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ABSTRACT. This article presents a practical case in which two of the most efficient numerical procedures
developed for derivative analysis are applied to evaluate the POP (Investment Protection with Participation),
a structured operation created by Sdo Paulo Stock Exchange — BM&FBOVESPA. The first procedure solves
the differential equation through the use of implicit finite differences method. Due to its characteristics,
the approach makes it possible to run sensitivity analysis as well as price estimation. In the second, the
problem is solved by Monte Carlo simulation, which facilitates the identification of the probability related
to the exercise of the embedded options.
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1 INTRODUCTION

The international integration of financial markets has stimulated the development of new ins-
truments to enable participants to adopt more sophisticated hedge and investment strategies. It
is possible to observe, in the wake of innovations in the derivatives market, a raise in the com-
plexity of the products traded that, in conjunction with the interest in evaluating them, has led
the knowledge related to this area to experiment significant development. Some examples of
such products are the Liquid Yield Option Note (LYON) created by the Merrill Lynch, the op-
tion on one-day interbank deposit futures and the option on daily adjustment, launched by the
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BM&FBOVESPA, among others. Even if the application of the basic concepts developed by the
first authors who studied the derivatives market, such as those presented in the works by Black
& Scholes (1973), Merton (1973), Black (1974), Cox et al. (1979), among others, are kept pre-
sent in the most recent pricing models, renewed efforts are required in the extension of some of
these works and in the improvement of the proper numerical methods for the solution of several
issues related to the topic, such as the Finite Difference method and the Monte Carlo simulation
method, applied to this work.

Black & Scholes (1973) established the bases of the modern financial options theory, when they
developed an equilibrium model that did not need any restrictive assumption on the individual
preferences regarding risk, or on market price formation in equilibrium. They achieved that
through the establishment of a “risk-free” portfolio, whose pricing arises out of non-arbitration
conditions. The model defines a differential equation that describes price behavior for the deriva-
tive that, in conjunction with proper boundary conditions, is used under certain circumstances to
derive an expression that allows the determination of the value of an European-type call option.

One of the characteristics of the Black & Scholes model — also present in Merton (1973), Black
(1974) and Cox et al. (1979) models —, is the evaluation based on the so-called risk-neutral
world. In the risk-neutral evaluation, it is not assumed that the investors’ preferences before risk
are neutral, and it does not use actual probabilities, but the risk-neutral probabilities or also called
martingale measures.

According to the Black & Scholes line, Merton (1973a) extended the model so that it envisaged
the possibility that the underlying actions might distribute dividends, what would eventually also
enable applications in the evaluation of future options, stock indexes and currencies. Additio-
nally, in another important article, Merton (1972b) showed the main relationships between call
and put options.

Black (1976) developed an future options pricing model for commodities, based on the assump-
tion that the future price follows the same stochastic process of stock prices used by Black &
Scholes, the Geometric Brownian motion (GBM, defined below). Although it has originally
been developed to evaluate options on futures, the same model also generated applications in the
evaluation of options on interest rates, such as those developed in works by Vasicek (1977) and
Black et al. (1990).

As regards the evaluation of American options, some authors tried to develop analytical approa-
ches, such as Johnson (1983), MacMillan (1986), Barone-Adesi & Whaley (1987), among others.
Given the difficulty to find analytical solutions in certain situations, the numerical methods have
become a fundamental tool to solve problems with complex derivatives. Cox et al. (1979) de-
veloped the so-called Binomial model, a very useful and popular technique to price an option,
applicable both to European and American options. In this model, the different trajectories that
may be followed by the underlying asset during the period of maturity for the option are listed.
By using a risk-neutral evaluation and a risk-free interest rate as discount rate, the option value at
each tree node is obtained, on a recursive basis, until the option value at the start date is obtained.
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Brennan & Schwartz (1978) developed applications for the Finite Difference method in the eva-
luation of options. That method consists of the discretization of the differential equation satisfied
by the derivative, which is converted into a set of interactively resolved difference equations.
Authors such as Samanez et al. (2002) applied that method to evaluate convertible securities
with American call options and European put options implicit in the contract.

As the Monte Carlo simulation (MCS) works on uncertain situations in order to determine ex-
pected values for unknown variables, it may be defined as a method for statistical tests in which
the values are established through random selection, where the likeliness of choosing a certain
result among all the possibilities is obtained by means of a random sampling to identify events.
In the SMC, the factors which are not known with certainty are called random variables, whose
behavior is described by a distribution of probabilities.

The SMC technique deserves to be stood out as a numerical method to evaluate derivatives,
and its first application to the evaluation of European options was carried out by Boyle (1977).
Some recently developed models bring down the belief that the simulation methods would be
applicable only to the evaluation of European options, that is, it was thought that they had no
flexibility for the evaluation of American options. Two outstanding models in this sense were the
models by Grant, Vora & Weeks (1996) and the Least-Squares Monte Carlo model, by Longstaff
& Schartz (2001). Therefore, in finance theory, the Monte Carlo simulation has been largely used
in the calculation of option, in market and credit risk assessment, in the calculation of Value at
Risk (VaR) in the analysis of investment projects, in the solution of Real Options, among others.
Torio et al. (2006) and Samanez et al. (2002) presented an application of these models in the
evaluation of complex convertible securities. Araujo (2004) applied Least-Squares Monte Carlo
method to evaluate the Real Options imbedded in investment projects.

As an Implicit Finite Difference method and the Monte Carlo simulation method to evaluate the
POP, this article is divided into five sections. The section 2 focus on detailing general aspects
concerning POP, describing its operation, characteristics and details. The section 3 present the
methodologies and steps to be followed in the definition of the pricing models used in POP
pricing. In section 4, the two POP pricing models are applied, the results obtained are compared
with those observed in the market on the dates analyzed, as well as POP values resulting from the
application of Black & Scholes (1973) model in the pricing of options embedded in the security.
In this section, the sensitivity of the security vis-a-vis changes in specific parameters is evaluated,
as well as the behavior of the likeliness to exercise the options embedded before changes in the
investor’s return expectation regarding the isolated investment in the underlying action. Finally,
section 5 is dedicated to final comments and conclusions.

2 DETAILING OF POP

The POP (Protected and Participative Investment), which has been under negotiation since
09.02.2007, is a variable income product, negotiated at BM&FBOVESPA, which provides a
protection against possible losses (depreciation) of the stock investment in exchange for a par-
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ticipation in the potential gains in this investment. This is obtained through the combination of
application in stock and application in its derivatives.

It works as follows: when the investor chooses which level of POP he/she will invest in, he/she
defines the level of protection desired. If the stock drops, he/she receives the amount of capital
protected, thus covering the risk corresponding to the depreciation. In turn, if the stock rises, the
investor gives up a part of the profit obtained with the appreciation of the stock.

The amount of protected capital chosen may be lower than the amount invested (price paid by
the POP). Rather than stock, it is a combination of three instruments. POP is comprised by a
certain stock in the spot market and its respective call and put options in the options market. All
of the above is combined in adequate quantities and proportions to enable the construction of
protection strategies for the participative investment. Although the POP is comprised by three
instruments, one single order or instruction is sufficient to buy or sell it in the market.

Depending on the series offered in the market, the purchaser of this product signs up the position
of holder in a given underlying stock — and the minimum quantity acquired corresponds to its
standard lot — and in European put options on that stock. Additionally, the ladder assumes short
position in European call options credited on a certain percentage of the same stock, and the
percentage referred may vary from a POP to the next, according to participation percentage
defined by BM&FBOVESPA. Currently, the series authorized for negotiation have participation
levels of 70% or 80%, which is equivalent to assuming positions credited in call options over
30% or 20% of the stock acquired in POP, respectively. Besides, it is important to highlight that
the strike price and the term of the options are the same, and it also equals to the term of the
security itself.

Therefore, the put option offers protection to the investment on its maturity date, thus ensuring
a minimum price for the stock acquired. This option is obtained by exercising the right of sale
of the underlying stock in case its price in the spot market is inferior to the strike price of the
put option. Notwithstanding, setting the security’s liquidity aside, one may state that the current
value of the strike price for the put options, discounting the risk-free interest rate, represents a
minimum threshold for the security price at any instance of time.

As far as the call option is concerned, this represents, in scenarios in which the underlying stock
price at maturity date is superior to the strike price of the options, a reduction of participation in
the POP holder profit in relation to gains that would be obtained from the isolated purchase of
the underlying stock. So, while the protection makes the security more valuable to the investor,
the differentiated participation in the profit reduces its value, so that these two influences on the
price of the product tend to offset. Therefore, in practical terms, the greatest draw posed by
POP is the offer, in a kind of portfolio, the financing of the purchase of put option by selling
the call option, so that these securities are generally negotiated at prices very close to that of the
underlying stock.

Thus, the POP parameters are the underlying stock, the strike price for the options, the percentage
of participation and the maturity date; the latter, as mentioned above, is equal to the series of
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option that compose it. On 25.08.2010, there were POPs authorized by BM&FBOVESPA and
negotiated in the market over four distinct stocks: Petrobras PN, Vale PNA, Bradesco PN and
ItauUnibanco PN.

The POP may be defined as follows:

e A position purchased in Q sy stock acquired in the spot market
e A long position in O oy put options with strike price Xop

e A short position in Qoc call options with strike price Xoc¢

where: Xoy = Xoc.
When acquiring a certain POP, the protected capital (PC) is defined as:
PC=Xoy x Qov . (D

Qoy is the quantity of indexed underlying stock in put options with strike price X oy acquired
in POP.

In case the call option is exercised, the participation (P) in the result is defined as:
P =Xoc x Qoc +Syv x (Qov — Qoc) . (2)

where Qoc is the quantity of indexed underlying stock in call options with strike price Xoc
acquired in POP, and Sy y is the price of underlying stock at maturity date.

Equation (2) may also be written as follows:
P=Xocx (1 =PP)x Quy+Syy x PP x Quy, 3)

where P P is the percentage of participation. By definition of POP, we have Oy = Qor —
Qoc and Qoy = Oumy.

It is worth pointing out that the investor may freely negotiate the assets that comprise the POP,
individually or jointly, so that the guarantee of a minimum price for the underlying stock is
only valid when the POP is kept until maturity date — or, in special, when the put option is kept
until the maturity. When a sale order is given for the security, the execution of the operation is
equivalent to assuming inverted positions in relation to those assumed at the moment the security
was purchased, that is, the short position is assumed in the underlying stock at the spot market
and the holding position in the call option. The taxation is calculated based on the closing of one
or more POP components, following the same taxation rules applied on operations with stock
and options. Day-trade operations of parts of POP are also admitted, that is, the investor may
negotiate POP and, on the same day, totally or partially negotiate the spot position or any of the
options, thus dismantling the POP.

The liquidation of POPs’ purchases and sales comply with liquidation terms of their parts: In
the spot market, the liquidation is on D+3 (third business day after the negotiation) and, in the
options market, on D+1 (first business day after the negotiation). In case POP is exercised at
maturity date, the liquidation occurs on D+3.
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3 ASSESSMENT MODELS

The two models proposed in this work for POP pricing consider that the stochastic variable,
the price of the underlying stock, follows a Geometric Brownian motion. The first one refers
to the resolution of the differential equation satisfied by the derivative from the Implicit Finite
Differences method and, the second one, from the solution through Monte Carlo simulation
method. In a possible extension of this work, especially addressing commodities companies
stock, one could take into account that the stochastic variable follows a mean-reversion stochastic
process, with or without Poisson jump.

3.1 POP Evaluation by Implicit Finite Differences method

This first model developed for POP pricing and analysis use the option pricing theory, using the
Black & Scholes (1973) model as main reference. After obtaining the differential equation that
determines the security behavior, the numerical procedure known as Implicit Finite Differences
method is used.

To estimate the value of an option, the basic assumption to be adopted says that its equilibrium
value is the one that impairs gains with arbitration, both from the purchaser and the seller, since
the first the former has optimal strategy in relation to put option and the latter has optimal strategy
in relation to call option. Therefore, the put options will be exercised whenever the underlying
stock price for the option at maturity date is lower than its strike price. On the other hand, the
call options will be exercised whenever the underlying stock price for the option at maturity date
is higher than its strike price.

Consequence of the strategy to exercise the put option: When building a POP, it is established
that, on the maturity date of the embedded security or stock, its value is never lower than the
protected capital. Thus, in case the underlying stock value is lower than the strike price for the
options, POP value will be obtained as follows:

Valorpop = Xov x Qoy = Xov X Quv 4)

Consequence of the strategy to exercise the call option: When building a POP, it is established
that, on the maturity date of the embedded security or stock, its value will be in the maximum as
much as the value obtained after exercising the call options present in each security added to the
sale price for the remaining stock at the applicable spot market price. Therefore, generalizing
equation (4) for any value of the underlying stock at maturity date for the security, POP value at
that moment may be represented as follows:

Valorpop = min[Xoy x Quy, Xoc x (1 = PP) X Qupy + Syy x PP x Quv]. (5)

3.1.1 Mathematic model

If the underlying stock price follows the Geometric Brownian motion (GBM), it is assumed that
the natural logarithm of the underlying stock price follows a normal distribution, so that the stock
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price and its continuously capitalized price follow a normal distribution. This stochastic process
is widely used to describe the behavior of stock prices and several assets-objects, so that this
assumption is adopted in the model described herein. Consequently, assuming that the behavior
of the underlying stock price follows the GBM:

dS = pSdt +oSdZ, (6)

where: S represents the value of the underlying stock; dS is the change in the underlying stock
value at a time interval d¢; w is the expected return rate for the underlying stock; dt is the time
interval discretized; o is the standard deviation of the underlying stock return; dZ = e+/dt, but
¢ has standardized normal distribution with average zero and standard deviation equal to 1, and
Z follows a GBM also called Wiener process.

The definition of the differential equation satisfied by POP is obtained from the definition of the
equilibrium relationship between the prices of the two hypothetical portfolios, in the sense that
their prices do not allow the realization of arbitration gains. Considering the stochastic process
defined in equation (6) and from the application of Ito’s Lemma, the following partial differential
equation is obtained (Samanez et al., 2002):

1 ,.,8*POP 3POP_ 0POP
- 0°S§ +r S+

2 052 aS ot

where POP, S, r and ¢ represent, respectively, the value of the security under evaluation, the

—rPOP =0, (7)

underlying stock price, the risk-free interest rate and the time. Equation (7) is actually Black
& Scholes’ (1973) differential equation, and must be satisfied by derivatives dependant on any
asset-object that follows a Geometric Brownian motion. Thus, to price POP, the details regarding
the security are taken into account in the boundary conditions for the model. The final security
price will be obtained by the resolution of this equation, after defining the proper boundary
conditions, which derive from the optimal strategies to exercise call and put options.

3.1.2 Numerical resolution

By solving the differential equation (7), subject to the boundary conditions described below, gets
an estimate for the security value, given the assumptions adopted so far. As mentioned above,
the solution of the problem will be performed from the Implicit Finite Difference method. In the
application of the method, the differential equation is converted into a set of difference equations
that, as mentioned above, will be resolved interactively.

Therefore, the differential equation that determines POP behavior — equation (7) — assumes the
form below (Iorio et al., 2006):

ai,jPOPLi,j—l + bi,jPOPi,j + CiquOP[,j.H = POP (8)
where:

1 2.2 1 . 2.2 1 2.2 1 -
aij==50"] At—i—zr]At; bij=0"j°At+1+rAt; Cij ==50"] At—ErJAt.
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The next step is the discretization of the time instances and the underlying stock price. A quantity
of underlying stock prices (.5) is chosen spaced equally between 0 and Sp,ax, Where the price Spax
is defined in such a way that it is possible to define POP value at any time instance, in case the
underlying stock reaches that value. For discretization of time (¢), a quantity of instances equally
spaced between the date of evaluation (¢ = 0) and the maturity of the security (¢ = T') is chosen.
For M + 1 underlying stock prices and N + 1 time intervals, the graphic representation of the
results will be a grid with (M + 1) x (N + 1) points, each of which representing a value of
the asset for each value of S and ¢. Thus, the possible values for those variables are discretized
in a finite number of points, being point (7, j) correspondent to the instant i A¢ and to the stock
price jAS. The shorter the steps used in the discretization proposed, the better adjusted will
the model be.

3.1.3 Boundary conditions

e Boundary condition on maturity date: on the maturity date (¢ = 7) POP value will be
obtained from the equation (5):

POPy ; = min[Xoy x Quy.Xoc x (1= PP)x Quy + jAS x PP x Q]

9
j=01,23...M. ©

e Maximum value condition for underlying stock: when the underlying stock value is high
enough at any time instance, it will be safe to assume that the call option will be exercised
at maturity date. Therefore, from the definition of a sufficiently high value for the stock

object (Smax), the security value for the time instances between 0 and N will be:
POPy ; = [Xoy x (1= PP) x Oy +MAS x PP x Qyy| x e " NTOAT (10)
i=0,1,2,3...N,

where MAS = Spax.

e Minimum value condition for underlying stock: if the underlying stock value assumes
zero value (S = 0), the put option is assumed to be exercised at maturity date, so that the
security value for the time instances between 0 and N will be:

POP,y=0, i=0,1,2,3...N. (11)

Figure 1 illustrates both the discretization process of the parametric space for variables that go-
vern the security price behavior (underlying stock price and time), and the application of the
boundary conditions presented in equations (9), (10) and (11).

After defining the boundary conditions, what comes is the recursive use of equation (8) in order
to determine the asset value for each of the points that describe the discrete space, comparing the
values obtained in each case with the optimal strategy to be adopted. By firstly approaching the
points that correspond to instant 7 — A¢, that is, withi = N — 1:

an—1,jPOPy_1 j—1+bN_1;POPN_1j+cNn-1;POPN_1j41 = POPy. (12)
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POP,, —[X . % (1-PP)x Qype + MAS kPP Q, | o0
b N

Smn-r L ®

9/

JAS® L ] L L 4 L 4 >POP\..=nu'.n[_—\:B]
2AS® L 4 & L J L
aST . ¢ s 4
S W— FUe
{ At 2AL 3AtL T
i
s
POB, =0

where: A= X, X0 B=XyexX(1- PP)XQ)y - JASXPPXQ,

Figure 1 — Grid with discretized underlying stock values for each time instance.

Thus, we obtain:

For j=1: ay 11 POPNy_10+bn_11POPy_11 +cn-11POPNy_12=POPy
For j =2: ay—12POPN_11 +bn_12POPN_12+cN-12POPy_13=POPy,
For j =3: ay13POPN_12+bn_13POPN_13+cN-13POPNy_14=POPy3

For j = M-1: an_ 1,1 POPN_1,m—2+DN 1, M1 POPN_{ —1+eN—1, M1 POPN_1 . =
POPN M- .

3.2 POP Evaluation by Monte Carlo simulation

The POP evaluation through the Monte Carlo simulation (MCS) technique may be summarized
in three stages:

1. Simulation of underlying stock values at POP maturity date (using the risk-neutral appro-
ach);
2. Definition of asset payoff;

3. Pricing of the option through the present average value of payoffs discounted at risk-free
interest rate (risk-neutral context).

Thus, similarly to the Finite Difference model described above, in the simulation model will ad-

mit that the stock object price will behave according to a Geometric Brownian motion. Therefore,
Monte Carlo simulations may be used to simulate price trajectories as described below.
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In case F(S,¢) is a function of S and of time (¢), where S follows Ito’s process (GBM is a
particular case of [to’s process), we obtain (Hull, 2005):

oF oF 19%F
dF(S,t) = —dS+ —dt + - ——dS*. 13
(5.0 aS + ot + 29382 (13)
For F(S,t) = In S, and if the process that describes the underlying stock price behavior S is the
Geometric Brownian motion, we obtain (Hull, 2005):

2

dF(S, 1) = (M . "7) dt +odZ. (14)

Given the fact that /' behavior is described by the stochastic process presented in equation (14),
we may define the discrete model of F' evolution along time in (15) below. In the limit, when A¢
tends to zero, we obtain the same continuous process mentioned above:

2

AF(S,t):AlnS:<u—%>At+ostt. (15)

By applying the properties of the logarithm to equation (15):

S[ 0'2
AlnS:lnS,—lnSozlns—z u—7 At + oev At . (16)

0
Thus: , ,

i _ e(ﬂ%)AH-GS«/E or S = S()@(;L%)At+as«/§ (17)

So
To execute the simulations, the expected return rate for the underlying stock () must be replaced
by the risk-free rate, since it is assumed that underlying asses does not pay dividends, that the
fair price of an option does not allow arbitration gains, and the evaluation is made under a risk-
neutral context (Boyle, 1977). Therefore, from the values of (that follows a normal, standardized

distribution), the possible trajectories to be run by the underlying stock value along time are
defined.

So, in order to construct a simulation interaction, N independent random samples must be col-
lected from the normal, standardized distribution. When they are replaced in the equation (17),
the S values at time instants 0, A¢, 2A¢, ..., T, are calculated, providing a possible trajectory
for the underlying stock value.

As the number of trajectories increases, a distribution of underlying stock prices at maturity date
for the security starts to be built. Consequently, the payoff for each trajectory will be determined
by equation (18).

payoff = min[Xoy x Quy, Xoc X (1 = PP) X OQyy + Ssim X PP X Quy],  (18)
where Sy, represents the underlying stock value at maturity date obtained in each simulation.

Finally, POP value will then be obtained by the average of the values present for each payoff,
discounted at risk-free interest rate.
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3.2.1 Calculation of the probabilities to exercise the call and put options

As the strike price for the call and put options present in the POP is the same, we may state
that one of these options will always be in-the-money at maturity date for the security, whereas
the other will be out-of-the-money. The only exception is the case when the underlying stock
price is exactly the strike price for the options, when they are both at-the-money. Assuming zero
probability for this event, we conclude that the sum of probabilities to exercise each one of these
options is necessarily 100%.

Thus, this section proposes a methodology to evaluate the probabilities to exercise the implicit
call and put options in POP based in Monte Carlo simulations. The probabilities to exercise the
put options represent the odds of the protection acquired through POP be adopted. The proba-
bility to exercise a call option, in its turn, indicates the odds of the investor incur in a reduction
in profit sharing in relation to the gains that would be obtained from the isolated purchase of the
underlying stock. The calculation of these probabilities involves the estimation of equiprobable
trajectories for the underlying stock price, thus allowing the construction of price distribution for
underlying stock at maturity date for the security.

Consequently, the simulations will be carried out by applying the equation (17), being necessary
to consider the expectation of return by the investor regarding the investment made directly in
stock because, in this stage, the context of risk-neutral evaluation is abandoned. Finally, from
the construction of price distribution for underlying stock at maturity date for the security, the
exercise of each one of the options for each simulated trajectory will be identified. As each un-
derlying stock value obtained in this procedure has the same likeliness to occur, the probabilities
to exercise the options will be estimated through equations (19) and (20).

PrE Number of simulations that generated the exercise of put option (19)
rExoy =
ov Total number of simulations

PrExoc =1 —PrExoy, (20)

where: Pr Ex oy represents the probability to exercise put option and Pr Ex ¢ the probability to
exercise the call option.

4 APPLICATION OF THE MODEL

In order to evaluate the two models developed, we selected fours POPs, whose characteristics are
described below. Both were applied for the calculation of the price for these securities between
February 9" and February 23, 2007.

e VALE70 — Underlying stock: Vale PNA N1 (VALES); percentage of participation: 70%;
strike price for the options: R$ 60; maturity date: 20.08.2007.

e VALES0 — Underlying stock: Vale PNA N1 (VALES); percentage of participation: 80%;
strike price for the options: R$ 55; maturity date: 20.08.2007.
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e PETR70 — Underlying stock: Vale PNA PETR4 (VALES); percentage of participation:
70%; strike price for the options: R$ 45; maturity date: 20.08.2007.

e PETR80 — Underlying stock: Vale PNA PETR4 (VALES); percentage of participation:
80%; strike price for the options: R$ 40; maturity date: 20.08.2007.

In addition to the characteristics of each POP described above, the other input parameters used
by each model were:

e Number of business days between February 9", 12, 13t 14t 15t 16t 215t 227 and
23,2007 (exclusive) and the maturity day for the POPs, August 20t 2007, is 160, 159,
158, 157, 156, 155, 154, 153 and 152, respectively. The discretization of time made in the
two models was 0.25 days.

e The volatility was estimated from the standard deviations (in the period of 0.25 days) of
historical logarithm returns for each underlying stock between 8.02.2006 and 8.02.2007.
Thus, the estimated values for each one of the referenced stock were: Petrobras PN
(PETR4 = 0.946646% and Vale PNA N1 (VALES) = 1.042066%.

e The risk-free interest rate used was 1.0783% in monthly terms, equivalent to the CDI rate
in January 2007, or 0.008986% in the period of 0.25 days (continuous capitalization).

Specifically, in relation to the Implicit Finite Differences model, the underlying stock values
were discretized in intervals of R$ 0.1. Since the number of discretizations made was 2,500,
the maximum value for each underlying stock in the grid represented in Figure 1 was R$ 250
(R$ 0.1 x 2,500). Considering the discretization of the 160-day term for the securities, this grid
was with (2,5004-1)x(160/0.25+1) points, each one representing on underlying stock value in
each time instance.

As regards exclusively the Monte Carlo simulation model, the number of simulations made in
each estimate for POP value was 50,000, although satisfactory convergence has been reached
even with a smaller number of simulations. Considering the application of the model for evalu-
ation of POP PETR70 on 09.12.2006, the Table 1 presents the convergence in the model as the
number of simulations is elevated.

While, in the Monte Carlo simulation model, 50,000 simulations were necessary for each value
generated for POP on the dates evaluated, the results presented by the Finite Differences mo-
del are provided according to the grid represented in Figure 1. Thus, in one single application,
POP values are generated for any time instance and underlying stock value dicretized. There-
fore, Figure 2 presents the results graph for this model when applied to POP PETR70, having
09.02.2007 as start date. It is possible to notice that, regardless of the underlying stock value and
the date, the POP price has a minimum limit. This amount is represented by the present amount
of strike price for the put option at risk-free interest rate. On 09.12.2007, this limit is RS 44.48.

Before we begin the analysis of the results found, Figure 3 compares an investment made in
POP PETR70 on 09.02.2007 with the investment made directly in its underlying stock. We may
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Table 1 — Convergence of the Model of

Monte Carlo simulation.

Estimated value
Number of for POP Standard
or
simulations R®S) deviation
1,000 46.138 0.1888
5,000 46.161 0.0577
10,000 46.128 0.0442
20,000 46.137 0.0253
30,000 46.138 0.0243
40,000 46.130 0.0215
50,000 46.140 0.0159
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Figure 2 — Grid with results from POP evaluation (PETR70) from the Implicit Finite

Differences Model.
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notice, in the graph on the left, that the POP payoff at maturity date is limited at the bottom by
RS 45, which represents the strike price for the put option. On the other hand, for underlying

stock values above RS 45, POP payoffis inferior to the direct investment in the underlying stock,
as the profit start to be shared with the holder of the call option. On 09.02.2007, the closing price
for POP PETR70 and its underlying stock, Petrobras PN (PETR4), were R$ 46.2 and RS 44.8,
respectively. Therefore, the graph on the right in Figure 3 presents the comparison between the

direct investment in the underlying stock and the investment in POP, for underlying stock values
at maturity date between R$ 0.00 and R$ 250. The inferior limit for the stock price (R$ 45) locks
POP profitability at a minimum threshold of —2.6%. Nevertheless, the return obtained in stock
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is always superior to that of POP’s for stock value from R$ 43.63, but the difference rises as the
stock value also rises.

250 500%

Underlying Stock Value at Maturity Date " | [ seeeeeeee POP Profitability
........... POP Payoff Profitability of Underlying Stock
400% -
5 200 i
[l [a:
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Figure 3 — Comparison between investment in POP (PETR70) and the investment in the underlying stock
(PETR4) —in RS.

Therefore, to acquire the stock through POP on 09.02.2007, that is, in conjunction with the
protection offered by the put option and the possibility of profit sharing from thhe call option, the
investor would be paying a difference of plus R§ 1.4 per stock (R$ 46.2 — RS 44.8). Actually, this
amount is what the investor would be paying implicitly to be the holder of put options, in relation
to what he/she would be receiving as writer of call options. In this sense, POP value may also
be estimated by the sum between the underlying stock value in the spot market and the premium
of the put options, subtracting the premium from the call options. Although the two models
developed in this article work jointly with the call and put options, the value of each option could
be obtained individually by a simple change in the boundary conditions. Notwithstanding, for
the purposes of comparing the results obtained in the two models, besides the actual closing
values for the security, the premiums from the call and put options implicit in each POP will be
evaluated from Black & Scholes’ formula (1973), so that the POP value will still be estimated by
the equation (21).

POP =Sy + Poy B&S — (1 — PP) x PocB&S, Q1)

where Sy is the cash price of the underlying stock, Poy B&S is the premium for the put option
obtained by Black & Scholes’ formula, and Poc B&S is the call option premium obtained from
the same formula.

Tables 2, 3, 4 and 5 refer, respectively, to the evaluation of the results of models when they are
applied to POPs analyses: PETR70, PETR80, VALE70 and VALESO. These tables display, in the
first column, the dates when the models were tested, that is, February 9th and February 231 2007.
The second column displays the closing prices for the respective referenced stock. The POP
closing price is presented in the third column. The fourth and sixth columns display, respectively,
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the results found by the models of Implicit Finite Differences and Monte Carlo simulation. The
fifth and seventh columns, in their turn, present the percentage differences between the results
found by each model and POP closing price. The estimated POP value from equation (20)
is presented in the eighth column, and the ninth column displays the percentage difference in
relation to closing price of the security. Thus, as regards the implicit call and put options for POP
PETR?70, the values found by Black & Scholes formula for 09.02.2007 are, respectively, R$ 3.14
and R$ 2.30, generating, from equation (20) a POP value of R$ 46.16 (R$ 44.8 + R$ 3.14-0.3
x R$ 2.3), as shown in Table 2.

Observing the data from Tables 2 to 5 we may notice that, generally speaking, the POPs analyzed
were negotiated at prices above those found by the two models developed or by Black & Scholes
estimation (1973), even if the latter and the Monte Carlo simulation model have presented values
which are closer to the security closing price. Still, the Finite Differences model presents the
differential of, in one single application, generate the security values for any underlying stock
price and time instance, as represented in grids from Figures 1 and 2. This characteristic enables
the visualization of security price behavior along time.

Table 6 presents two measurements as for the adherence of the models to the security closing
prices. The first one represents the sum of the square differences between the values found by
the model and the security closing prices. Observing this measurement, we confirm the higher
adherence observed by the Monte Carlo simulation model and by the estimation by Black &
Scholes. The second measurement represents the average modules of the differences. Thus, even
if these securities have not yet reached the liquidity intended, we may notice that the estimated
prices remained close to the security closing price. The maximum difference observed by the
three models was in the evaluation of POP PETR70, being 3% for the Finite Differences model,
1.29% for the Monte Carlo simulation model and 1.16% for the estimation by Black & Scholes.

It is important to highlight that the analyses consider only one given time period, where the stock
and derivatives values do not present substantial variations. The great similarity between the
theoretical results and POP price in the market may be only a coincidence, due to market mood
at that specific period, which by no means renders these important results void, as they show that
the values obtained by Finite Differences and by MCS coincide.

In addition to the pricing itself, the models developed allow the sensitivity analyses for the secu-
rity value against the changes of input parameters values, not only for those related to variables
that require an estimation — as well as the risk-free interest rate and the volatility —, but also those
that define their own security features, such as strike price for the options or the percentage of
participation defined for each POP series. Therefore, it enables not only the comparison of POPs
with different characteristics, but also a better visualization of the risks involved in the security,
which may originate from a sudden change in the estimated input parameters or even a poor
estimate thereof.

As examples of analyses that may be performed, Table 7 displays the results obtained from gains
at 10% for the original values used for the risk-free interest rate, the volatility of the underlying
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Table 6 — Adherence of the models to closing price.

Finit Mont
. e . on .e Carlo Black & Scholes Model
Differences Model Simulation Model
POP Sum of Average of Sum of Average of Sum of Average of

squared modules of squared modules of squared modules of
differences | differences | differences | differences | differences | differences

PETR70 0.907 3.00% 0.204 1.29% 0.186 1.16%
PETR&0 0.231 1.73% 0.088 0.97% 0.092 1.00%
VALE70 0.312 2.44% 0.034 0.70% 0.035 0.72%
VALES0 0.125 1.48% 0.038 0.74% 0.028 0.63%

Table 7 — Sensitivity Analysis.

Finite Monte Carlo Black & Scholes Model
Value of Differences Model Simulation Model ac choles Mode
iable aft Diff % Diff % Diffc %
var}l able atter Calculated | | ! erel?ce ° | Calculated . ! erer'we ° | Calculated . ! erer‘lce ’
gain of 10% kK in relation to . in relation to . in relation to
Price . Price . Price R
base scenario base scenario base scenario
Risk-free interest
{siaree tnteres 0.009884% 5.03 -0.0004% 6.11 -0.076% 6.09 -0.141%
rate (0.25 days)
Volatility of underlyi 0.406%
olattlity of underlyng |y 413119 5.04 0.016% 6.35 0.459% 6.35 °
stock (0.25 days)
Strike price for
. 49.5 9.50 9.921% 9.33 6.922% 9.34 6.888%
the options
P ; i
erc'er'1 ag,e © 77% 5.03 0.007% 6.39 0.532% 6.38 0.476%
participation

stock, the strike price of the options and the percentage of participation, applied to POP PETR70
on February 9, 2007.

We may notice that, considering the four changes studied, the greatest impact on the security
price was generated by the gain of 10% in the strike price for the options. Also, regarding the
parameters in the security, the percentage of participation generated, as expected, a raise in the
security price, as it represents a smaller quantity of call options sold. However, the sensitivity
to this parameter was low. The sensitivity regarding the volatility was substantial. Thus, in
considering, in the model, a lower volatility that that expected in the market, the latter will tend
do provide an overestimated value for POP against what, theoretically, the market would be
willing to pay. On the other hand, in considering, in the modeling, a volatility which is higher
than the practiced one, the model overestimated the security value. In relation to the risk-free
interest rate, the reasoning is the opposite, as the security value reacts negatively to raises in this
variable.

Finally, the POP PETR70 has also been taken as a basis to apply the methodology to estimate
the probabilities to exercise the implicit call and put options in the product, being 09.02.2007
the date of analysis. Therefore, these probabilities were evaluated considering three different
expectations of annual return for the underlying stock: 10%, 15% and 20%. All of the other
parameters for the estimation were identical to those used in the pricing model. As expected, the
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results presented in Table 8 indicate that the probability to exercise the put options is reduced
as the expectation of return increases (ceteris paribus), while the probability to exercise the call
options reacts on the opposite way, that is, it increases upon raises in the expectation of return
from the investor (ceteris paribus). In practical terms, a raise in the probability to exercise a put
option represent greater chances of the protection acquired to be effectively executed.

Table 8 — Evaluation of the Probabilities to Exercise the Options.

Expectation of annual | Probability to exercise | Probability to exercise
return from the investor the Put Options the Call Options
10% 44.84% 55.16%
15% 40.39% 50.61%
20% 35.69% 64.31%
25% 31.46% 68.54%

5 CONCLUSIONS

The POP is a security whose evaluation involves quantitative and computer complexity, mainly
as regards call and put options. Therefore, it is reasonable to assume that those characteristics of
the security and the difficulties posed for its evaluation may explain the low demand POP still has
in the market. Notwithstanding, this new product represents an interesting alternative, specially
for the investor who is still not used to operate in the stock or options marked, as it allows access
to these markets through one instrument only, without exposure to high levels of risk.

The establishment of a minimum sale price for the stock, represented by the strike price for put
options, is POP’s main attraction. In conjunction with the protection itself, another interesting
and outstanding point in this security is that, when the investor acquires it, in addition to assuming
a long position for the underlying stock and the put option, he/she assumes a short position for
the call options, thus dropping the cost of protection from the possibility of sharing gains with
the holder of a call option in case of rise of the underlying stock price. The flexibility of the
percentage of the gains to be shared, obtained by the percentage of participation — currently
defined by BM&FBOVESPA in two levels, 70% and 80% —, is also another interesting feature.

In this line, it is believed that the models developed in this work may represent an attractive tool
for those interested in negotiating this security, thus enabling not only to find its fair price, but
also to carry out sensitivity analyses for its value against changes in the input parameters for
the models. At the same time, as regards specifically the model developed by the Monte Carlo
simulation, it is possible to evaluate the probabilities to exercise the options, representing the
chances of effectively using the protection offered by the put option or sharing the profits with
the call option holder.

Although the difference between the results found by the models developed herein and the actual
closing price for the product has remained slightly above the expected on certain dates, it is
believed that these events are less and less usual to the extent that this investment alternative
becomes more popular in the market and there is a raise in its negotiation volume.
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As for possible improvements and extensions of this work, other finite difference methods could
be explored, such as the Explicit Finite Difference method, the Hopscotch method, the Crank-
Nicholson method, or even the adaptations proposed by Brennan & Schwartz (1978). In relation
to the Monte Carlo simulation model, a suggestion for future improvement of the methodology
developed herein would be the hybrid Quasi-Monte Carlo model, which appears as an alternative
to the traditional Quasi-Monte Carlo model. Additionally, there is also the possibility of explo-
ring the sampling and variance reduction techniques, such as the Antithetic Variables, since it is
simple and proven reduction in the processing time. According to Araujo (2004), this is one of
the most used techniques in finance, due to its simplicity. An interesting reference in the sense
of exploring other variance reduction techniques would be Marins’ work (2006), which analyses
the several simulation techniques applied to options pricing, besides Frota’s work (2003).
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