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Abstract 
 
In this work it is proposed a model for the assessment of availability measure of fault tolerant systems 
based on the integration of continuous time semi-Markov processes and Bayesian belief networks. This 
integration results in a hybrid stochastic model that is able to represent the dynamic characteristics of a 
system as well as to deal with cause-effect relationships among external factors such as environmental 
and operational conditions. The hybrid model also allows for uncertainty propagation on the system 
availability. It is also proposed a numerical procedure for the solution of the state probability equations 
of semi-Markov processes described in terms of transition rates. The numerical procedure is based on 
the application of Laplace transforms that are inverted by the Gauss quadrature method known as 
Gauss Legendre. The hybrid model and numerical procedure are illustrated by means of an example of 
application in the context of fault tolerant systems. 
 
Keywords:  semi-Markov processes; Bayesian belief networks; Laplace transforms; 
availability measure; fault tolerant systems. 
 
 

Resumo 
 
Neste trabalho, é proposto um modelo baseado na integração entre processos semi-Markovianos e redes 
Bayesianas para avaliação da disponibilidade de sistemas tolerantes à falha. Esta integração resulta em um 
modelo estocástico híbrido o qual é capaz de representar as características dinâmicas de um sistema assim 
como tratar as relações de causa e efeito entre fatores externos tais como condições ambientais e 
operacionais. Além disso, o modelo híbrido permite avaliar a propagação de incerteza sobre a 
disponibilidade do sistema. É também proposto um procedimento numérico para a solução das equações 
de probabilidade de estado de processos semi-Markovianos descritos por taxas de transição. Tal 
procedimento numérico é baseado na aplicação de transformadas de Laplace que são invertidas pelo 
método de quadratura Gaussiana conhecido como Gauss Legendre. O modelo híbrido e procedimento 
numérico são ilustrados por meio de um exemplo de aplicação no contexto de sistemas tolerantes à falha. 
 
Palavras-chave:  processos semi-Markovianos; redes Bayesianas; transformadas de 
Laplace; disponibilidade; sistemas tolerantes à falha. 
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1. Introduction 

Most probabilistic models for system availability, reliability and maintainability assessment 
assume that the failure of one component immediately causes system failure. In some 
systems, however, the failure of a component leads to a system failure only when repair time 
has exceeded some time T, known as tolerable downtime (TDT). According to Vaurio 
(1997), systems that have this feature are known as fault tolerant systems. 

This concept is usually employed in the context of software-based systems reliability, for 
example, in Madan et al. (2004) who use semi-Markov processes to model a possible 
security intrusion and corresponding response of the fault tolerant software system to this 
event. Other related works include Littlewood et al. (2002), Levitin (2004), Levitin (2005) 
and Levitin (2006). 

In the context of fault tolerant safety systems, some reliability assessment models have been 
developed. For example, Camarinopoulos & Obrowski (1981) propose a model for reliability 
quantification that takes into account the frequency as well as the duration of failures. In this 
work, however, the TDT is considered constant, i.e., it does not have a stochastic behavior. 

Becker et al. (1994) and Chandra & Kumar (1997) use Markov processes (MP) in order to 
model safety systems with stochastic TDTs. A Markov process is defined as a probabilistic 
model that satisfies the memoryless Markov property. According to this assumption, the 
future behavior of a system depends only on its present state and therefore is independent on 
the sojourn time in this state. According to Ouhbi & Limnios (1997), however, such an 
assumption is not always appropriate, since it is required to assume that sojourn times are 
exponentially distributed. 

Becker et al. (2000) model the reliability of fault tolerant systems through semi-Markov 
processes (SMP). SMPs are extension of Markov processes and as such they provide greater 
flexibility in terms of modeling of complex dynamic systems. According to Howard (2007), 
SMPs are not strictly Markovian anymore as the Markov property is not required in all times. 
However, because they share enough characteristics in common with these processes, SMPs 
receive that denomination. 

Basically, an SMP is used in order to model systems where the future behavior depends on 
the present state as well as on the sojourn time in this state which, in turn, can follow any 
probability distribution not necessarily exponential. In this case, SMPs are called 
homogeneous semi-Markov processes (HSMP). Moreover, when non-homogeneous semi-
Markov processes (NHSMP) are considered, it is also possible to model a system that might 
be under improvement or aging processes. In this type of SMP, the future behavior depends 
on two types of time variables: sojourn time and process time, being the latter also known as 
calendar or global time. 
A common characteristic shared by the aforementioned availability assessment models is that 
the future behavior of a system is conditioned only on time variables, either process or 
sojourn times or both. In some situations, however, other factors not necessarily time can 
influence the system behavior. Examples of such external factors include environmental 
variables (e.g., temperature, humidity), operational variables (e.g., hydrate and H2S 
concentration in oil flow), and physiological (e.g., fatigue) and/or psychological conditions 
(e.g., workload, stress). 
This paper aims to develop an availability assessment model for repairable fault tolerant 
safety systems with stochastic TDT. Furthermore, system’s future behavior might be 
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influenced by sojourn time variable as well as by external factors. This is accomplished by 
means of a hybrid model based on continuous time semi-Markov processes and Bayesian 
belief networks (BBNs). As it shall be discussed in the upcoming sections, the proposed 
hybrid model makes it possible, via BBNs, to explicitly model the cause-effect relationships 
among the external factors and gauge their impact on the system availability measure. 

The semi-Markov portion of the hybrid model is homogenous in nature and it will be 
developed in terms of transition rates as it is the usual formulation for Markovian processes 
in the context of availability assessment (see Becker et al. (2000)). Since the resulting hybrid 
model is analytically intractable, both computational and numerical implementations are 
relevant for a successful development and application of the hybrid model. Therefore, in this 
article it is presented a numerical procedure for solving HSMPs based on Laplace transforms 
and corresponding inversion through the Gaussian quadrature method known as Gauss 
Legendre. 

In the context of reliability engineering, the integration between Markov processes and BBNs 
has been discussed for safety systems by Moura & Droguett (2006) and Barros Jr. (2006). 
The hybrid model discussed in this article can be considered a generalization of the latter 
works in the sense it is built around semi-Markov processes that extend Markovian ones. 

The rest of this paper is organized as follows. Next section provides an overview of BBNs. 
Section 3 briefly details the background theory underpinning semi-Markov processes, and 
shows how to specify SMPs in terms of transition rates for the homogeneous case. Section 4 
presents the proposed numerical procedure to solve the state probability equations of 
HSMPs. The proposed hybrid availability assessment model is discussed in section 5. 
Section 6 presents an example of application of the proposed numerical technique and the 
hybrid model in the context of fault tolerant safety systems. Section 7 concludes the work. 

 
2. Bayesian Belief Networks 

According to Korb & Nicholson (2003), BBNs are graphic models that represent reasoning 
in the domain of uncertainty. Basically, BBN is a directed acyclic graph (DAG) where the 
nodes represent variables and the directed arcs show the cause-effect relations among these, 
Pearl (1988). 

Recently, particularly in the last decade, BBNs have become a popular and useful modeling 
tool for practitioners of reliability engineering. Some recent applications are Langseth & 
Portinale (2007) in which a modeling framework of reliability and its properties are 
discussed, and Droguett & Menezes (2007) who propose a methodology for human 
reliability assessment through BBNs. Other BBN-based reliability applications include 
Mahadevan et al. (2001), Celeux et al. (2006) and Wilson et al. (2007). 

 
2.1 BBN structure 

Basically, a problem can be modeled by BBN when two questions are to be answered: what 
are the cause-effect relations among the variables of the process? What is the strength of 
these relations? 

As an example, assume that one is uncertain about the true value of the mean time to failure 
(MTTF), which is considered to follow an exponential distribution, of a downhole pumping 
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oil system, i.e., one is interested in assessing the uncertainty distribution of MTTF. The BBN 
topology in Figure 1 characterizes how the random variable MTTF of the downhole pumping 
system is influenced by the variables BWSOT: “Percentage of H2O and solids”, PARAF: 
“Level of paraffin”, FILTER: “Classification of the filter installed”, DEPTH_PUMP: “Depth 
of the pump unit”. 

As it can be seen in Figure 1, BBNs are composed of nodes, which represent the variables of 
interest (discrete or continuous), and arcs that characterize the cause-effect relationships 
among these variables. 
 

 
DEPTH
_PUMP

FILTER

PARAF

BWSOT

MTTF

 
Figure 1 – BBN for MTTF of a pumping unit. 

 
The first step in setting up a BBN is the identification of random variables and their nature, 
i.e., whether they are discrete or continuous. Such values must be mutually exclusive. In the 
present work, only discrete variables are considered. Next step is to designate the cause-
effect relations among the relevant variables in order to construct the BBN topology. 

In a BBN, a node is parent of a child node when there is an arc leaving the former in 
direction to the latter. In Figure 1, for instance, the variable “PARAF” is a parent of “BWSOT” 
and “MTTF”. Any node with no parents is a root node, any node without children is a leaf 
node and any node that is neither a root nor leaf is an intermediary node. “DEPTH_PUMP” 
is a root node, “MTTF” is a leaf node and “PARAF” and “BWSOT” are intermediary nodes. 

After the construction of the BBN topology, next step is to determine the strengths of the 
cause-effect relations among the connected variables. This is carried out by specifying a 
conditional probability distribution for each node. For discrete random variables, this 
consists of establishing conditional probabilities tables (CPTs) for each node. These CPTs 
can be generated from either data bases or engineering judgments, as in Langseth & Portinale 
(2007). 

For the sake of simplicity, it is assumed that all variables in the BBN of Figure 1 are 
dichotomic unless MTTF that can assume the following values {100, 200, 1.000, 10.000} 
hours. The CPTs given in Appendix were obtained from a data base according to the 
methodology proposed in Barros Jr. (2006), where level 0 refers to an adequate condition 
and level 1 to an inadequate one. Theses CPTs correspond to the prior distributions. 

In this way, BBN is a graphic representation of a multivariate probability distribution where 
it is possible to represent cause-effect relations among random variables (Langseth & 
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Portinale, 2007). Moreover, BBNs provide flexibility in terms of knowledge updating 
through the Bayes theorem (see Bernardo & Smith (1994) for basic concepts on Bayesian 
inference) as discussed in following section. 

 
2.2 Knowledge updating 

To achieve knowledge updating in a BBN, one needs to compute the values of the joint 
distributions which are given via the chain rule as: 

( )( )1
1

( ) ( ,..., ) |
n

n i i
i

P U P X X P X pa X
=

= =∏ , 

where P(U) is the joint marginal distribution for the variables in the BBN, ( )| ( )i iP X pa X  
are the conditional probabilities of X in relation to its parents and n is the number of variables. 

For the sake of simplicity, consider the dotted subset of the BBN shown in Figure 1. BBNs 
may update probabilistic beliefs as new evidence becomes available. In fact, suppose that the 
level of paraffin is inadequate and call such an event P1. Updating the conditional 
probabilities of the MTTF given this new evidence is as follows: 

0 0 1 1 0 1
0 1 4 4

0 1 1 1
1 1

( , , ) ( , , )
( 100 | )

( , , ) ( , , )i i
i i

P B MTTF P P B MTTF P
P MTTF h P

P B MTTF P P B MTTF P
= =

+
= =

+∑ ∑
, (1) 

where B corresponds to the variable “BWSOT”, and B0 and B1 are adequate and inadequate 
percentage of H20 and solids, respectively. The summations in the denominator of (1) 
correspond to the total probability, and go up to d=4 which is the number of levels of 
variable MTTF. The same procedure may be repeated for the other values MTTFi of MTTF, 
with i=1,…,4. 

 
3. Semi-Markov Processes 

3.1 Applications and terminology 

According to Howard (2007), an SMP can be understood as a probabilistic model in which 
the successive occupation of states is governed by the transition probabilities of a MP, known 
as embedded MP, but the sojourn times in each state is described by a random variable that 
depends on the current state and on the state to which the next transition will be done. 

In an SMP, the Markov property is required only at the transition times between states and, 
therefore, it is not strictly Markovian. Thus, the sojourn time distribution can be arbitrary, 
following any probability density function not necessarily exponential. 

Recent applications and theoretical developments in SMPs have been proposed in the context 
of reliability engineering. Indeed, Perman et al. (1997), for example, apply a recursive 
procedure to approximate the transition probabilities over time and the mean availability of 
an SMP. Closed formulas for such metrics are not available when the probability 
distributions of the sojourn time of a state are non-exponential. Limnios (1997) argues that 
the main advantage of using SMPs is to allow for non-exponential distributions for sojourn 
times and thus generalizing several types of stochastic processes, including the MPs, and 
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proposes an analysis of dependability for SMPs in discrete time by using a method based on 
algebraic calculus. Ouhbi & Limnios (1997) estimate reliability and availability through 
SMPs of a turbo-generator rotor using a set of real data. Ouhbi & Limnios (2002) propose a 
statistical formula for assessing the rate of occurrence of failures (ROCOF) of SMPs. 
Through this result, ROCOFs of the Markov and alternated renewal processes are given as 
special cases. 

Grabski (2003) presents the properties of the reliability function of a component under a 
random load process with failure rate modeled according to an SMP. The reliability 
functions were obtained through application of Laplace-Stieltjes transforms to transition 
probability equations and, by using commercial computational software, the analytical 
solution of the inverse transform were obtained. 

Ouhbi & Limnios (2003) introduce non-parametric estimators for the reliability and 
availability of SMPs by assessing the asymptotical properties of these types of metrics. A 
method to compute confidence intervals for such estimators is proposed and an example of 
application is given for a three state SMP. Limnios & Oprisan (2001) demonstrate some 
results and applications of SMPs in the context of reliability. 

Pievatolo & Valadè (2003) assess the reliability of electrical systems in situations of 
continuous operation. An analytical model is developed which allows for non-exponential 
distributions of failure and repair times. SMPs are used to compute the mean time between 
failures (MTBF) and mean time to repair (MTTR) of a compensator output voltage. 

El-Gohary (2004) presents maximum likelihood and Bayesian estimators for reliability 
parameters of semi-Markovian models. Other recent works that have SMP as main issue are 
Afchain (2004), Chen & Trivedi (2005), Limnios & Ouhbi (2006), Xie et al. (2005), 
Soszynska (2006) and Jenab & Dhillon (2006). 

A common characteristic of the aforementioned works is that defining an SMP requires the 
specification of 2N  probabilities of the embedded MP and 2N  conditional probability 
density functions of the sojourn times in each state given the next state. This is the usual 
definition of SMPs which is presented in most of related literature, for example in Ross 
(1997) and Limnios & Oprisan (2001). 

However, in the context of reliability engineering, transition rates rather than transition 
probabilities are usually employed to define continuous time MPs and, therefore, transition 
rates should be more attractive for defining SMPs. Indeed, Becker et al. (2000) develop the 
mathematical formulation of SMPs described through transition rates. Such transition rates 
are different from those of MPs which are either constant (homogeneous Markov processes) 
or dependent on process time (non-homogeneous Markov processes). In fact, the transition 
rates of an SMP may only depend on sojourn time in a state for the case of a homogeneous 
semi-Markov process, or both sojourn and process times for a non-homogenous semi-
Markov process. In both cases, the transition rates can be used to represent failure and repair 
rates as in MPs. 

As this article focus on HSMPs, the mathematical formulation developed in Becker et al. 
(2000) for this type of SMP defined by transition rates is summarized in next subsection. 
Becker et al. (2000) prove that the definition of an HSMP by transition rates is feasible and 
equivalent to the definition provided by transition probabilities. Thus, the state probabilities 
for HSMP can be obtained through transition rates. 
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3.2 Homogeneous Semi-Markov Processes Described by Transition Rates 

The transition rate λij(t) of an HSMP is defined in Becker et al. (2000) as: 

1 1 1( ) { ( , ) ( ) | ( ) },ij n n n n n nt dt P L L t t dt Z L j Z L i L L tλ − − −= − ∈ + ∩ = = ∩ − >  (2) 

where Ln and Ln-1 are the times of next and last transitions, respectively; Zn: Ω → S, where 
S = {1,…,N} represents the finite state space and N is the number of states. The sojourn time 
is given by the difference Ln – Ln-1. Equation (2) indicates that a transition to state j occurs in 
an infinitesimal time interval after the process has remained in state i for duration t, given 
that no transition leaving this state has occurred. Notice that t corresponds to the sojourn 
time. 

Becker et al. (2000) present the state probabilities ( ) { ( ) | (0) }ij t P Z t j Z iφ = = =  for HSMPs 
through rates λij(t) as: 

( ) ( ) ( ) ( ) ( )
0 0 0

0 exp exp
t t t

j j j rj jt l dl h l dl d
τ

φ φ λ τ λ τ
−⎛ ⎞ ⎛ ⎞

= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ . (3) 

where ( )iλ ⋅  is the transition rate leaving state i  and is given as: 

1
( ) ( )

N

i ik
k

λ λ
=

⋅ = ⋅∑  

and hrj(t)dt = pr{state j visited in (t, t+dt)} is the probability density function (PDF) of the 
expected value of the number of times that state j is visited from any state r in the interval 
[0,t] and is given as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 10 0 0

0 exp exp
t t tN N

rj i i ij ri i ij
i i

h t l dl t h l dl t d
τ

φ λ λ τ λ λ τ τ
−

= =

⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫ ∫ . (4) 

Equation (3) demonstrates that a process can be in state j in time t either if it was initially 
in state j and remained there at least until time t; or if it visited state j at any time [0, ]tτ ∈  
with probability hrj(t) and stayed there for t − τ  time units. Equation (3) is a system of 
convolution integral equations with N unknowns φj(t) that can be solved independently. 

According to (4), state j can be reached either if HSMP was initially in state i and remains 
there until time t, when a transition to state j occurs; or if the process visited state i in time τ, 
remaining there for t − τ  time units, then a transition to state j takes place. Equation (4) also 
corresponds to a system of N convolution integral equations each with unknowns hrj(t), 
j = 1,…,N.  Thus, if equations (3) and (4) are simultaneously solved, the probabilities φj(t) 
can be obtained through the initial conditions φj(0). 

Next section presents a numerical procedure to solve equations (3) and (4). This method is 
based on the application of Laplace transforms that are inverted by the Gauss quadrature 
method known as Gauss Legendre. 
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4. A numerical procedure to solve the state probability equations of homogeneous 
semi-Markov processes 

Numerical procedures for SMPs have been proposed in the literature, for example, Janssen & 
Manca (2001) and Corradi et al. (2004) for NHSMPs and HSMPs, respectively, based on 
general quadrature methods. However, both numerical procedures are intended for SMPs 
specified in terms of transition probabilities. Therefore, this section develops a numerical 
procedure for solving the state probability equations of HSMPs described in terms of 
transition rates. 

 
4.1 State probabilities for HSMPs 

Equations (3) and (4) were presented in previous section for HSMPs as a special case of the 
mathematical formulation developed for non-homogeneous semi-Markov processes in 
Becker et al. (2000). Other mathematical formulation and numerical treatment for HSMPs 
are addressed in Moura & Droguett (2007). 

Equation (4) can be written in matrix form as: 

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]
( ) ( )

( ) ( )

1 1

11 1

1
0

1

r rN r rN

Nt

r rN

N NN

h t h t a t a t

c t c t
h h d

c t c t

τ τ
τ τ τ

τ τ

=

− −⎡ ⎤
⎢ ⎥+ ⋅ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

∫
, (5) 

where 

( ) ( ) ( ) ( )
1 0

0 exp
tN

rj i i ij
i

a t l dl tφ λ λ
=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫  

and 

( ) ( ) ( )
0

exp
t

ij i ijc t l dl t
τ

τ λ λ τ
−⎛ ⎞

− = − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ . 

Equation (5) can be rewritten as: 

( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

1 1 11 1 1

0
1

T T T T
r r N rt

rN rN N NN rN

h t a t c t c t h
d

h t a t c t c t h

τ τ τ
τ

τ τ τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ . 

where symbol T  represents transpose matrix. Hence, in a more compact way: 

( )[ ] ( )[ ] ( )[ ] ( )[ ]
0

t
T T T TH t A t C t H dτ τ τ= + − ⋅∫ . (6) 

In order to compute the state probabilities of SMPs defined by transition rates, the proposed 
procedure is based on the application of the Laplace transforms (LT) to these equations and 
the corresponding inversion to obtain the solution in the time domain t . 
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Indeed, by applying LTs to equation (6), taking into account that the LT of the convolution 
of two independent functions is equal to the product between their individual LTs and using 
( )f s  as the LT of a function ( )f t , it follows that: 

( ) ( ) ( ) ( )*
T T T T

H s A s K s H s⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (7) 

where s  is the transformed variable. 

By solving (7) for ( )H s , it follows that: 

( ) ( ) ( )
T T T

I K s H s A s⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
. (8) 

Equation (8) corresponds to a system of linear algebraic equations that can be simultaneously 
solved by using any numerical solution method. The unknowns of (8) are the values of 

( )rjh s  (with 1,...,j N= ) and will be used for computing ( )j sφ  which yields from applying 
LTs to convolution integral equations given in (3) as follows: 

( ) ( ) ( ) ( ) ( )0 *j rj jjj s v s h s v sφ φ= ⋅ + , (9) 

where ( )jv s  is the LT of the term ( )
0

exp
t

j l dl
τ

λ
−⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠
∫ . The values ( )j sφ  represent the 

solution of (9) which can be independently solved for 1,...,j N=  using the values ( )rjh s  
obtained from (8). 

Given the solution of (9) (LT of the state probabilities for HSMPs), the problem now consists 
of inverting the LTs to obtain the state probabilities in the time variable t . The method used 
here to invert LTs will be described in next section. 

 
4.2 Numerical Inversion of Laplace Transforms 

The numerical inversion of LTs consists of obtaining estimates for f(t) given numerical 

values of the transform function ( )
~
f s : 

( ) ( )
0

stf s e f t dt
∞

−= ∫ , (10) 

where s is the transformed variable. 

Some methods have been proposed in the literature to solve this problem such as Valkó & 
Abate (2004), Abate & Valkó (2004), Kryzhniy (2004), Milovanovic & Cvetkovic (2005) 
and Cuomo et al. (2007). 

The numerical inversion method of LTs presented here to compute the interval transition 
probabilities of an HSMP is based on a Gaussian quadrature method known as Gauss 
Legendre (Bellman et al. (1966) and Abramowitz & Stegun (1972)). Recently, Oliveira et al. 
(2005) has applied a similar procedure to compute the state probabilities of non-
homogeneous Markov processes with supplementary variables. 
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Making the change of variables z=exp(-t), equation (10) reduces to a finite Mellin transform 
(see Haidar, 1997): 

( ) ( )( )
1

1

0

lnsf s z f z dz−= −∫ . (11) 

The integral of the right hand side of (11) can be approximated by a Gaussian Quadrature 
which involves the weighted sum of function ( )f ⋅  in the natural log of the abscissas kz  
provided, in this case, by the Gauss Legendre integration method. Thus, 

( ) ( )( )1

1
ln

R
s

k k k
k

f s w z f z−

=

= −∑ , (12) 

where kw  and kz  are the weights and abscissas, respectively, provided by the Gauss 
Legendre method. Note that kw  and kz  do not depend on the function ( )f ⋅ , but only on the 
number R  of quadrature points and on the integration interval. See Press et al. (2002) for 
further details about obtaining kw  and kz  by the Gauss Legendre method. 

According to Press et al. (2002), the idea of Gaussian quadrature is to provide the freedom to 
choose not only the weighting coefficients, but also the location of the abscissas at which the 
function is to be evaluated: they are no longer equally spaced as occurs, for example, with 
trapezoidal rule and Simpson method. 

Representing (12) in matrix form, it follows that: 

Ψ ⋅Θ = Θ , (13) 

where Ψ  is R2-order matrix with 1v
vk k kw zψ −=  and , 1,...,k Rν = ; Θ  is R-order matrix of 

the interval transition probabilities ( )lnij kzφ − ; Θ  is R-order matrix of the LTs of the 

interval transition probabilities ( )ij sφ , with 1,...,s R=  and ,i j  fixed. Given the 
transformed solution, equation (13) is solved N2 times in order to obtain the interval 
transition probabilities ( )lnij kzφ −  for i, j = 1...N  by using any method of solution of linear 
algebraic equations. 

Before solving equation (13), equation (9) ( ( ) ( ) ( ) ( ) ( )0 *j rj jjj s v s h s v sφ φ= ⋅ + ) is solved 

R  times in order to obtain the LTs of the state probabilities ( )ij sφ , with 1,...,s R= . The 
number R  of discretization points of the variable s  is taken as 16  according to a sensitivity 
analysis presented in Oliveira et al. (1997). 

At this point, an important advantage of the proposed numerical method takes place: whereas 
for other numerical methods as the proposed in Corradi et al. (2004) and Monte Carlo 
simulations the number of discretization points should be increased to obtain improved 
accuracies, the proposed procedure with only 16 points is able to provide valuable results 
with less computational cost than these methods, as it will be showed through the example in 
section 6. 
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Noticed that the numerical method as just described is only able to compute the transition 
probabilities ( )ijφ ⋅  at the time points lnk kt z= − . However, by using the result 

~

0

1( )st se f at dt f
a a

∞
−⎛ ⎞⎛ ⎞=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ , the proposed procedure can be used to obtain ( )lnij ka tφ − , 

where 0a >  works as a scale factor and it will be defined as 
1ln

Ta z
−= , where 1z  is the 

minimum value of the abscissa provided by the Gauss Legendre method and T is the 
mission time. 

Provided the numerical procedure to compute the state probabilities for HSMPs described by 
transition rates, next section discusses issues related to proposed hybrid model: 
homogeneous semi-Markov processes and Bayesian belief networks. 

 

5. The Proposed Hybrid Model: Homogeneous semi-Markov Processes and Bayesian 
Belief Networks 

The general aim of the current work is to develop a model for a more realistic representation 
and quantification of availability measure for repairable fault tolerant systems via the 
integration between continuous time homogeneous semi-Markov processes and Bayesian 
belief networks. Such systems have a basic feature: the sojourn time in any state influences 
the transition probabilities. Moreover, external factors (e.g., environmental and operational 
conditions) not necessarily time variables also impact the future behavior of the system. 

Consider a system for which the future behavior is influenced by sojourn time t and a set of 
external factors c. The influence of sojourn time on the behavior of the system will be 
modeled by a homogeneous semi-Markov process. 

As mentioned before, the set c of external variables can be composed of environmental 
variables (e.g., temperature, humidity), operational variables (e.g., hydrate and H2S 
concentration in oil flow), and physiological (e.g., fatigue) and/or psychological conditions 
(e.g., workload, stress) (for a detailed discussion on physiological and psychological factors 
in the context of human reliability see Chang & Mosleh (2007)). It is assumed that these 
factors are random variables with finite domains whose cause-effect relationships can be 
specified. These causal relationships can be represented by joint probability distributions. In 
the proposed model, such distributions are characterized in terms of Bayesian belief 
networks so that the influence of the external factors on the behavior of the system can be 
quantified. 

With the knowledge of t and c, this approach give rise to a hybrid stochastic model that is 
able to represent the uncertainty on the dynamic behavior of the system, as discussed in the 
next section. Moreover, as new evidence regarding variables (external factors) in a BBN 
become available, it is possible to update the joint probability distribution and quantify the 
corresponding impact on the system availability (or any other relevant measures such as 
reliability, maintainability). 

The integration between HSMPs and BBNs is achieved through an interface represented by 
parameters of the intensity functions characterizing the transition rates. Such parameters are 
taken as the leave nodes of the BBNs describing the cause and effect relationships among the 
relevant external factors and the corresponding parameters. The resulting uncertainty 
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distribution about a particular parameter is then taken as input information for the numerical 
procedure discussed in section 4 for SMPs described by transition rates. 

Although, in principle, continuous BBNs could be used, for the sake of simplicity the current 
model employs a discretization of such parameters (leave nodes) with finite domains. 
Furthermore, as new evidence becomes available, the probability distributions of these 
parameters as well as the state of knowledge about the behavior of the system can be updated 
as discussed in next section. Note that this modeling approach is meaningful for cases where 
a physical interpretation can be associated to a parameter. For example, shape parameter of 
the intensity function of a Power Law process as an indicator of the aging behavior. 

Therefore, the integration takes place as follows (see Figure 2): 

Hybrid modeling procedure: 

Step 1: Draw the marginal probability distributions for each leaf node (random variable) of 
the BBNs. In the proposed model, this type of node represents parameters of transition rates 
(failure or repair); 

Step 2: Sample the transition rate parameters from the marginal probability distributions; 

Step 3: Execute the numerical procedure for the HSMPs described in previous section. 

 

 
Figure 2 – Flowchart describing the integration algorithm between SMPs and BBNs. 
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The procedure is repeated for a number of iterations M in order to explicitly quantify the 
uncertainty in the transition rates characterized in terms of the marginal probability 
distributions, and then assess the corresponding impact on the state probabilities of the semi-
Markov model as well as on availability measure or other relevant reliability metric. 

 

6. Example of Application 

6.1 Description of the problem 

Consider a downhole pumping unit that pumps oil to a storage tank, which in turn is kept 
above a predetermined level L in order to be able to supply customers in case of a pumping 
unit failure. The tank level above L is set to a value such that a tolerable downtime (TDT) 
holds before the oil level goes under L in case of a pumping unit failure. Therefore, upon the 
occurrence of this failure, it is assumed that repair starts immediately in order to not go under 
this predetermined level and consequently the TDT. Otherwise, the oil level in the storage 
tank goes under a low limit and the oil supply halts. When the pumping unit is under repair 
and the TDT has not expired yet, no damage to customers is inflicted as oil can still be 
supplied, i.e., although in a degraded state the system is still available. However, when the 
tolerable downtime is reached and repair has not been completed yet, the system fails and it 
is assumed to be unavailable. 

It is clear that the elapsed time since the start of repair activities plays a relevant role with 
respect to system availability measure and, therefore, a homogeneous semi-Markov process 
is assumed. Indeed, the system initially starts in state 1 (available) and upon failure of the 
pumping unit it transits to state 2 (failed, under repair and TDT not exceeded), as shown in 
Figure 3. When state 2 is reached, a local clock is started such that when the sojourn time in 
this state is greater than the TDT the system becomes unavailable, i.e., it transits to state 3 
(failed, under repair and TDT exceeded). In other words, the transition from state 2 to 3 
depends on the elapsed time t since the pumping unit has failed. For the sake of simplicity, 
no failures are considered for pipelines, valves and the storage tank. 

It is also assumed that the TDT is distributed according to a Weibull distribution as follows: 

( ) ( )( )
1

23 expt tf t
β ββ

αα α

−
⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 

where α = 100.0h and β = 1.76 are scale and shape factors respectively. 

Given that transitions out of state 2 depend on the sojourn time, it is considered a 
homogeneous semi-Markov process. Furthermore, suppose that, as it might happen in 
situations of practical interest, the rate characterizing transitions from state 1 to state 2 is 
influenced by some external factors. As discussed in section 2, the causal relationships 
among external factors related to a transition rate can be characterized in terms of a Bayesian 
belief network. As a result, availability measure of the pumping system is estimated from the 
hybrid model based on HSMPs and BBNs developed in section 5. 

In particular, for the system under consideration, assume that the MTTF of the exponentially 
distributed time up to pumping unit failures (i.e., sojourn time in state 1) is uncertain and 
influenced by the external factors shown in Figure 1. 
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Figure 3 – Hybrid model: semi-Markov processes and Bayesian Belief networks for the 

pumping oil system. 

 
In Figure 3, fMTTF is marginal probability distribution of the MTTF and it is obtained from 
the BBN in Figure 2. Moreover, for the sake of simplicity, assume that the repair rate µ is 
constant and equal to 0.025 repair / hour. 

 
6.2 Availability Measure Estimation 

Considering that the system starts its operation in state 1 (available), the availability is 
assessed for a mission time equal to T=1,000.0h. Considering also the relation λ = 1/MTTF, 
λ: failure rate, the algorithm described in Figure 2 is replicated for M=100,000 iterations in 
order to explicitly quantify the uncertainty on the availability measure given uncertainty in 
the MTTF characterized in terms of the BBN in Figure 2. 

Indeed, Figure 4(a) shows the 5th, 50th, and 95th percentile curves computed for availability 
by the proposed numerical procedure. Each percentile corresponds to the probability that the 
availability measure value is smaller than the computed one at a specific point in the mission 
time, thus explicitly quantifying the impact of the uncertainty about the parameter MTTF on 
availability measure. Figure 4(b) in turn illustrates the availability curves computed by both 
proposed numerical method and Monte Carlo simulation considering the prior mean value 
for 5246.98priorMTTF =  h. 

In this example, the Monte Carlo algorithm for HSMPs described in Moura & Droguett 
(2007) has run with R = 1,000 steps and M = 100,000 iterations for each step. For the 
proposed method, R = 16 steps was used. Note that in Figure 4(b), the availability measure 
computed by both the proposed and Monte Carlo procedures show close agreement, 
providing a validation of the proposed technique in relation to its numerical approximation. 

Furthermore, even though the simulation times depend on the computer settings, the 
proposed numerical technique has computed the availability measure for this HSMP 
described by transition rates considerably faster than Monte Carlo approach. Indeed, in an 
AMD Atlhlon™ Dual Core Processor, 2.19 GHz and 1.87 GB of RAM, the proposed method 
spent 0.02 seconds per replication roughly, while the Monte Carlo took 47.81 seconds to 
compute the results showed in Figure 4(b). 
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Figure 4 – Availability Measure Curve: (a) uncertainty on availability measure;  
(b) Proposed numerical procedure x Monte Carlo simulation. 

 
6.3 Updating Probabilistic Beliefs 

The hybrid model allows for uncertainty updating regarding the availability measure as new 
evidence about any of the external factors influencing MTTF becomes available at any point 
in the mission time. In fact, suppose that it is known that the level of paraffin is inadequate 
for the oil to be handled by the pumping unit. This new evidence does not imply in any changes 
in the BBN topology (Figure 1) or for the state diagram of the HSMP (Figure 3). However, 
the CPTs of the BBN are modified as now it is known that P(Inadequate level of paraffin) = 1. 

This new evidence impacts the future behavior of the system and consequently its 
availability measure. The uncertainty on system availability metric given the new evidence is 
characterized in terms of a posterior distribution whereas a prior distribution characterizes 
the uncertainty about availability metric before the evidence has become available as was 
done in previous subsection. 

Updating the uncertainty distribution for the MTTF according to the subsection 2.2, Figure 5 
shows the comparison between marginal prior and posterior probability distributions for the 
MTTF. The results show that because of the inadequate paraffin level there is a shift of 
probability mass towards lower values of MTTF. 
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Figure 5 – Prior and posterior marginal probability distributions of MTTF. 
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Considering the posterior mean value for MTTF, 2800.0posteriorMTTF = h, Figure 6(a) 
illustrates the impact on the availability uncertainty given the updated MTTF probability 
distribution. More specifically, the marginal probability distribution of MTTF, called 

priorMTTF  in previous subsection, is updated given the evidence regarding the level of 
paraffin which in turn affects the availability metric. 
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Figure 6 – Prior and posterior availability measure: (a) uncertainty on posterior availability 
measure; (b) Proposed numerical procedure x Monte Carlo simulation; (c) Prior x posterior 

availability measure. 

 
This analysis was solely based on evidence about the variable “level of paraffin”. 
Nevertheless, similar studies can be performed provided that evidence becomes available for 
other variables, for example, “percentage of H2O and solids – BWSOT”. Moreover, 
uncertainty on other reliability measures such as reliability and maintainability could be 
assessed from the proposed hybrid model. 

 
7. Concluding Remarks 

This paper has presented a hybrid model for availability assessment of fault tolerant systems 
based on the integration of continuous time homogeneous semi-Markov processes specified 
in terms of transition rates and Bayesian belief networks. The proposed model allows for the 
modeling of repairable systems with stochastic tolerable downtime. Future system behavior 
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can also be influenced by sojourn (local) time variable as well as by external factors such as 
environmental and operational variables. 

This is accomplished by means of a hybrid model based on continuous time homogeneous 
semi-Markov processes and Bayesian belief networks. The proposed hybrid model makes it 
possible, via BBNs, to explicitly model the cause and effect relationships among the external 
factors and gauge their impact on the system reliability. 

The integration between semi-Markov processes and Bayesian belief networks takes place at 
the transition rate models level. More specifically, causal relationships among external 
factors that influence a particular transition rate parameter (e.g., repair rate, shape parameter 
of a power law model failure transition model) are modeled according to a BBN with the 
uncertain parameter as the leaf node. The quantification of the BBN results in an uncertainty 
distribution for the transition parameter which, in turn, is plugged into the corresponding 
transition rate model in the semi-Markov process. 

It was also proposed a numerical procedure for the computation of the state probabilities of 
homogeneous semi-Markov processes specified in terms of transition rates. This numerical 
solution is based on Laplace transforms and numerical inversion through the Gauss Legendre 
Gauss quadrature method. 

The hybrid availability assessment model and the numerical procedure were illustrated by 
means of an example of application in the context of a fault tolerant system consisting of a 
downhole oil pumping system. 

 

References 

(1) Abate, J. & Valkó, P.P. (2004). Multi-precision Laplace transform inversion. 
International Journal for Numerical Methods in Engineering, 60, 979-993. 

(2) Abramowitz, M. & Stegun, J.A. (1972). Handbook of Mathematical Functions. Dover, 
New York. 

(3) Afchain, A.L. (2004). Non-parametric estimation of lifetime and repair time criteria for 
a semi-Markov process. Comptes Rendus Mathematic, 339, 137-140. 

(4) Barros Jr., P.F.R. (2006). A methodology for availability assessment of complex systems 
via hybridism between Bayesian Networks and Markov processes (in Portuguese). 
Federal University of Pernambuco, Brazil, Department of Production Engineering, 
Technology and Geoscience Centre, Recife, PE-Brazil. 

(5) Becker, G.; Camarinopoulos, L. & Zioutas, G. (1994). A Markov Type model systems 
with tolerable downtimes. Journal of the Operational Research Society, 45, 1168-1178. 

(6) Becker, G.; Camarinopoulos, L. & Zioutas, G. (2000). A semi-Markovian model 
allowing for inhomogenities with respect to process time. Reliability Engineering & 
System Safety, 70, 41-48. 

(7) Bellman, R.; Kalaba, R.E. & Locket, J.A. (1966). Numerical Inversion of the Laplace 
Transform. American Elsevier, New York. 

(8) Bernardo, J.M. & Smith, A.F.M. (1994). Bayesian Theory. John Wiley & Sons LTD., 
London, UK. 



Moura & Droguett – A continuous-time semi-Markov Bayesian belief network model for availability measure estimation of fault tolerant systems 

372 Pesquisa Operacional, v.28, n.2, p.355-375, Maio a Agosto de 2008 

(9) Camarinopoulos, L. & Obrowski, W. (1981). Consideration of tolerable down times in 
the analysis of technical systems. Nuclear Engineering and Design, 64, 185-194. 

(10) Celeux, G.; Corset, F.; Lannoy, A. & Ricard, B. (2006). Designing a Bayesian network 
for preventive maintenance from expert opinions in a rapid and reliable way. Reliability 
Engineering & System Safety, 91, 849-856. 

(11) Chandra, V. & Kumar, K.V. (1997). Reliability and safety analysis of fault tolerant and 
fail safe node for use in a railway signalling system. Reliability Engineering and System 
Safety, 57, 177-183. 

(12) Chang, Y.H.J. & Mosleh, A. (2007). Cognitive modeling and dynamic probabilistic 
simulation of operating crew response to complex system accidents. Part 2: IDAC 
performance influencing factors model. Reliability Engineering & System Safety, 92, 
1014-1040. 

(13) Chen, D. & Trivedi, K.S. (2005). Optimization for condition-based maintenance with 
semi-Markov decision process. Reliability Engineering & System Safety, 90, 25-29. 

(14) Corradi, G.; Janssen, J. & Manca, R. (2004). Numerical Treatment of Homogeneous 
semi Markov Processes in Transient Case – a Straightforward Approach. Methodology 
and Computing in Applied Probability, 6, 233-246. 

(15) Cuomo, S.; D’Amore, L.; Murli, A. & Rizzardi, M. (2007). Computation of the inverse 
Laplace transform based on a collocation method which uses only real values. Journal 
of Computational and Applied Mathematics, 198, 98-115. 

(16) Droguett, E.L. & Menezes, R.d.C.S. (2007). Human Reliability Analysis via Bayesian 
Belief Networks: an application to maintenance of transmission lines (in Portuguese). 
Revista Produção, 17(1), 162-185. 

(17) El-Gohary, A. (2004). Bayesian estimations of parameters in a three state reliability 
semi-Markov models. Applied Mathematics and Computation, 154, 53-67. 

(18) Grabski, F. (2003). The reliability of an object with semi-Markov failure rate. Applied 
Mathematics and Computation, 135, 1-16. 

(19) Haidar, N.H.S. (1997). Recursive Pseudo-Inversion of the Laplace Transform on the 
Real Line. Applied Mathematics and Computation, 84, 213-220. 

(20) Howard, R.A. (2007). Dynamic Probabilistic Systems v.II: Semi-Markov and Decision 
Processes. Dover Publications, INC., Mineola, New York. 

(21) Janssen, J. & Manca, R. (2001). Numerical solution of Non Homogeneous semi Markov 
processes in Transient Case. Methodology and Computing in Applied Probability, 3, 
271-293. 

(22) Jenab, K. & Dhillon, B.S. (2006). Assessment of reversible multi-state k-out-of-n: 
G/F/Load-Sharing systems with flow-graph models. Reliability Engineering and System 
Safety, 91, 765-771. 

(23) Korb, K.B. & Nicholson, A.E. (2003). Bayesian artificial intelligence. Chapman & 
Hall/CRC, Florida. 

(24) Kryzhniy, V.V. (2004). High-resolution exponential analysis via regularized numerical 
inversion of Laplace transforms. Journal of Computational Physics, 199, 618-630. 



Moura & Droguett – A continuous-time semi-Markov Bayesian belief network model for availability measure estimation of fault tolerant systems 

Pesquisa Operacional, v.28, n.2, p.355-375, Maio a Agosto de 2008 373 

(25) Langseth, H. & Portinale, L. (2007). Bayesian networks in reliability. Reliability 
Engineering and System Safety, 92, 92-108. 

(26) Levitin, G. (2004). Reliability and performance analysis for fault-tolerant programs 
consisting of versions with different characteristics. Reliability Engineering & System 
Safety, 86, 75-81. 

(27) Levitin, G. (2005). Optimal structure of fault-tolerant software systems. Reliability 
Engineering and System Safety, 89, 286-295. 

(28) Levitin, G. (2006). Reliability and performance analysis of hardware–software systems 
with fault-tolerant software components. Reliability Engineering & System Safety, 91, 
570-579. 

(29) Limnios, N. (1997). Dependability analysis of semi-Markov systems. Reliability 
Engineering & System Safety, 55, 203-207. 

(30) Limnios, N. & Oprisan, G. (2001). Semi-Markov processes and reliability. Birkhauser, 
Boston. 

(31) Limnios, N. & Ouhbi, B. (2006). Nonparametric estimation of some important indicators 
in reliability for semi-Markov processes. Statistical Methodology, 3, 341-350. 

(32) Littlewood, B.; Popov, P. & Strigini, L. (2002). Assessing the reliability of diverse 
fault-tolerant software-based systems. Safety Science, 40, 781-796. 

(33) Madan, B.B.; Goševa-Popstojanova, K.; Vaidyanathan, K. & Trivedi, K.S. (2004). 
A method for modeling and quantifying the security attributes of intrusion tolerant 
systems. Performance Evaluation, 56, 167-186. 

(34) Mahadevan, S.; Zhang, R. & Smith, N. (2001). Bayesian networks for system reliability 
reassessment. Structural Safety, 23, 231-251. 

(35) Milovanovic, G.V. & Cvetkovic, A.S. (2005). Numerical Inversion of the Laplace 
Transform. ELEC. ENERG., 18(3), 515-530. 

(36) Moura, M.C. & Droguett, E.L. (2006). Modelling of the reliability of systems under 
aging via non-homogeneous Markov processes and Bayesian belief networks 
(in Portuguese). XIII CLAIO-Latin IberoAmerican Operations Research Conference, 
Montevideo, Uruguay. 

(37) Moura, M.d.C. & Droguett, E.L. (2007). A Numerical Laplace Transforms Inversion 
Based Method for the Solution of Continuous Time Homogeneous Semi-Markov 
Processes (under review). Journal of Risk and Reliabilitity. 

(38) Oliveira, E.A.; Alvim, A.C.M. & Frutuoso e Melo, P.F. (1997). A Queueing Model for 
the Reliability Analysis of a System Considering its Age as a Supplementary Variable. 
Annals of the XI Meeting of Reactors Physic and Termohydraulic, Poços de Caldas. 

(39) Oliveira, E.A.; Alvim, A.C.M. & Frutuoso e Melo, P.F. (2005). Unavailability analysis 
of safety systems under aging by supplementary variables with imperfect repair. Annals 
Nuclear Energy, 32, 241-252. 

(40) Ouhbi, B. & Limnios, N. (1997). Reliability estimation of semi-Markov systems: a case 
study. Reliability Engineering & System Safety, 58, 201-204. 



Moura & Droguett – A continuous-time semi-Markov Bayesian belief network model for availability measure estimation of fault tolerant systems 

374 Pesquisa Operacional, v.28, n.2, p.355-375, Maio a Agosto de 2008 

(41) Ouhbi, B. & Limnios, N. (2002). The rate of occurrence of failures for semi-Markov 
processes and estimation. Statistics & Probability Letters, 59, 245–255. 

(42) Ouhbi, B. & Limnios, N. (2003). Nonparametric reliability estimation of semi-Markov 
processes. Journal of Statistical Planning and Inference, 109, 155-165. 

(43) Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible 
inference. Morgan Kaufmann Publishers, San Mateo, CA. 

(44) Perman, M.; Senegacnik, A. & Tuma, M. (1997). Semi-Markov Models with an 
Application to Power-Plant Reliability Analysis. IEEE Transactions on Reliability, 
46(4), 526-532. 

(45) Pievatolo, A. & Valadè, I. (2003). UPS reliability analysis with non-exponential 
duration distribution. Reliability Engineering and System Safety, 81, 183-189. 

(46) Press, W.H.; Teukolsky, S.A.; Vetterling, W.T. & Flannery, B.P. (2002). Numerical 
Recipes in C++. 2nd. Cambridge University Press, Cambridge. 

(47) Ross, S.M. (1997). Introduction to Probability Models. 6th. Academic Press, Berkeley, 
California. 

(48) Soszynska, J. (2006). Reliability evaluation of a port oil transportation system in 
variable operation conditions. International Journal of Pressure Vessels and Piping, 83, 
304-311. 

(49) Valkó, P.P. & Abate, J. (2004). Comparison of Sequence Accelerators for the Gaver 
Method of Numerical Laplace Transform Inversion. An International Journal 
Computers & Mathematic with applications, 48, 629-636. 

(50) Vaurio, J.K. (1997). Reliability characteristics of components and systems with 
tolerable repair times. Reliability Engineering and System Safety, 56, 43-52. 

(51) Wilson, A.G.; McNamara, L.A. & Wilson, G.D. (2007). Information integration for 
complex systems. Reliability Engineering & System Safety, 92, 121-130. 

(52) Xie, W.; Hong, Y. & Trivedi, K. (2005). Analysis of a two-level software rejuvenation 
policy. Reliability Engineering & System Safety, 87, 13-22. 

 

Appendix 

 
Table 1 – CPT of the MTTF given the level of paraffin (PARAF) and the percentage of H2O  

and solids (BWSOT). 

PARAF, BWSOT P(MTTF (h) | PARAF, BWSOT) 

  100 200 1000.0 10000.0 

0 0 0.05 0.10 0.15 0.70 
0 1 0.15 0.15 0.30 0.40 
1 0 0.15 0.20 0.40 0.25 
1 1 0.20 0.50 0.15 0.15 
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Table 2 – CPT of the percentage of H2O and solids (BWSOT) given the level of paraffin 
(PARAF). 

PARAF P(BWSOT | PARAF) 

 0 1 

0 0.80 0.20 
1 0.40 0.60 

 

Table 3 – CPT of the level of paraffin (PARAF) given the classification of the filter installed 
(FILTER). 

FILTER P(PARAF | FILTER) 

 0 1 

0 0.75 0.25 
1 0.45 0.55 

 

Table 4 – CPT of the classification of the filter installed (FILTER) given the depth of the pump 
(DEPTH_PUMP). 

DEPTH_PUMP P(FILTER | DEPTH_PUMP) 

 0 1 

0 0.90 0.10 
1 0.60 0.40 

 

Table 5 – CPT of the depth of the pump (DEPTH_PUMP). 

Variable P(DEPTH_PUMP) 

 0 1 

DEPTH_PUMP 0.70 0.30 
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