than proportional to that of the Portfolio 
Effect [α · E( f)2 / (2 - α)].

Anchoring Effect Only :
Let σA = 10, σB = 2, E( f) = 0.80, ρAB = +0.40, and α = 0.10.

BU Variance = 2 · σA
2 / (2 - α) = 2 · 100/(2 – 0.10) = 105.26.

TD Variance = σA
2 + [α · E( f)2 / (2 - α) ] · σT

2,
TD Variance = 100 + [0.10 · 0.802 / (2 – 0.10)] · [102 + 22 + 2 · 10 · 2 · (+0.40)],

TD Variance = 100 + 4.04 = 104.04.
kcritical = 2.22 (k = 5).

The total variance (120) is greater than the sum of 
the variances of A and B (104) due to their
positive correlation. There is no Portfolio Effect.

A less than proportional portion of the total variance is 
incorporated into the variance of A [α · E( f)2 / (2 - α)], 
due to the Anchoring Effect.

 
Figure 1 – Portfolio and anchoring effects. 

 
In Figure 2, the results of equation (19) are generalized and the indifference lines between 
the TD and BU approaches for different values of ( )E f , k  and ABρ  are presented. 
Essentially, if k  > criticalk  the TD approach must be chosen; otherwise, the BU approach. In 
other words, given a pair ( ( )E f , ABρ ), if the actual value of k is greater than the respective 
value of criticalk  linked to that pair, the TD approach must be chosen in the Simple 
Exponential Smoothing instead of the BU approach. 
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Figure 2 – Indifference lines and recommended choice between TD and BU approaches. 

 
One notices from Figure 2 that, the smaller the values of ABρ  and ( )E f  get, the greater are 
the chances (area of the graph above the indifference lines) of the TD approach to minimize 
the forecasting error variance with SES. The fact that can explain that result is the conjoint 
presence of the Portfolio and Anchoring Effects. However, even for higher values of ( )E f  
and ABρ , the TD approach may present lower forecasting error variance if the value of k  is 

sufficiently high, due to the Anchoring Effect: 2( ) /(2 )E fα α⋅ − . 

 

5. Conclusions and Implications 

In this paper, the impacts of the Top-Down and Bottom-Up approaches upon the variance 
of the forecasting errors during the lead-time, and consequently, on the safety inventory 
levels, were analytically shown. In both approaches, greater values of the smoothing 
constant and of the lead-time (expected value and variance) increase the error variance by 
the same amount. 

The Portfolio and Anchoring Effects explain why the Top-Down approach may minimize the 
variance of the forecasting errors during the lead-time. Under the Portfolio Effect, present 
when the correlation is negative, the total variance is lower due to the offsetting of the 
individual item variance with the variance of the remaining individual items. Under the 
Anchoring Effect, which is seen even when the correlation is positive, the term 
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2( ) /(2 )E fα α⋅ −  implicates the incorporation of a less than proportional portion of the total 
variance into the variance of the individual item given that ( )E f  and α  are lower than 1. 

When the analytical solutions for the variance of the forecasting errors during the lead-time 
under the Top-Down and Bottom-Up approaches are made equal, the terms α , LTµ , and 

LTσ  are cancelled off. The choice of the lower variance approach depends upon the 
comparison of the value of k  with criticalk  given by equation (19). That is, the lead-time and 
the smoothing constant do not specifically influence the determination of the more adequate 
forecasting approach. 

Practitioners may also benefit from the results since the flexibility often sought for the sales 
forecasting and the inventory management process is warranted. Primarily, the results 
presented enable one to determine the approach that leads to the lower variance of the 
forecasting errors during the lead-time with a relatively small computational effort. 
Secondly, the presented results may be used to segment the sales forecasting process with the 
purpose of determining safety inventory levels, as shown in Table 2. 

For example, C items typically present lower participation in total sales and greater 
coefficient of variation (Zinn & Croxton 2005). Given that ( )E f  value is small, the 
Anchoring Effect is as relevant as the Portfolio Effect even when the correlation is positive, 
according to what is indicated by the practically straight lines for ( )E f  values up to 0.25 in 
Figure 2. In those circumstances it is very likely that the value of k  is greater than the value 
of criticalk  and the TD approach would lead to lower variance of the forecasting errors during 
the lead-time. 

On the other hand, since A items typically present greater participation in total sales and 
lower coefficient of variation, they must be individually forecasted (BU approach) mainly if 
they are positively correlated with the aggregate sales of the remaining items. When the 
correlation is negative, the TD approach may be more adequate if the value of k  is 
sufficiently high (see Figure 2). 

 
Table 2 – Forecasting approach per product class. 

Negative ABρ  Positive ABρ  
Main 

Characteristics Portfolio and Anchoring 
Effects Combined Anchoring Effect Only 

A Items 
High f  

Low k  
Bottom-Up (if criticalk k< )* 

C Items 
Low f  

High k  
Top-Down (if criticalk k> ) 

* When ABρ  tends to -1, criticalk  tends to be smaller than k, therefore favouring the 
Top-Down approach. 
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Finally, suggestions for future research involve the behaviour of the forecasting error 
variance under these two approaches when the standard deviation of f is not assumed to be 
zero. Some pertinent issues are therefore raised. For example, would this assumption 
favour a given forecasting approach? Specifically, under which conditions of α , ABρ , and 
k  is a good approximation to assume f  constant? What are the biases incurred in that 
approximation? What are the impacts of the covariance between T  and f  on both 
forecasting approaches? What are the implications for the sales forecasting and for the 
determination of safety inventory levels? 
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Appendix 1 – Establishing ( )AE F  

Let the forecast of A with the SES be given by (A 1): 

, 1 , 1(1 ) .A t t A tF A Fα α− −= ⋅ + − ⋅  (A 1) 

Taking the expected values, assumed to be constant over time, we have: 

( ) ( ) (1 ) ( ),A AE F E A E Fα α= ⋅ + − ⋅  
( ) ( ).AE F E A=  

 

Appendix 2 – Establishing t
LT

V( A )∑  

The variance of the random sum of product A sales during the discrete lead-time was 
determined with factorial moment generating function (Zwillinger & Kokosa 2000), thus 
corroborating the results previously presented by Mentzer & Krishnan (1988). 

( )tΦ  represents the factorial moment generating function of the random sum of A during the 
lead-time. Its variance is obtained by evaluating the following expression for 1t = : 

2´́ ( ) (́ ) ´́ ( ) ,t
LT

V( A ) t t t= Φ +Φ −Φ∑  (B 1) 

where (́ )tΦ  and ´́ ( )tΦ  are the first and second derivatives of ( )tΦ , respectively. Let AΦ (t)  
and ( )LTP t  be the factorial moment generating functions of the random variables A  
(continuous) and LT  (discrete), respectively and let t  be a supporting variable: 
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( ) ( ) ,A
AΦ t t f A dA= ⋅ ⋅∫  (B 2) 

( ) ( ).LT
LT

LT
P t t p LT= ⋅∑  (B 3) 

( )tΦ  is obtained by substituting (B 2) into (B 3): 

( )( ) ( ) ( ).
LTA

LT
t t f A dA p LTΦ = ⋅ ⋅ ⋅∑ ∫  (B 4) 

Finally, differentiating (B 4) with respect to t  and substituting the results into (B 1), 
we have: 

2( ) ( ) ( ) ( ).t
LT

V( A ) E A V LT E LT V A= ⋅ + ⋅∑  

 

Appendix 3 – Establishing ( )AV F LT⋅  

The variance of the product of the random variables ,A tF  and LT  yields identical result to 
what was presented by Brown (1982). 

The result 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )A A A AV F LT E F V LT E LT V F V F V LT⋅ = ⋅ + ⋅ + ⋅  is equivalent to 
calculating the variance of the frozen sales forecasting during the lead-time from equation 
(C 1). 

2 2 2( ) ( ) ( ) .A A AV F LT E F LT E F LT⋅ = ⋅ − ⋅  (C 1) 

 

Appendix 4: Establishing ( )AV F  

Let the forecast of At with SES be given by (D 1): 

, 1 , 1(1 ) .A t t A tF A Fα α− −= ⋅ + − ⋅  (D 1) 

Let (D 2) be the expansion of the recursive terms in (D 1): 
2 3

, 1 2 3 4(1 ) (1 ) (1 )A t t t t tF A A A Aα α α α α α α− − − −= ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ +…  (D 2) 

Taking the variances of (D 2), we have: 

{ }2 2 4 6( ) 1 (1 ) (1 ) (1 ) ( ).AV F V Aα α α α = ⋅ + − + − + − + ⋅ …  (D 3) 

Finally, solving the sum to infinity of the geometric progression with ratio 1 α−  in (D 3), 
we have: 

( )( ) .
2A
V AV F α
α

⋅
=

−
 

 


