
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 439

A HEURISTIC FOR THE
MINIMIZATION OF OPEN STACKS PROBLEM

Fernando Masanori Ashikaga*
FATEC São José dos Campos
Centro Paula Souza
São José dos Campos – SP, Brazil
fmasanori@gmail.com

Nei Yoshihiro Soma
Computer Science Division
Technological Institute of Aeronautics
São José dos Campos – SP, Brazil

* Corresponding author / autor para quem as correspondências devem ser encaminhadas

Recebido em 05/2008; aceito em 04/2009 após 1 revisão
Received May 2008; accepted April 2009 after one revision

Abstract

It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem
(MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure
(Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp has
large cliques and high edge density. This information was used to implement a heuristic based on the
extension-rotation algorithm of Pósa (1976) for approximation of Hamiltonian Circuits. Additionally,
an initial path for Pósa’s algorithm is derived from the vertices of an ideally maximum clique in order
to accelerate the process. Extensive computational tests show that the resulting simple approach
dominates in time and mean error the fast actually know Yuen (1991 and 1995) heuristic to the
problem.

Keywords: minimization of open stacks; extension-rotation heuristic; clique.

Resumo

Sugerimos uma heurística rápida e de implementação simples para o problema de minimização de
pilhas abertas (MOSP). O problema é modelado como um problema de percorrimento de arcos no grafo
(Gmosp) associado (Yanasse, 1997b). Foi observado em Ashikaga (2001) que o grafo Gmosp possui
grandes cliques e uma alta densidade de arestas. Esta informação foi utilizada para implementar uma
heurística baseada no algoritmo Extensão-Rotação de Pósa (1976) para aproximação de Circuitos
Hamiltonianos. O caminho inicial para o algoritmo de Pósa é obtido a partir dos vértices de uma
aproximação do maior clique do grafo para acelerar o processo. Testes computacionais extensivos
mostram que a abordagem domina tanto em tempo quanto em erro médio a mais rápida heurística
conhecida de Yuen (1991 e 1995).

Palavras-chave: minimização de pilhas abertas; heurística extensão-rotação; clique.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

440 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

1. Introduction

The Minimization of Open Stacks Problem (MOSP) is defined by a set of pieces Π = {1,… n}
and a set Λ = {P1,… Pm} of patterns, each Pj, j = 1, …, m, is formed by a non-empty subset
of pieces from Π. Any piece ρ Π∈ is processed by a single machine (M) and it remains
around M in an open stack of pieces of the same ρ type until its demand is fulfilled, the stack
is considered closed when all patterns Pj containing the piece ρ are cut. The objective of the
problem is to schedule the order in which M will process the patterns such that the maximum
number of open stacks is minimized. The MOSP appears, e.g., in the context of wood cutting
where there is a limited storage space around a saw machine and stacks of panels being cut
have to be removed only after their orders are completed. Figure 1 presents a small example
of two sequences of patterns (Spa’s) with the corresponding stacks opened during the cutting
process. For Spa = {1, 2, 3, 4, 5, 6}, seven stacks are opened, while for Spa = {2, 4, 3, 5, 1, 6}
just three stacks are used during the entire process. A shaded area indicates that a stack
associated to a given piece remains open while its demand is not fulfilled. For instance, a
stack containing piece 4 remains open while patterns P2, P3 and P4 are processed, cf. left side
of Figure 1.

1

1

2 3

3

4

4

5

5

6

6

6

7

7
1

2

3

4

5
6

7
P1

P2

P3

P4

P5

P6

P2

P4

P3

P5

P1

P6

3
6
7
7
4
2

3
3
3
3
3
2

stacks stackspieces pieces

pa
tte

rn
s

tim
e

Figure 1 – Open stacks for Spa = {1,2,3,4,5,6} and Spa = {2,4,3,5,1,6}.

The MOSP models a variety of industrial situations, such as VLSI design (Ferreira & Song,
1992), wood and glass cutting (Yanasse, 1997a; Yuen, 1991 and 1995). Additionally, the
problem is also known to be NP-Hard (Linhares & Yanasse, 2002) and therefore, difficult to
be solved exactly. In Becceneri et al. (2004) it is presented the best heuristic, up to now, in
terms of the quantity of open stacks, despite a much worst running time than Yuen (1995)
and our new heuristic presented here. Metaheuristics solutions for the MOSP were also
suggested (Faggioli & Bentivoglio, 1998; Fink & Voss, 1999).

The suggested approach to our heuristic is focused on the study of typical practical
instances and it was possible to derive many interesting structural information for the
problem when its modeling is viewed as a search in a graph. For instance, an associated
graph for the problem, Gmosp, has very large cliques and high edge density; and this
information is used to implement the heuristic for the problem. It will be shown that a
solution for MOSP is related to determining a sequence of the vertices (with no repetitions)
in that associated Gmosp. The general idea of the algorithm consists on finding a large clique
in the graph, ideally a maximum one, and from it to detect a Hamiltonian circuit to the
induced sub graph via the extension-rotation approximation algorithm (Pósa, 1976). With the
path of vertices obtained then both the pieces and patterns lists are generated. The next

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 441

sections are organized as follows: in Section 2 we present the major idea of the well known
Yuen (1995) algorithm for MOSP, in Section 3 the algorithm suggested here is given in
details. In Section 4 the computational experiments are presented and the conclusions are
given in Section 5.

2. The Yuen heuristic

In Yuen (1995) five heuristics for solving the MOSP are suggested and the third one, Yuen3,
is considered as the best one so far to the problem in terms of the tradeoff between
computational time and mean error (Yuen, 1995; Becceneri, 1999). The idea behind Yuen3
is to select a pattern that shares the largest number of common pieces with the current open
stacks and it is based on the following three metrics: Cj is the number of piece types common
to pattern j and the current open stacks; Nj is the number of different pieces in pattern j not
included in the current open stacks and Mj is defined as the number of piece types common
to pattern j and the current open stacks less the number of new piece types or potential stacks
contained in that pattern. This difference, Mj = Cj - Nj tries to appraise the impact that a
given choice of pattern j to be cut has in relation with the pieces contained in it. Therefore,
this local information is used as a guide to the search of smaller quantities of different new
stacks. The criterion to select a pattern to be sequenced is dictated by non-increasing values
of Mj. A tie is broken in favor of a pattern with the lowest Nj value and if it still persists the
one with lowest index j is chosen. This heuristic has a straightforward implementation and its
running time is bounded by O(n3).

3. The new Ashikaga Soma (AS) heuristic

The graph model for the MOSP used here was introduced in Yanasse (1997a) and the idea is
to associate a vertex to a piece and a clique to a pattern, an edge represents two pieces
present in a same pattern. Moreover, parallel arcs are counted and represented as a single
one. In Ashikaga (2001) it was shown that, in general, a MOSP graph has very large
maximum cliques in comparison with those randomly generated ones; i.e. it has large
deviations from expected clique values (Bollobás, 2001).

The new traversing problem in this MOSP graph is presented in Yanasse (1997b), “follow
the sequence of the arcs and sequence a pattern Pj when, for the first time, all the vertices
corresponding to all the pieces types in Pj are open”. An arc indicates that the corresponding
vertices associated with pieces belong to at least a pattern Pj. By sequencing all the vertices
of the graph that are connected via arcs corresponds to a general and broad policy. The
sequence of arcs in this traversing problem is also used by the present suggested approach.

Figure 2 shows how a MOSP graph is generated from a matrix of patterns, e.g., pattern P5
has 4 types of pieces: 3, 6, 7 and 10.

A different example is given in Figure 3 that illustrates the complete process of construction
of a MOSP graph by a union of cliques formed by pieces of each Pattern. Still in Figure 3,
Pattern P1 generates a triangle that is formed by pieces 1, 4 and 5; Pattern P5 generates
another triangle whose vertices are 4, 5 and 6. Parallel arcs connecting pieces 4 and 5 are
counted as a single one since the indication adopted by the heuristic needs just to know if
two pieces belong or not to at least one Pattern.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

442 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

8

9

4
3

1

5

10

7

6

2

4

4

8

6

6

6

7

7

3 5

7

1

2

9

P1

P2

P3

P4

P5

P6

P9

P8

P7

P10

3

1

1

1
2

3

3

5

9

10

10

10P5

Figure 2 – MOSP graph with corresponding matrix of patterns.

Figure 3 – The process of construction of Gmosp by a union of clique patterns.

It is well known that finding a maximum clique is NP-Hard (Garey & Johnson, 1979).
However, for dense graphs, as it is the case for the MOSP, in the mean experimental case,
greedy algorithms for finding a clique cannot generate bad results (Homer & Peinado, 1996;
Kučera, 1995).

A graph is complete, denoted by Kn, if all of their n vertices are mutually adjacent. A clique
is a subset of Kn. A complement graph G’ of G is such that the vertices are the same in both
graphs and an edge belongs to G’ if and only if it is not present in G. A clique number of a
graph G, denoted by ω(G), is the maximal number of vertices of a clique in G (Bollobás,
1998).

Notice now that if Gmosp = Kn then the optimal solution is trivially found and even if this is
not the case, any clique of Gmosp can be scheduled immediately, since, the associated number
of open stacks is clearly ω(Gmosp). Therefore, a natural idea to obtain an initial solution to the
problem would be to try to find a clique (ideally any maximum one) with very few remaining
vertices yet to be sequenced (n - ω(Gmosp))/n << 1.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 443

The independent set problem is that of finding a mutually non-adjacent vertices set of a
graph. A clique is its dual problem and it consists of detecting a set of adjacent vertices.
Therefore, if S is a maximal independent set in a given graph it also is a maximal clique in its
complement graph. In order to obtain an approximation of maximum clique we used the
complement graph and the Minimum Degree Greedy heuristic for independent sets, which
performs well in sparse graphs (original complement graphs are dense), cf. Halldórsson &
Radhakrishnan (1994).

Minimum Degree Greedy heuristic (MDGh)
Input: Complementary MOSP graph mospG
Output: clique (ideally maximum) S={v1, v2, ..., vk}
S = {}; //S is an ordered sequence of vertices
While mospG ≠ ∅ {

v = vertex of the minimum degree in mospG ;
S = { }S v∪ ;

{ } ()()mosp mospG G v neighborhood v= − ∪ ; }
Return S;

For the example of Figure 2, a maximum clique is obtained and S = {6,7,3,2,1}. Recall that a
vertex in S corresponds to a piece to be cut by the saw machine and since S is an ordered set,
the order in which the pieces have to be cut is dictated also by S. Moreover, from that set it is
immediate to determine the sequence of patterns (Spa) to be processed and in a time bounded
by O(n2). Figure 4 illustrates the process of MDGh in MOSP graph of Figure 3.

Figure 4 – MDGh heuristic.

The vertices in S, after MDGh, are considered as initial path for the Extension Rotation
heuristic (Erh), presented next. In this sense, Erh extends the set S, i.e. more vertices will be
included in that set or what it is the same, more pieces are scheduled to be cut and any piece
appears just once in S.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

444 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

Extension Rotation heuristic (Erh)
Input: MOSP Graph Gmosp and S generated by the MDGh.
Output: Extended S, via a Hamiltonian path.
Initialize xk and j properly;
while (xk ≠ ∅ or j ≠ ∅) {
 xk = ´max degree neighbor of last vertex in S´;
 if xk ≠ ∅
 S = S ∪ xk;
 else {
 j =´ some neighbor of the last vertex in the current path´;
 if j ≠ ∅
 create_another_path_with_the_same_vertex_set;
 // revert the orientation of the subpath between j and last vertex
 }
}
Return S;

Figure 5 shows that MDGh returns an initial S = {6, 7, 3, 1, 2}. An initial path given by vertices
6-7-3-1-2 has no further vertex to extend (Figure 5a). Since there is an arc between vertices
3 and 2, a rotation follows, modifying thus the path to 6-7-3-2-1 (Figure 5b). After that it is
possible to further perform 5 more extensions (Figure 5c) and S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8},
the given solution is optimal to this example.

8

9

4
3

1

5

10

7

6

2

8

9

4
3

1

5

10

7

6

2

8

9

4
3

1

5

10

7

6

2
a) b) c)

Figure 5 – Extension-Rotation Heuristic.

Figure 6 gives an idea of how Erh works: the left side depicts the sequence of pieces to be
cut, given by the extended set S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8} (the example is the same as
in Figure 2). Related to this sequence of pieces the sequence of patterns is given by:
Spa = {9, 10, 3, 2, 8, 4, 7, 5, 1, 6} and it will open a maximum of 5 stacks during the cutting
process. This latter sequence is obtained; cf. Figure 6, in the following manner: S is traversed
from the right to the left including a pattern that contains the incumbent piece in that
sequence. In the same Figure 6, piece 8 appears in the last position in S, hence, pattern P6
that contains that piece is the last one to be processed. The shaded areas in that figure
indicate open stacks during the cutting process too.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 445

8

9

4
3

1

5

10

7

6

2

4
4

8

6

6

6

73

5
7

1
2

9

p9

p10

p3

p2

p8

p4

p1

p5

p7

p6

3

S={6, 7, 3, 2, 1, 4, 9, 10, 5, 8} Spa={9, 10, 3, 2, 8, 4, 7, 5, 1, 6}

2
1

71
1 3

9 10
10

3 10
5

Figure 6 – S and the corresponding sequence of patterns (Spa).

An experimental determined limit of two rotations was imposed to Erh. This constraint implies
that, in principle, not all vertices (pieces) will be traversed (sequenced) since a Hamiltonian
path may not be found. For the eventuality of existence of vertices yet to be sequenced some
of them can be neighbors to the ones generated after MDGh and Erh. To this case such a
vertex is called a conjugated and the others as remaining. At this point set Π is partitioned
into three subsets: Π = S ∪ Conj ∪ Rem, where S is given by the execution of MDGh and
Erh, Conj by the conjugated and Rem by the remaining vertices. For ease of comprehension
suppose that the example of Figure 2 has three additional vertices, C1, C2 and R as given in
Figure 7. A solution for this problem given by MDGh and Erh and presented in Figures 5
and 6 implies that C1 and C2 belong to the set Conj while vertex R belongs to the set Rem.

Figure 7 – Conj and Rem Vertices in S = {7, 2, 6, 9, 4, 12, 10, 8, 11, 13, 1}.

The vertices in the set Conj are included before their neighbors generated by MDGh and Erh.
For instance, in Figure 7, with S = {6, 7, 3, 2, 1, 4, 9, 10, 5, 8} the new sequence becomes
S = {C2, 6, 7, 3, C1, 2, 1, 4, 9, 10, 5, 8}. Finally, the vertices in Rem of Gmosp, are inserted at

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

446 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

the end of the sequence in a simple lexicographical manner. For the example given before,
S becomes: S = {C2, 6, 7, 3, C1, 2, 1, 4, 9, 10, 5, 8, R}.
The following pseudo-code summarizes its major steps.

Ashikaga Soma (AS) Heuristic
Input: Set of pieces Π and set of patterns Λ;
 Output: Sequence of patterns (Spa)
 Generate Gmosp from Π and Λ;
 S := MDGh (Kn - Gmosp);
 S := Erh(Gmosp, S);
 //Sequence remaining vertices
 If there is any vertex yet to be sequenced
 Detect and insert the conjugate vertices in S;
 Insert any left vertex in a lexicographical order in S;
 Generate Spa from S;
 Return Spa;

Recall that Spa is obtained from S (ordered set) by traversing the set of vertices given by AS
from the last to the first one, with the inclusion of the patterns that contains the vertex being
considered. The worst-case complexity for the algorithm is O(n2), since MDGh is linear
(Halldórson & Radhakrishnan, 1994). Each rotation can be made in (log)O n time (Angluin
& Valiant, 1979), and the total number of extensions is at most O(n2) time. The conjugated
and remaining vertices are inserted in S also in O(n2) time and the same to obtain the final
sequence patterns generation. Hence, the total time is bounded by O(n2). As it will be
presented next, the heuristic has a much better behavior in the practice than this theoretical
worst case bound. Moreover, the heuristic has a speed up of a factor n in comparison with
Yuen3, since this latter one is O(n3).

4. Computational Experiments

The suggested heuristic, AS, is compared with the Yuen3 algorithm. The first set of instances
considered was suggested by Becceneri (1999) and covers the most common practical
industrial scenario applications. In the second class a very large quantity of random instances
were generated. The running times are expressed as CPU milliseconds in Table 1 and
seconds in Table 2. The equipment is a Celeron 533 MHz with 64 Mbytes of main memory.
All heuristics were implemented in Visual C++ 6.0.
For the tests it was assumed without loss of any generality that the quantity of pieces is equal
to those of patterns since as observed by Yanasse (1997b) any pattern can either be grouped
or divided into sets with exactly two pieces such that the total quantity of stacks remains the
same in the optimal solution.
Table 1 presents comparisons among the heuristics Yuen3 (Yuen, 1995), the Smaller Cost
Node, BYS04 (Becceneri et al., 2004) and AS. The tests followed the notation given in
Becceneri et al. (2004), that is, m x n stands respectively for the number of pieces and the
number of patterns, C is the number of pieces to be allocated to a pattern. For instance,
20x20 and C = 12 means for 20 patterns and pieces and to each pattern at most 12 pieces will
be allocated to it. mBYS04, mYuen3 and mAS indicate the mean number of open stacks and

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 447

tBYS04, tYuen3 and tAS are the mean running time. For each case, the sample set has size
20 and it was randomly generated. It can be readily seen that BYS04 produces best results in
terms of the quantity of open stacks, but at higher running times in relation to the number of
patterns and pieces. Yuen3 and AS are very fast, but for increasing values of n, clearly, AS has
a much better time performance than Yuen3. Also, AS produces a smaller quantity of open
stacks than Yuen3 for larger values of n and is competitive with BYS04 for larger values of C.

Table 1 – Comparison of BYS04, Yuen3 and AS, (Becceneri et al., 2004) tests.
Time expressed in milliseconds.

m x n C mBYS04 mYuen3 mAS tBYS04 tYuen3 tAS
5 6.40 7.10 6.90 0.0165 0.0000 0.0000
6 7.75 8.35 7.80 0.0170 0.0000 0.0000
7 8.50 8.90 8.55 0.0100 0.0000 0.0000

10 x 10

8 9.10 9.40 9.10 0.0100 0.0002 0.0000
6 11.80 13.75 13.65 0.0320 0.0002 0.0000
8 14.40 16.15 16.00 0.0235 0.0003 0.0000
12 17.75 19.10 18.10 0.0365 0.0000 0.0000
14 18.80 19.80 18.80 0.0395 0.0000 0.0000

20 x 20

16 19.85 20.00 19.85 0.0325 0.0000 0.0000
8 19.75 23.35 22.40 0.0460 0.0003 0.0000
12 24.55 28.25 26.35 0.0940 0.0000 0.0000
16 27.50 29.70 28.00 0.1255 0.0005 0.0000
20 29.20 29.95 29.30 0.1535 0.0003 0.0004

30 x 30

24 30.00 30.00 30.00 0.1120 0.0003 0.0003
10 29.40 34.70 32.80 0.1460 0.0000 0.0000
15 34.40 38.80 36.80 0.2480 0.0007 0.0005
10 37.40 39.90 38.40 0.4010 0.0000 0.0000

40 x 40

25 39.30 40.00 39.30 0.5150 0.0000 0.0000
10 35.60 42.00 39.90 0.2800 0.0010 0.0008
15 42.70 49.30 45.20 0.4910 0.0007 0.0005
20 45.90 50.00 47.10 0.7180 0.0034 0.0019

50 x 50

30 49.30 50.00 49.30 1.2270 0.0027 0.0005
10 42.30 49.10 47.60 0.4300 0.0034 0.0002
15 50.40 57.60 54.20 0.7960 0.0042 0.0000
20 55.50 60.00 56.80 1.3510 0.0047 0.0008

60 x 60

25 56.90 60.00 57.90 1.7390 0.0059 0.0004
10 67.05 79.35 77.70 1.8175 0.0124 0.0009
15 81.70 94.30 88.60 3.8620 0.0151 0.0010
20 88.50 98.90 93.00 7.8740 0.0154 0.0011
30 95.40 100.00 97.00 18.7570 0.0148 0.0015

100 x 100

40 97.90 100.00 98.80 32.9110 0.0161 0.0009
10 98.80 115.80 114.60 6.4130 0.0393 0.0028
15 120.10 140.25 131.05 21.8825 0.0392 0.0022
20 131.65 147.75 139.20 44.1570 0.0411 0.0035
25 138.10 149.85 142.60 69.0080 0.0427 0.0031

150 x 150

30 142.20 149.90 145.30 97.0360 0.0434 0.0027

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

448 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

The second set of computational tests was designed to compare specifically Yuen3 and AS.
A much larger quantity of instances, 2000, was used for each value of n ranging from 200 up
to 1000 patterns and the results are presented in Table 2. The quantity of pieces and types
were associated with the density of graphs Gmosp’s which varied from 10% up to 90%. AS
produces much better results than Yuen3 in all classes. It becomes clear that AS is much
faster than Yuen3, indeed, it is almost ten times faster for instances with high density and/or
n large. It is worth of mentioning that for a given value of n AS has an almost equal time
response in respect to the density. A possible explanation to understand this behavior can be
the fact that a Gmosp has a large clique embedded in it and after sequencing it the induced
graph becomes very sparse. The existence of a large clique detected by MDGh can also be a
possible reason of why by imposing just two rotations to Erh sets Con and Rem have small
cardinality. The suggested AS heuristic dominates Yuen3 in experimental running times and
means errors. It possesses a smaller complexity order and also it has a very simple
implementation.

Algorithm AS implemented in C++ can be obtained directly by request from the
corresponding author.

Table 2 – Comparison of Yuen3 and AS, randomly generated patterns × pieces.
Time is expressed in seconds.

density n mY3 mAS tY3 tAS density n mY3 mAS tY3 tAS
 200 131.12 137.25 0.040 0.001 200 198.99 187.78 0.041 0.001
 300 228.66 226.72 0.127 0.003 300 299.74 287.76 0.133 0.003
 400 321.50 312.73 0.297 0.004 400 399.94 386.83 0.309 0.006

10% 500 435.62 412.40 0.576 0.007 60% 500 499.98 486.61 0.596 0.009
 600 539.11 506.36 0.990 0.009 600 600.00 585.90 1.021 0.012
 700 644.21 600.98 1.560 0.013 700 700.00 686.25 1.609 0.017
 800 751.27 697.70 2.330 0.017 800 800.00 786.11 2.395 0.022
 900 857.20 794.58 3.307 0.021 900 900.00 886.02 3.402 0.029
 1000 964.29 893.85 4.536 0.029 1000 1000.00 985.78 4.647 0.035
 200 163.07 157.24 0.039 0.001 200 199.62 190.40 0.042 0.001
 300 271.69 253.78 0.128 0.002 300 299.95 290.64 0.135 0.003
 400 376.94 349.58 0.300 0.005 400 400.00 390.29 0.311 0.006

20% 500 482.95 447.30 0.581 0.007 70% 500 500.00 489.77 0.601 0.007
 600 588.19 546.80 0.996 0.012 600 600.00 589.55 1.028 0.012
 700 692.01 647.10 1.572 0.015 700 700.00 689.53 1.622 0.017
 800 792.94 743.52 2.341 0.019 800 800.00 789.58 2.410 0.022
 900 893.97 840.88 3.329 0.025 900 900.00 889.54 3.422 0.028
 1000 996.11 943.08 4.561 0.031 1000 1000.00 989.26 4.676 0.035
 200 182.31 170.12 0.039 0.001 200 199.93 193.00 0.040 0.001
 300 290.61 269.30 0.129 0.003 300 300.00 293.08 0.136 0.003
 400 392.73 365.46 0.301 0.006 400 400.00 392.90 0.315 0.006

30% 500 495.75 465.74 0.585 0.007 80% 500 500.00 492.67 0.607 0.008
 600 597.36 564.50 1.003 0.012 600 600.00 592.65 1.037 0.011
 700 698.33 663.44 1.579 0.016 700 700.00 692.67 1.634 0.016
 800 798.79 763.15 2.357 0.020 800 800.00 792.50 2.430 0.021
 900 899.29 863.21 3.347 0.026 900 900.00 892.74 3.444 0.028
 1000 999.57 963.50 4.582 0.033 1000 1000.00 992.53 4.711 0.033

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009 449

 200 192.18 178.46 0.040 0.002 200 200.00 194.40 0.043 0.001
 300 296.44 276.81 0.131 0.003 300 300.00 294.58 0.137 0.003
 400 398.50 376.85 0.305 0.005 400 400.00 393.88 0.317 0.006

40% 500 498.79 474.51 0.588 0.008 90% 500 500.00 493.65 0.609 0.008
 600 599.45 574.54 1.008 0.012 600 600.00 593.63 1.040 0.012
 700 699.77 675.15 1.594 0.017 700 700.00 693.42 1.643 0.016
 800 799.85 775.02 2.372 0.021 800 800.00 793.18 2.472 0.021
 900 899.91 874.32 3.363 0.028 900 900.00 893.46 3.458 0.026
 1000 999.97 973.74 4.604 0.034 1000 1000.00 993.14 4.725 0.033
 200 196.91 184.01 0.041 0.001
 300 299.04 283.37 0.132 0.003
 400 399.64 382.88 0.306 0.006

50% 500 499.77 481.90 0.592 0.009
 600 599.89 581.83 1.012 0.013
 700 699.99 681.51 1.599 0.017
 800 799.99 781.76 2.381 0.023
 900 899.99 880.84 3.381 0.028
 1000 1000.00 980.50 4.624 0.036

5. Conclusion

The Minimization of Open Stacks Problem appears directly in a large quantity of practical
settings and it has a structure that makes it difficult to be solved exactly since it is also a
NP-Hard problem. The very well known and simple heuristic for solving the problem –
Yuen3 – produces good results in the practice, in the quantity of open stacks and in the
running time, therefore it is difficult to find a better approach for the solving the problem.
It was observed here that the problem when modeled as a search in a special graph – the
MOSP Graph – possesses very large cliques. This feature permitted to be explored and a
quadratic computational requirements time and space heuristic, AS was suggested. Extensive
computational experiments were carried out and from them it is possible to infer that the
suggested heuristic dominates Yuen (1991 and 1995) approach in the running time and mean
error too. AS generated smaller quantities of open stacks than Yuen3, also it was always
faster than the latter in the practice and in theory it improves the running time by a factor of
n. Moreover, no heuristic can have a better theoretical order of convergence than AS since it
allocates a time for solving the problem proportional to the input size.

Acknowledgments

We are greatly indebted to three anonymous reviewers whose thorough and detailed review
helped pretty much us to greatly improve the manuscript. We would like to thank José Carlos
Becceneri for sending us the code for the BYS04 heuristic and Horacio Hideki Yanasse for
many helpful discussions too.

Dedication

This paper is in loving memory of Prof. Vakulathil Abdurahiman. BEng, MSc, PhD,
12.12.1953 – 06.04.2007.

Ashikaga & Soma – A heuristic for the minimization of open stacks problem

450 Pesquisa Operacional, v.29, n.2, p.439-450, Maio a Agosto de 2009

References

(1) Angluin, D. & Valiant, L.G. (1979). Fast probabilistic algorithms for Hamiltonian
circuits and matchings. Journal of Computer and System Sciences, 18, 155-193.

(2) Ashikaga, F.M. (2001). A frugal method for the minimization of open stacks problem.
(in Portuguese) MSc. Thesis. Technological Institute of Aeronautics.

(3) Becceneri, J.C.; Yanasse, H.H. & Soma, N.Y. (2004). A method for solving the
minimization of the maximum number of open stacks problem within a cutting process.
Computers & Operations Research, 31, 2315-2332.

(4) Becceneri, J.C. (1999). The Minimization of Open Stacks Problem in industrial
environments (in Portuguese). DSc. Thesis. Technological Institute of Aeronautics.

(5) Bollobás, B. (1998). Modern Graph Theory. Springer, New York.
(6) Bollobás, B. (2001). Random Graphs. 2 edition, Cambridge University Press, Cambridge.
(7) Ferreira, A.G. & Song, S.W. (1992). Achieving optimality for gate matrix layout and PLA

folding: a graph theoretic approach. Integration. The VLSI Journal, 14(2), 173-195.
(8) Faggioli, E. & Bentivoglio, C.A. (1998). Heuristic and exact methods for the cutting

sequencing problem. European Journal of Operational Research, 110(3), 564-575.
(9) Fink, A. & Voss, S. (1999). Applications of modern heuristic search methods to pattern

sequencing problems. Computer and Operations Research, 26(1). 17-34.
(10) Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability: A Guide to the

theory of NP-Completeness. Freeman, San Francisco.
(11) Halldórsson, M.M. & Radhakrishnan, J. (1994). Greed is good: approximating

independent sets in sparse and bounded-degree graphs. Proc. STOC’94, 439-448.
(12) Homer, S. & Peinado, M. (1996). Experiments with polynomial-time clique approximation

algorithms on very large graphs. In: Cliques. Coloring. and Satisfability: Second
DIMACS Implementation Challenge [edited by D.S. Johnson and M.A. Trick], 26, 146-167.

(13) Kučera, L. (1995). Expected complexity of graph partitioning problems. Discrete
Applied Mathematics, 57, 193-212.

(14) Linhares, A. & Yanasse, H.H. (2002). Connections between cutting-pattern sequencing.
VLSI design and flexible machines. Computers and Operations Research, 29(12),
1759-1772.

(15) Pósa, L. (1976). Hamiltonian circuits in random graphs. Discrete Mathematics, 14, 359-364.
(16) Yanasse, H.H. (1997a). On a pattern sequencing problem to minimize the maximum

number of open stacks. European Journal of Operational Research, 100, 456-463.
(17) Yanasse, H.H. (1997b). A transformation for solving a pattern sequencing problem in

the wood cut industry. Pesquisa Operacional, 17(1), 57-70.
(18) Yuen, B.J. (1991). Heuristics for sequencing cutting patterns. European Journal of

Operational Research, 55, 183-190.
(19) Yuen, B.J. (1995). Improved heuristics for sequencing cutting patterns. European

Journal of Operational Research, 87, 57-64.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

