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Abstract 
 
It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem 
(MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure 
(Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp has 
large cliques and high edge density. This information was used to implement a heuristic based on the 
extension-rotation algorithm of Pósa (1976) for approximation of Hamiltonian Circuits. Additionally, 
an initial path for Pósa’s algorithm is derived from the vertices of an ideally maximum clique in order 
to accelerate the process. Extensive computational tests show that the resulting simple approach 
dominates in time and mean error the fast actually know Yuen (1991 and 1995) heuristic to the 
problem. 
 
Keywords:  minimization of open stacks; extension-rotation heuristic; clique. 
 
 

Resumo 
 
Sugerimos uma heurística rápida e de implementação simples para o problema de minimização de 
pilhas abertas (MOSP). O problema é modelado como um problema de percorrimento de arcos no grafo 
(Gmosp) associado (Yanasse, 1997b). Foi observado em Ashikaga (2001) que o grafo Gmosp possui 
grandes cliques e uma alta densidade de arestas. Esta informação foi utilizada para implementar uma 
heurística baseada no algoritmo Extensão-Rotação de Pósa (1976) para aproximação de Circuitos 
Hamiltonianos. O caminho inicial para o algoritmo de Pósa é obtido a partir dos vértices de uma 
aproximação do maior clique do grafo para acelerar o processo. Testes computacionais extensivos 
mostram que a abordagem domina tanto em tempo quanto em erro médio a mais rápida heurística 
conhecida de Yuen (1991 e 1995). 
 
Palavras-chave:  minimização de pilhas abertas; heurística extensão-rotação; clique. 
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1. Introduction 

The Minimization of Open Stacks Problem (MOSP) is defined by a set of pieces Π = {1,… n} 
and a set Λ = {P1,… Pm} of patterns, each Pj, j = 1, …, m, is formed by a non-empty subset 
of pieces from Π. Any piece ρ Π∈  is processed by a single machine (M) and it remains 
around M in an open stack of pieces of the same ρ type until its demand is fulfilled, the stack 
is considered closed when all patterns Pj containing the piece ρ are cut. The objective of the 
problem is to schedule the order in which M will process the patterns such that the maximum 
number of open stacks is minimized. The MOSP appears, e.g., in the context of wood cutting 
where there is a limited storage space around a saw machine and stacks of panels being cut 
have to be removed only after their orders are completed. Figure 1 presents a small example 
of two sequences of patterns (Spa’s) with the corresponding stacks opened during the cutting 
process. For Spa = {1, 2, 3, 4, 5, 6}, seven stacks are opened, while for Spa = {2, 4, 3, 5, 1, 6} 
just three stacks are used during the entire process. A shaded area indicates that a stack 
associated to a given piece remains open while its demand is not fulfilled. For instance, a 
stack containing piece 4 remains open while patterns P2, P3 and P4 are processed, cf. left side 
of Figure 1. 
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Figure 1 – Open stacks for Spa = {1,2,3,4,5,6} and Spa = {2,4,3,5,1,6}. 

 
The MOSP models a variety of industrial situations, such as VLSI design (Ferreira & Song, 
1992), wood and glass cutting (Yanasse, 1997a; Yuen, 1991 and 1995). Additionally, the 
problem is also known to be NP-Hard (Linhares & Yanasse, 2002) and therefore, difficult to 
be solved exactly. In Becceneri et al. (2004) it is presented the best heuristic, up to now, in 
terms of the quantity of open stacks, despite a much worst running time than Yuen (1995) 
and our new heuristic presented here. Metaheuristics solutions for the MOSP were also 
suggested (Faggioli & Bentivoglio, 1998; Fink & Voss, 1999). 

The suggested approach to our heuristic is focused on the study of typical practical 
instances and it was possible to derive many interesting structural information for the 
problem when its modeling is viewed as a search in a graph. For instance, an associated 
graph for the problem, Gmosp, has very large cliques and high edge density; and this 
information is used to implement the heuristic for the problem. It will be shown that a 
solution for MOSP is related to determining a sequence of the vertices (with no repetitions) 
in that associated Gmosp. The general idea of the algorithm consists on finding a large clique 
in the graph, ideally a maximum one, and from it to detect a Hamiltonian circuit to the 
induced sub graph via the extension-rotation approximation algorithm (Pósa, 1976). With the 
path of vertices obtained then both the pieces and patterns lists are generated. The next 
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sections are organized as follows: in Section 2 we present the major idea of the well known 
Yuen (1995) algorithm for MOSP, in Section 3 the algorithm suggested here is given in 
details. In Section 4 the computational experiments are presented and the conclusions are 
given in Section 5. 

 
2. The Yuen heuristic 

In Yuen (1995) five heuristics for solving the MOSP are suggested and the third one, Yuen3, 
is considered as the best one so far to the problem in terms of the tradeoff between 
computational time and mean error (Yuen, 1995; Becceneri, 1999). The idea behind Yuen3 
is to select a pattern that shares the largest number of common pieces with the current open 
stacks and it is based on the following three metrics: Cj is the number of piece types common 
to pattern j and the current open stacks; Nj is the number of different pieces in pattern j not 
included in the current open stacks and Mj is defined as the number of piece types common 
to pattern j and the current open stacks less the number of new piece types or potential stacks 
contained in that pattern. This difference, Mj = Cj - Nj tries to appraise the impact that a 
given choice of pattern j to be cut has in relation with the pieces contained in it. Therefore, 
this local information is used as a guide to the search of smaller quantities of different new 
stacks. The criterion to select a pattern to be sequenced is dictated by non-increasing values 
of Mj. A tie is broken in favor of a pattern with the lowest Nj value and if it still persists the 
one with lowest index j is chosen. This heuristic has a straightforward implementation and its 
running time is bounded by O(n3). 

 
3. The new Ashikaga Soma (AS) heuristic 

The graph model for the MOSP used here was introduced in Yanasse (1997a) and the idea is 
to associate a vertex to a piece and a clique to a pattern, an edge represents two pieces 
present in a same pattern. Moreover, parallel arcs are counted and represented as a single 
one. In Ashikaga (2001) it was shown that, in general, a MOSP graph has very large 
maximum cliques in comparison with those randomly generated ones; i.e. it has large 
deviations from expected clique values (Bollobás, 2001). 

The new traversing problem in this MOSP graph is presented in Yanasse (1997b), “follow 
the sequence of the arcs and sequence a pattern Pj when, for the first time, all the vertices 
corresponding to all the pieces types in Pj are open”. An arc indicates that the corresponding 
vertices associated with pieces belong to at least a pattern Pj. By sequencing all the vertices 
of the graph that are connected via arcs corresponds to a general and broad policy. The 
sequence of arcs in this traversing problem is also used by the present suggested approach. 

Figure 2 shows how a MOSP graph is generated from a matrix of patterns, e.g., pattern P5 
has 4 types of pieces: 3, 6, 7 and 10. 

A different example is given in Figure 3 that illustrates the complete process of construction 
of a MOSP graph by a union of cliques formed by pieces of each Pattern. Still in Figure 3, 
Pattern P1 generates a triangle that is formed by pieces 1, 4 and 5; Pattern P5 generates 
another triangle whose vertices are 4, 5 and 6. Parallel arcs connecting pieces 4 and 5 are 
counted as a single one since the indication adopted by the heuristic needs just to know if 
two pieces belong or not to at least one Pattern. 
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Figure 2 – MOSP graph with corresponding matrix of patterns. 

 

 
Figure 3 – The process of construction of Gmosp by a union of clique patterns. 

 
It is well known that finding a maximum clique is NP-Hard (Garey & Johnson, 1979). 
However, for dense graphs, as it is the case for the MOSP, in the mean experimental case, 
greedy algorithms for finding a clique cannot generate bad results (Homer & Peinado, 1996; 
Kučera, 1995). 

A graph is complete, denoted by Kn, if all of their n vertices are mutually adjacent. A clique 
is a subset of Kn. A complement graph G’ of G is such that the vertices are the same in both 
graphs and an edge belongs to G’ if and only if it is not present in G. A clique number of a 
graph G, denoted by ω(G), is the maximal number of vertices of a clique in G (Bollobás, 
1998). 

Notice now that if Gmosp = Kn then the optimal solution is trivially found and even if this is 
not the case, any clique of Gmosp can be scheduled immediately, since, the associated number 
of open stacks is clearly ω(Gmosp). Therefore, a natural idea to obtain an initial solution to the 
problem would be to try to find a clique (ideally any maximum one) with very few remaining 
vertices yet to be sequenced (n - ω(Gmosp))/n << 1. 
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The independent set problem is that of finding a mutually non-adjacent vertices set of a 
graph. A clique is its dual problem and it consists of detecting a set of adjacent vertices. 
Therefore, if S is a maximal independent set in a given graph it also is a maximal clique in its 
complement graph. In order to obtain an approximation of maximum clique we used the 
complement graph and the Minimum Degree Greedy heuristic for independent sets, which 
performs well in sparse graphs (original complement graphs are dense), cf. Halldórsson & 
Radhakrishnan (1994). 
 

Minimum Degree Greedy heuristic (MDGh) 
Input: Complementary MOSP graph mospG  
Output: clique (ideally maximum) S={v1, v2, ..., vk} 
S = {}; //S is an ordered sequence of vertices 
While mospG ≠ ∅ { 

v = vertex of the minimum degree in mospG ; 
S = { }S v∪ ; 

{ } ( )( )mosp mospG G v neighborhood v= − ∪ ; } 
Return S; 

 
For the example of Figure 2, a maximum clique is obtained and S = {6,7,3,2,1}. Recall that a 
vertex in S corresponds to a piece to be cut by the saw machine and since S is an ordered set, 
the order in which the pieces have to be cut is dictated also by S. Moreover, from that set it is 
immediate to determine the sequence of patterns (Spa) to be processed and in a time bounded 
by O(n2). Figure 4 illustrates the process of MDGh in MOSP graph of Figure 3. 
 

 
Figure 4 – MDGh heuristic. 

 
The vertices in S, after MDGh, are considered as initial path for the Extension Rotation 
heuristic (Erh), presented next. In this sense, Erh extends the set S, i.e. more vertices will be 
included in that set or what it is the same, more pieces are scheduled to be cut and any piece 
appears just once in S. 
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Extension Rotation heuristic (Erh) 
Input: MOSP Graph Gmosp and S generated by the MDGh. 
Output: Extended S, via a Hamiltonian path. 
Initialize xk and j properly; 
while (xk ≠ ∅ or j ≠ ∅) { 
      xk = ´max degree neighbor of last vertex in S´; 
      if xk ≠ ∅ 
           S = S ∪ xk; 
      else { 
            j =´ some neighbor of the last vertex in the current path´; 
           if j ≠ ∅ 
                 create_another_path_with_the_same_vertex_set; 
                // revert the orientation of the subpath between j and last vertex 
        } 
} 
Return S; 

 
Figure 5 shows that MDGh returns an initial S = {6, 7, 3, 1, 2}. An initial path given by vertices 
6-7-3-1-2 has no further vertex to extend (Figure 5a). Since there is an arc between vertices 
3 and 2, a rotation follows, modifying thus the path to 6-7-3-2-1 (Figure 5b). After that it is 
possible to further perform 5 more extensions (Figure 5c) and S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8}, 
the given solution is optimal to this example. 
 

8

9

4
3

1

5

10

7

6

2

8

9

4
3

1

5

10

7

6

2

8

9

4
3

1

5

10

7

6

2
a) b) c)

 
Figure 5 – Extension-Rotation Heuristic. 

 
Figure 6 gives an idea of how Erh works: the left side depicts the sequence of pieces to be 
cut, given by the extended set S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8} (the example is the same as 
in Figure 2). Related to this sequence of pieces the sequence of patterns is given by: 
Spa = {9, 10, 3, 2, 8, 4, 7, 5, 1, 6} and it will open a maximum of 5 stacks during the cutting 
process. This latter sequence is obtained; cf. Figure 6, in the following manner: S is traversed 
from the right to the left including a pattern that contains the incumbent piece in that 
sequence. In the same Figure 6, piece 8 appears in the last position in S, hence, pattern P6 
that contains that piece is the last one to be processed. The shaded areas in that figure 
indicate open stacks during the cutting process too. 
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Figure 6 – S and the corresponding sequence of patterns (Spa). 

 
An experimental determined limit of two rotations was imposed to Erh. This constraint implies 
that, in principle, not all vertices (pieces) will be traversed (sequenced) since a Hamiltonian 
path may not be found. For the eventuality of existence of vertices yet to be sequenced some 
of them can be neighbors to the ones generated after MDGh and Erh. To this case such a 
vertex is called a conjugated and the others as remaining. At this point set Π is partitioned 
into three subsets: Π = S ∪ Conj ∪ Rem, where S is given by the execution of MDGh and 
Erh, Conj by the conjugated and Rem by the remaining vertices. For ease of comprehension 
suppose that the example of Figure 2 has three additional vertices, C1, C2 and R as given in 
Figure 7. A solution for this problem given by MDGh and Erh and presented in Figures 5 
and 6 implies that C1 and C2 belong to the set Conj while vertex R belongs to the set Rem. 
 

 
Figure 7 – Conj and Rem Vertices in S = {7, 2, 6, 9, 4, 12, 10, 8, 11, 13, 1}. 

 
The vertices in the set Conj are included before their neighbors generated by MDGh and Erh. 
For instance, in Figure 7, with S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8} the new sequence becomes 
S = {C2, 6, 7, 3, C1, 2, 1, 4, 9, 10, 5, 8}. Finally, the vertices in Rem of Gmosp, are inserted at 
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the end of the sequence in a simple lexicographical manner. For the example given before, 
S becomes: S = {C2, 6, 7, 3, C1, 2, 1, 4, 9, 10, 5, 8, R}. 
The following pseudo-code summarizes its major steps. 
 

Ashikaga Soma (AS) Heuristic 
Input: Set of pieces Π and set of patterns Λ; 
  Output: Sequence of patterns (Spa) 
  Generate Gmosp from Π and Λ; 
  S := MDGh ( Kn - Gmosp ); 
  S := Erh( Gmosp, S ); 
  //Sequence remaining vertices 
  If there is any vertex yet to be sequenced 
  Detect and insert the conjugate vertices in S; 
  Insert any left vertex in a lexicographical order in S; 
  Generate Spa from S; 
  Return Spa; 

 
Recall that Spa is obtained from S (ordered set) by traversing the set of vertices given by AS 
from the last to the first one, with the inclusion of the patterns that contains the vertex being 
considered. The worst-case complexity for the algorithm is O(n2), since MDGh is linear 
(Halldórson & Radhakrishnan, 1994). Each rotation can be made in (log )O n  time (Angluin 
& Valiant, 1979), and the total number of extensions is at most O(n2) time. The conjugated 
and remaining vertices are inserted in S also in O(n2) time and the same to obtain the final 
sequence patterns generation. Hence, the total time is bounded by O(n2). As it will be 
presented next, the heuristic has a much better behavior in the practice than this theoretical 
worst case bound. Moreover, the heuristic has a speed up of a factor n in comparison with 
Yuen3, since this latter one is O(n3). 
 
4. Computational Experiments 

The suggested heuristic, AS, is compared with the Yuen3 algorithm. The first set of instances 
considered was suggested by Becceneri (1999) and covers the most common practical 
industrial scenario applications. In the second class a very large quantity of random instances 
were generated. The running times are expressed as CPU milliseconds in Table 1 and 
seconds in Table 2. The equipment is a Celeron 533 MHz with 64 Mbytes of main memory. 
All heuristics were implemented in Visual C++ 6.0. 
For the tests it was assumed without loss of any generality that the quantity of pieces is equal 
to those of patterns since as observed by Yanasse (1997b) any pattern can either be grouped 
or divided into sets with exactly two pieces such that the total quantity of stacks remains the 
same in the optimal solution. 
Table 1 presents comparisons among the heuristics Yuen3 (Yuen, 1995), the Smaller Cost 
Node, BYS04 (Becceneri et al., 2004) and AS. The tests followed the notation given in 
Becceneri et al. (2004), that is, m x n stands respectively for the number of pieces and the 
number of patterns, C is the number of pieces to be allocated to a pattern. For instance, 
20x20 and C = 12 means for 20 patterns and pieces and to each pattern at most 12 pieces will 
be allocated to it. mBYS04, mYuen3 and mAS indicate the mean number of open stacks and 
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tBYS04, tYuen3 and tAS are the mean running time. For each case, the sample set has size 
20 and it was randomly generated. It can be readily seen that BYS04 produces best results in 
terms of the quantity of open stacks, but at higher running times in relation to the number of 
patterns and pieces. Yuen3 and AS are very fast, but for increasing values of n, clearly, AS has 
a much better time performance than Yuen3. Also, AS produces a smaller quantity of open 
stacks than Yuen3 for larger values of n and is competitive with BYS04 for larger values of C. 
 

Table 1 – Comparison of BYS04, Yuen3 and AS, (Becceneri et al., 2004) tests. 
Time expressed in milliseconds. 

m x n C mBYS04 mYuen3 mAS tBYS04 tYuen3 tAS 
5        6.40        7.10       6.90  0.0165 0.0000 0.0000 
6        7.75        8.35       7.80  0.0170 0.0000 0.0000 
7        8.50        8.90       8.55  0.0100 0.0000 0.0000 

10 x 10 

8        9.10        9.40       9.10  0.0100 0.0002 0.0000 
6      11.80      13.75     13.65  0.0320 0.0002 0.0000 
8      14.40      16.15     16.00  0.0235 0.0003 0.0000 
12      17.75      19.10     18.10  0.0365 0.0000 0.0000 
14      18.80      19.80     18.80  0.0395 0.0000 0.0000 

20 x 20 

16      19.85      20.00     19.85  0.0325 0.0000 0.0000 
8      19.75      23.35     22.40  0.0460 0.0003 0.0000 
12      24.55      28.25     26.35  0.0940 0.0000 0.0000 
16      27.50      29.70     28.00  0.1255 0.0005 0.0000 
20      29.20      29.95     29.30  0.1535 0.0003 0.0004 

30 x 30 

24      30.00      30.00     30.00  0.1120 0.0003 0.0003 
10      29.40      34.70     32.80  0.1460 0.0000 0.0000 
15      34.40      38.80     36.80  0.2480 0.0007 0.0005 
10      37.40      39.90     38.40  0.4010 0.0000 0.0000 

40 x 40 

25      39.30      40.00     39.30  0.5150 0.0000 0.0000 
10      35.60      42.00     39.90  0.2800 0.0010 0.0008 
15      42.70      49.30     45.20  0.4910 0.0007 0.0005 
20      45.90      50.00     47.10  0.7180 0.0034 0.0019 

50 x 50 

30      49.30      50.00     49.30  1.2270 0.0027 0.0005 
10      42.30      49.10     47.60  0.4300 0.0034 0.0002 
15      50.40      57.60     54.20  0.7960 0.0042 0.0000 
20      55.50      60.00     56.80  1.3510 0.0047 0.0008 

60 x 60 

25      56.90      60.00     57.90  1.7390 0.0059 0.0004 
10      67.05      79.35     77.70  1.8175 0.0124 0.0009 
15      81.70      94.30     88.60  3.8620 0.0151 0.0010 
20      88.50      98.90     93.00  7.8740 0.0154 0.0011 
30      95.40    100.00     97.00  18.7570 0.0148 0.0015 

100 x 100 

40      97.90    100.00     98.80  32.9110 0.0161 0.0009 
10      98.80    115.80   114.60  6.4130 0.0393 0.0028 
15    120.10    140.25   131.05  21.8825 0.0392 0.0022 
20    131.65    147.75   139.20  44.1570 0.0411 0.0035 
25    138.10    149.85   142.60  69.0080 0.0427 0.0031 

150 x 150 

30    142.20    149.90   145.30  97.0360 0.0434 0.0027 
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The second set of computational tests was designed to compare specifically Yuen3 and AS. 
A much larger quantity of instances, 2000, was used for each value of n ranging from 200 up 
to 1000 patterns and the results are presented in Table 2. The quantity of pieces and types 
were associated with the density of graphs Gmosp’s which varied from 10% up to 90%. AS 
produces much better results than Yuen3 in all classes. It becomes clear that AS is much 
faster than Yuen3, indeed, it is almost ten times faster for instances with high density and/or 
n large. It is worth of mentioning that for a given value of n AS has an almost equal time 
response in respect to the density. A possible explanation to understand this behavior can be 
the fact that a Gmosp has a large clique embedded in it and after sequencing it the induced 
graph becomes very sparse. The existence of a large clique detected by MDGh can also be a 
possible reason of why by imposing just two rotations to Erh sets Con and Rem have small 
cardinality. The suggested AS heuristic dominates Yuen3 in experimental running times and 
means errors. It possesses a smaller complexity order and also it has a very simple 
implementation. 

Algorithm AS implemented in C++ can be obtained directly by request from the 
corresponding author. 
 

Table 2 – Comparison of Yuen3 and AS, randomly generated patterns × pieces. 
Time is expressed in seconds. 

density n mY3 mAS tY3 tAS density n mY3 mAS tY3 tAS 
  200 131.12 137.25 0.040 0.001   200 198.99 187.78 0.041 0.001 
  300 228.66 226.72 0.127 0.003   300 299.74 287.76 0.133 0.003 
  400 321.50 312.73 0.297 0.004   400 399.94 386.83 0.309 0.006 

10% 500 435.62 412.40 0.576 0.007 60% 500 499.98 486.61 0.596 0.009 
  600 539.11 506.36 0.990 0.009   600 600.00 585.90 1.021 0.012 
  700 644.21 600.98 1.560 0.013   700 700.00 686.25 1.609 0.017 
  800 751.27 697.70 2.330 0.017   800 800.00 786.11 2.395 0.022 
  900 857.20 794.58 3.307 0.021   900 900.00 886.02 3.402 0.029 
  1000 964.29 893.85 4.536 0.029   1000 1000.00 985.78 4.647 0.035 
  200 163.07 157.24 0.039 0.001   200 199.62 190.40 0.042 0.001 
  300 271.69 253.78 0.128 0.002   300 299.95 290.64 0.135 0.003 
  400 376.94 349.58 0.300 0.005   400 400.00 390.29 0.311 0.006 

20% 500 482.95 447.30 0.581 0.007 70% 500 500.00 489.77 0.601 0.007 
  600 588.19 546.80 0.996 0.012   600 600.00 589.55 1.028 0.012 
  700 692.01 647.10 1.572 0.015   700 700.00 689.53 1.622 0.017 
  800 792.94 743.52 2.341 0.019   800 800.00 789.58 2.410 0.022 
  900 893.97 840.88 3.329 0.025   900 900.00 889.54 3.422 0.028 
  1000 996.11 943.08 4.561 0.031   1000 1000.00 989.26 4.676 0.035 
  200 182.31 170.12 0.039 0.001   200 199.93 193.00 0.040 0.001 
  300 290.61 269.30 0.129 0.003   300 300.00 293.08 0.136 0.003 
  400 392.73 365.46 0.301 0.006   400 400.00 392.90 0.315 0.006 

30% 500 495.75 465.74 0.585 0.007 80% 500 500.00 492.67 0.607 0.008 
  600 597.36 564.50 1.003 0.012   600 600.00 592.65 1.037 0.011 
  700 698.33 663.44 1.579 0.016   700 700.00 692.67 1.634 0.016 
  800 798.79 763.15 2.357 0.020   800 800.00 792.50 2.430 0.021 
  900 899.29 863.21 3.347 0.026   900 900.00 892.74 3.444 0.028 
  1000 999.57 963.50 4.582 0.033   1000 1000.00 992.53 4.711 0.033 
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  200 192.18 178.46 0.040 0.002   200 200.00 194.40 0.043 0.001
  300 296.44 276.81 0.131 0.003   300 300.00 294.58 0.137 0.003
  400 398.50 376.85 0.305 0.005   400 400.00 393.88 0.317 0.006

40% 500 498.79 474.51 0.588 0.008 90% 500 500.00 493.65 0.609 0.008
  600 599.45 574.54 1.008 0.012   600 600.00 593.63 1.040 0.012
  700 699.77 675.15 1.594 0.017   700 700.00 693.42 1.643 0.016
  800 799.85 775.02 2.372 0.021   800 800.00 793.18 2.472 0.021
  900 899.91 874.32 3.363 0.028   900 900.00 893.46 3.458 0.026
  1000 999.97 973.74 4.604 0.034   1000 1000.00 993.14 4.725 0.033
  200 196.91 184.01 0.041 0.001       
  300 299.04 283.37 0.132 0.003       
  400 399.64 382.88 0.306 0.006       

50% 500 499.77 481.90 0.592 0.009       
  600 599.89 581.83 1.012 0.013       
  700 699.99 681.51 1.599 0.017       
  800 799.99 781.76 2.381 0.023       
  900 899.99 880.84 3.381 0.028       
  1000 1000.00 980.50 4.624 0.036       

 

5. Conclusion 

The Minimization of Open Stacks Problem appears directly in a large quantity of practical 
settings and it has a structure that makes it difficult to be solved exactly since it is also a 
NP-Hard problem. The very well known and simple heuristic for solving the problem – 
Yuen3 – produces good results in the practice, in the quantity of open stacks and in the 
running time, therefore it is difficult to find a better approach for the solving the problem. 
It was observed here that the problem when modeled as a search in a special graph – the 
MOSP Graph – possesses very large cliques. This feature permitted to be explored and a 
quadratic computational requirements time and space heuristic, AS was suggested. Extensive 
computational experiments were carried out and from them it is possible to infer that the 
suggested heuristic dominates Yuen (1991 and 1995) approach in the running time and mean 
error too. AS generated smaller quantities of open stacks than Yuen3, also it was always 
faster than the latter in the practice and in theory it improves the running time by a factor of 
n. Moreover, no heuristic can have a better theoretical order of convergence than AS since it 
allocates a time for solving the problem proportional to the input size. 
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