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ABSTRACT. In this work we compared the estimates of the parameters of ARCH models using a com-

plete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior

distribution and informative prior distribution, respectively. We also considered a reparameterization of

those models in order to map the space of the parameters into real space. This procedure permits choosing

prior normal distributions for the transformed parameters. The posterior summaries were obtained using

Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras

series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH

models with different numbers of parameters. The empirical Bayesian method provided a more parsimo-

nious model to the data and better adjustment than the complete Bayesian method.

Keywords: ARCH models, Bayesian approach, MCMC methods.

1 INTRODUCTION

The dynamics of world financial markets requires increasingly sophisticated, complex and effi-
cient models to describe the trends and characteristics of financial assets as accurately as possible.

The analysis of financial series shows they have a high rate of change of the conditional variance
in time. The square root of this rate (standard deviation) is called volatility. Understanding how
volatility changes over time is critical to the financial market, influencing the risk assessment
of investments and asset pricing. It determines the degree of change of the price of the asset in
the future, i.e., a low value implies small changes (low risk) in the future, whereas a high value
implies significant variations (high risk) (Enders, 2009).
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Let pt be the price of a given asset at time t , normally a business day. Suppose first that no
dividend was paid during the period. The compounded continuous return or simply log-return is
given by zt = ln

(
pt

/
pt−1

)
. This definition is commonly used in the literature and in this paper

zt will be called simply return. In practice, it is preferable to work with returns which are free
of scale than with prices, because the former are easier to model using techniques of time series
analysis (Morettin, 2008).

The characterization of the statistical properties of financial return series is essential for a cor-
rect application of models to the data, allowing inferences about the characteristics of this return,
especially with regard to the mean and variance, which determine the expected return and volatil-
ity forecast for the coming periods. Estimates of these quantities are fundamental to investment
decisions not only in assets but also on their derivatives.

There are a large number of nonlinear models for estimating the volatility of financial asset return
series. The most widespread in the literature are the autoregressive conditional heteroskedas-
ticity (ARCH) models, proposed by Engle (1982), and their extension, the generalized ARCH
(GARCH) models, proposed by Bollerslev (1986). These models feature a nonlinear dependence
among the returns, according to the serial dependence of the conditional variance. A compre-
hensive review of the properties of these models can be found in Degiannakis & Xekalaki (2004)
and Bollerslev (2008).

Since it is considered that the volatility at a given instant of time depends on past values of the
series, the determination of maximum likelihood estimators (MLE) of the parameters of ARCH
models requires maximizing a nonlinear function. Therefore, the estimates can only be obtained
numerically. Engle (1982) suggested the use of Newton’s method as an iterative method to calcu-
late maximum likelihood estimates. This relaxes the restrictions on parameters (e.g., they must
be positive and their sum must be less than one), which ensures stationary covariance. On the
other hand, the determination of asymptotic properties of MLE with restrictions involves some
difficulties and may lead to local maxima, since properties such as asymptotic normality do not
allow restrictions (Barndorff-Nielsen & Cox, 1994). In addition, procedures for identification, di-
agnosis and adjustment of the models, as well as prediction values of econometric series, require
properties of asymptotic theory. Because the models are very far from linear, the asymptotic
properties of these estimators can only be verified for very long series and, in general, are more
appropriate in the presence of symmetrical distribution of the errors and normal distribution of
the data (Geweke, 1986).

In this context, the use of bootstrap methods can be considered to improve estimates of the
parameters of models of the ARCH family. But the results of this approach can be severely
affected in the MLE calculation, which is performed several times in the procedure and presents
convergence difficulties, also due to the restrictions imposed on the parameters (Oliveira, 2005).
An alternative to estimate these models, bypassing these difficulties, is to consider a Bayesian
approach.

To the best of our knowledge, Geweke (1989b) was the first author to propose a Bayesian ap-
proach for ARCH models, in which a particular case of reparameterization allowed the use of
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non-informative prior distributions. The parameters were obtained using algorithms of the Monte
Carlo simulation. In a subsequent work, a Bayesian semi-nonparametric approach was proposed
for ARCH models by Koop (1994), who used the advantages of Geweke’s Bayesian methodology
and also estimated the model in a semi-nonparametric way. A Bayesian approach was proposed
for GARCH models specifically, within the class of dynamic models, in Migon & Mazucheli
(1999). Nakatsuma (2000) proposed a Markov Chain Monte Carlo (MCMC) method for linear
regression models with ARMA-GARCH errors. He used normal prior and Metropolis-Hastings
algorithm simulation for the model parameters to generate the posterior distribution. Polasek &
Kozumi (2000) and Polasek (2001) developed a Bayesian approach with hierarchical structure
for VAR-VARCH (Vector-AR-Vector-ARCH) and PAR-ARCH (Periodic-AR-ARCH) models,
respectively, using MCMC. In the context of unobserved components models, Giakoumatos et
al. (2005) proposed a Bayesian approach for ARCH models by using auxiliary variables (Pitt
& Walker, 2005). More recently, Ausin & Galeano (2007) proposed a Bayesian approach for
GARCH models with Gaussian mixture errors, and Barreto et al. (2008) compared the Bayesian
and maximum likelihood methods using simulated series, according to ARCH processes with
different orders and under conditions of finite and infinite variances. Finally, Andrade & Oliveira
(2011) presented a Bayesian approach for ARCH models using the normal prior for their parame-
ters and compared credibility intervals with bootstrap intervals. Therefore, given the importance
of the subject, in this paper we propose a complete Bayesian method and an empirical Bayesian
method for estimating the parameters of ARCH processes, in order to compare the estimates
obtained by those methods.

In the complete approach, we considered the prior distribution based on the non-informative
proposal of Geweke (1989b) and used MCMC simulation methods to obtain posterior summaries.
In the empirical approach, we partitioned the data set considering a Bayesian analysis for the
first part of the data, using the non-informative prior distribution of Geweke (1989b) and MCMC
simulation methods. With the information obtained from that first step, we defined an informative
prior distribution, which was combined with the second part of the data, resulting in posterior
summaries.

We also considered a reparameterization of those models to reduce the rejection rate of the
MCMC simulation algorithm and accelerate the convergence process. The proposed method-
ology was used to model a series of daily prices of Telebras shares traded on the São Paulo Stock
Exchange (Bovespa).

2 ARCH(q) MODELS

The regression model proposed by Engle (1982) with zero mean, expressed as a linear combina-
tion of exogenous variables, has a structure that can be summarized as:

zt |�t−1 ∼ P (0, ht ) (1)

ht = α0 +
q∑

j=1

α j z
2
t− j (2)
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where zt represents a return series, P (∙) is a parametric distribution, usually normal or Student-t
and �t−1 = {zt−1, zt−2, . . .} represents a set of information available at t −1. Let zt be a process
that satisfies the model

zt = h1/2
t εt (3)

In this work we assumed that {εt , t ≥ 0} is a sequence of white noise i.i.d. N (0, 1).

For the model (1)-(3) to be plausible (ht > 0 for all t), we must have α0 > 0 and α j ≥ 0,
j = 1, . . . , q. Furthermore, the process zt has finite variance, and therefore has stationary
covariance if and only if all the roots of the polynomial 1−

∑q
j=1 α j l j are outside the unit circle,

where l is the delay operator, such that l j zt = zt− j . When this condition is satisfied, it can be
shown that the unconditional variance of zt is given by

α0

/

1 −
q∑

j=1

α j



 .

Therefore the sufficient condition for this process to have stationary covariance is
∑q

j=1 α j < 1.

3 LIKELIHOOD FUNCTION

Let ZT
1 = {z1, z2, . . . , zT } be an observed trajectory of the return zt . Assuming that the first

q observations Zq
1 =

{
z1, z2, . . . , zq

}
are known, the likelihood function of the observations

ZT
q+1 =

{
zq+1, zq+2, . . . , zT

}
, conditional on Zq

1 , is given by

L
(
α|ZT

q+1, Zq
1

)
∝

T∏

t=q+1

(
1

ht

)1/2

exp

{

−
z2

t

2ht

}

(4)

where α =
[
α0 α1 . . . αq

]′ is the vector of parameters of the ARCH(q) model and ht = α0 +
∑q

j=1 α j z2
t− j .

Thus, maximum likelihood estimators for the parameter vector α can be obtained by means

of maximizing the likelihood function L
(
α|ZT

q+1, Zq
1

)
. It is worth noting that the use of the

conditional likelihood function instead of the exact likelihood function can be done without great
loss of precision in the estimates when the series zt is large. This approximation is generally
considered due to the great practical advantages in calculating the estimators (Box et al., 1994).

4 BAYESIAN INFERENCE FOR ARCH(q) MODELS

The Bayesian approach for inferring the parameters of ARCH(q) models starts from the com-

bination of the likelihood function, L
(
α|ZT

q+1, Zq
1

)
, with an a prior probability density for the

parameters, π(α), by means of Bayes’ rule (Gelman et al., 1995):

π
(
α|ZT

q+1

)
∝ L

(
α|ZT

q+1, Zq
1

)
π(α) (5)
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The expression π
(
α|ZT

q+1

)
is called the a posterior probability density of α and tells how the

random variable α will be distributed after the data ZT
q+1 have been observed.

In sections 4.1 and 4.2 we propose two different approaches for Bayesian inference for the
parameters α of ARCH(q) models.

4.1 Complete Bayesian model (CBM) with non-informative prior

Bayesian analysis requires the specification of an a prior density for π(α) to reflect the prior
knowledge about the distribution of π(α). When there is little or no prior knowledge about the
distribution of a model’s parameters, one must adopt a non-informative prior density. In this work
we adopted a non-informative prior density for the parameters α of ARCH(q) models based on
the proposal of Geweke (1989b), defined as:

π(α) ∝













1 −
q∑

j=1
α j

α0








, α0 > 0, α j ≥ 0, j = 1, . . . , q

0 , otherwise

(6)

Depending on α j = 0, j = 1, . . . , q, this is the invariant prior density of Jeffreys (Box & Tiao,
1973) for the normal linear regression model. We also consider a reparameterization, which
consists of:

φ j = log
(

α j − a j

b j − α j

)
j = 0, 1, 2, . . . , q (7)

The values of a j and b j can be chosen based on some prior information, for example, previous
studies on the series analyzed. This reparameterization leads to the choice of a transformation
that maps the intervals (−∞, +∞) in the domain

(
a j , b j

)
and vice versa. Accordingly, we re-

duced the rejection rate of the MCMC simulation algorithm, accelerating its convergence. Using
the reparametrization defined in (7), we have:

π (ϕ) ∝






(
1

k (ϕ)

) 1
2

, −∞ < ϕ j < ∞, j = 0, 1, . . . , q

0 , otherwise

(8)

where

ϕ =
[
φ0φ1 . . . φq

]′ and k (ϕ) = α0

/

1 −
q∑

j=1

α j





with α j , j = 0, 1, 2, . . . , q given by (7).

Combining the expressions (4) and (8), we write the posterior joint density for the ϕ as:

π
(
ϕ|ZT

q+1

)
∝

(
1

k (ϕ)

)1/2

×
T∏

t=q+1

(
1

ht (ϕ)

)1/2

exp

{

−
z2

t

2ht (ϕ)

}

(9)
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We note that the posterior density (9) has a form that only resembles the known probability
density functions, which prevents the calculation of the quantities of interest of the parameters
α j , j = 0, 1, . . . , q, such as mean, mode, median, standard deviation, among others (Kotz et al.,
2000).

Since the adjustment of ARCH processes to financial series generally are of high orders, the
use of numerical integration methods would require large computational effort and have low
accuracy. This problem can be solved by using Monte Carlo Markov chain (MCMC) simulation
methods, specifically the Metropolis-Hastings algorithm. The methods based for this estimation
are preferable because they can be generalized to more complex models. Other algorithms could
be used (e.g., acceptance/rejection, importance sampling, among others), but the Metropolis-
Hastings is one of those requiring the least computational effort (Gilks et al., 1996).

4.2 Empirical Bayes Model (EBM)

The empirical Bayesian methods are distinguished by using the observed data to estimate the
parameters of the prior and avoid the difficulties of determining the distribution, either due to
lack of knowledge about the variable of interest or some subjectivity involved in choosing it.
The empirical method can be viewed as an approximation of the complete hierarchical Bayesian
analysis (Gelman et al., 1995).

In this work we consider a partition of the return series ZT
1 = {z1, z2, . . . , zT }, such that

ZT
1 =

[
ZT1

1 ZT
T1+1

]′
, where ZT1

1 =
{
z1, z2, . . . , zT1

}
and ZT

T1+1 =
{
zT1+1, zT1+2, . . . , zT

}
,

and we propose a Bayesian framework composed of two steps.

In the first step we must perform an analysis with the first part of the series of observed data,
ZT1

1 , assuming a non-informative prior density, if possible, π1(α), to make inferences about the
parameter vector α =

[
α0 α1 . . . αq1

]′. We thus propose the following Bayesian model:

π
(
α|ZT1

q1+1

)
∝ L

(
α|ZT1

q1+1, Zq1
1

)
π1(α) (10)

where Zq1
1 =

{
z1, z2, . . . , zq1

}
and ZT1

q1+1 =
{
zq1+1, zq1+2, . . . , zT1

}
. This procedure provides

posterior estimates for α through the density π
(
α|ZT1

q1+1

)
.

These estimates are used for inference about the density of α∗ =
[
α0 α1 . . . αq2

]′, π2(α
∗), which

is used as an informative prior density for the second stage of the analysis (main analysis), where
we combine the likelihood function constructed from the second part of the series of observed
data, ZT

T1+1, with the prior density π(α∗), leading to the posterior density, given by:

π
(
α∗|ZT

T1+q2+1

)
∝ L

(
α∗|ZT

T1+q2+1, ZT1+q2
T1+1

)
π2(α

∗) (11)

where

ZT1+q2
T1+1 =

{
zT1+1, zT1+2, . . . , zT1+q2

}
and ZT

T1+q2+1 =
{
zT1+q2+1, zT1+q2+2, . . . , zT

}
.
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In this paper, we partition the data set so that the first half of the data series (i.e., T1 = T
2

observations) are used in the first stage of the Bayesian analysis and the second half of the data
series are used in the second stage (main analysis). The choice of T1 requires careful analysis
of the sensitivity of the parameter estimates in function of the sample size. A minimum training
sample is always desirable. However, the computational effort is very great for this choice.
Further details and discussions about this procedure can be found in Berger & Pericchi (2004).

For the Bayesian analysis of the first step, we consider non-informative prior density of Geweke
(1989b), defined in (6)-(8), assuming little or no prior knowledge about the distribution of the
model’s parameters. Assuming that the first q1 observations are known, the conditional likeli-
hood function is defined by means of the volatility ht rewritten as a function of the parameters
α j , j = 0, 1, . . . , q1, transformed into φ j , j = 0, 1, . . . , q1, by (7), i.e.:

L
(
ϕ|ZT1

q1+1, Zq1
1

)
∝

T1∏

t=q1+1

(
1

ht (ϕ)

)1/2

exp

{

−
z2

t

2ht (ϕ)

}

(12)

where ϕ =
[
φ0 φ1 . . . φq1

]′. Combining expressions (12) and (8), we can write the prior joint
distribution for ϕ as:

π
(
ϕ|ZT1

q1+1

)
∝

(
1

k (ϕ)

)1/2
×

T1∏

t=q1+1

(
1

ht (ϕ)

)1/2

exp

{

−
z2

t

2ht (ϕ)

}

(13)

where

k (ϕ) = α0

/

1 −
q1∑

j=1

α j



 and α j =
b j eφ j + a j

1 + eφ j
; j = 0, 1, . . . , q1.

For the Bayesian analysis of the second stage, we set an informative prior density for α∗, π(α∗),
which is built from the analysis of the first stage, i.e., using the posterior estimates obtained by

means of the density π
(
α|ZT1

q1+1

)
.

We consider that all α j , j = 0, 1, . . . , q2 are independent with a prior density defined in the
interval

[
a j , b j

]
, with a j > 0 and b j < 1, such that a j ≤ α j ≤ b j , since the constraint

∑q2
j=1 α j < 1 requires that α j ∈ (0, 1) , j = 1, 2, . . . , q2. Because we want to generate values

for α j close to the averages of each interval
(
a j + b j

)/
2 with greater frequency than values near

the limits a j and b j , we adopt the proposed reparameterization in equation (7), such that φ∗
j

is a component of the vector of parameters ϕ∗ =
[
φ∗

0 φ∗
1 . . . φ∗

q2

]′
and a j and b j is selected

based on the upper and lower bounds of the 95% credibility intervals for α, obtained from

the posterior density π
(
α|ZT1

q1+1

)
.

In this case, the conditional likelihood function is defined with volatility ht rewritten in terms of
the parameters α∗

j , j = 0, 1, . . . , q2, transformed similarly in φ∗
j , j = 0, 1, . . . , q2, by (7), i.e.:

L
(
ϕ∗|ZT

T1+q2+1, ZT1+q2
T1+1

)
∝

T∏

t=T1+q2+1

(
1

ht (ϕ∗)

)1/2

exp

{

−
z2

t

2ht (ϕ∗)

}

(14)
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where ϕ∗ =
[
φ∗

0 φ∗
1 . . . φ∗

q2

]′
. Assuming that φ∗

j , j = 0, 1, . . . , q2 are normally distributed,

i.e., π(φ∗
j ) ∼ Normal (0, σ 2

j ), the a prior joint density is given by:

π
(
ϕ∗) =

q2∏

j=0

π
(
φ∗

j

)
(15)

Combining expressions (14) and (15), we can write the posterior joint density for ϕ∗ as:

π
(
ϕ∗|Z T

T1+q2+1

)
∝




q2∏

j=0

π
(
φ∗

j

)


 ×
T∏

t=T1+q2+1

(
1

ht (ϕ∗)

)1/2

exp

{

−
z2

t

2ht (ϕ∗)

}

(16)

Thus, the posterior conditional densities for φ∗
j , j = 0, 1, . . . , q2, obtained by means of expres-

sion (16), are given by:

π
(
φ∗

j |ϕ
∗
− j , ZT

T1+q2+1

)
∝ L

(
ZT

T1+q2+1|Z
T1+q2
T1+1 , ϕ∗

)
π

(
φ∗

j

)
(17)

where ϕ∗
− j is a vector formed by the model’s parameters, except the parameter φ∗

j , i.e.,

ϕ∗
− j =

[
φ∗

0 φ∗
1 . . . φ∗

j−1φ
∗
j+1 . . . φ∗

q2

]′
.

5 ALGORITHMS TO ESTIMATE THE PARAMETERS OF ARCH(q) MODELS

To obtain representative samples from the posterior joint density (9), (13) and (16), we use
MCMC simulation algorithms.

The MCMC simulation method is a form of Monte Carlo integration. The idea is to simulate
an irreducible non-periodic Markov chain whose stationary density is the density of interest, i.e.,
the posterior density. There are two methods to generate Markov chains with specified stationary
density, the Metropolis-Hastings (Chib & Greenberg, 1995), which has been used for many years
in statistical physics, and Gibbs sampling, which was introduced in the statistical literature by
Gelfand & Smith (1990). In general, the use of these algorithms is necessary when the non-
iterative generation of the density to be sampled is too complicated or costly.

The Metropolis-Hastings algorithm

When posterior conditional densities are not easily identified as having a standard form (normal,
gamma, etc.), preventing the direct generation from these densities, the Metropolis-Hastings
algorithm can be used. This technique requires a nucleus, i.e., a transition density q

(
φ, φ′

)
,

not necessarily having equilibrium probability π , but which represents a passing rule to define a
chain. Consider also the probability of acceptance p

(
φ(r−1), φ′

)
set forth below. The algorithm

follows these steps:

Step 1: Assign an initial value φ = φ(0) and start the iteration count at r = 1.

Step 2: Move the chain to a new value φ′ generated from the density q
(
φ(r−1), φ′

)
.
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Step 3: Generate u from the uniform density (0, 1).

Step 4: Accept the value generated φ′ if

u ≤ p
(
φ(r−1), φ′

)
= min

(

1,
π

(
φ′

)
q

(
φ′, φ(r−1)

)

π
(
φ(r−1)

)
, q

(
φ(r−1), φ′

)

)

Otherwise keep φ(r) = φ(r−1).

Step 5: Update r and go to step 2.

For r sufficiently large, φ(r) is a sample of the posterior distribution. For the vector case ϕ =[
φ0 φ1 . . . φq

]
, we have a transition density given by q

(
ϕ, ϕ′

)
and an acceptance probability

given by p
(
ϕ(r−1), ϕ′

)
, and we must do the same.

One feature that should be considered in the use of the Metropolis-Hastings algorithm is the fact
that it can generate correlated samples, since if the generated candidate is rejected, the previous
value is taken as a candidate. To avoid biased estimates, it is common to disregard the initial
part of the chain in order to avoid the influence of initial conditions, and to select values for each
k steps to eliminate the sample correlation. The evaluation of this procedure is reflected in the
acceptance rate, and the convergence is checked using the criterion of Geweke (1992).

To ensure that the Metropolis-Hastings algorithm will converge to an equilibrium density, one
must observe the regularity conditions of the posterior distributions, which are guaranteed in our
case.

Assuming a quadratic loss function, the Bayesian estimates for α (Sections 4.1 and 4.2) can be
expressed as evaluating the expectancy of a function of interest g (α) with respect to the posterior
density π (α|Z). In general, it is given by:

E [g (α)] =
∫

α

g (α) π (α|Z) dα (18)

The exact solution of the integral in (18) cannot be calculated analytically for the models consid-
ered in this work. However, if the expression E [g (α)] exists, an approximation to expression
(18) can be obtained by Monte Carlo simulation (Geweke, 1989a).

6 MODEL SELECTION CRITERIA

There are several criteria that can be used for the selection of the order q of ARCH models
under a Bayesian framework. In this paper, we use the following criteria: Bayesian information
criterion (BIC), Akaike information criterion (AIC), deviation information criterion (DIC) and
predictive ordinate criterion (POC), which are described more generally below.

6.1 Bayesian information criterion (BIC) and Akaike information criterion (AIC)

The Bayesian information criterion (BIC) is a model selection criterion proposed by Schwarz
(1978) and modified by Carlin & Louis (2000) to be applied in the Bayesian context. This crite-
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rion is a weighting between the maximum of the posterior expected value of the log-likelihood
function and the number of model parameters. The best model is the one that has the lowest BIC
value, given by:

B I C = −2E(l) + M ln (T ) (19)

where E(l) is the expected value taken with respect to the posterior density of the log-likelihood
function, M is the size of the parameter vector and T is the size of the series.

The Akaike information criterion (AIC), proposed by Akaike (1974), was also modified to be
used in the Bayesian context. The best model is the one that has the lowest AIC value, given by:

AI C = −2E(l) + 2M (20)

Lower values of BIC and/or AIC indicate better models, but the BIC penalizes the number of
parameters more and tends to select models with fewer parameters.

6.2 Deviation information criterion (DIC)

The deviation information criterion (DIC) is a generalization of the BIC. Proposed by Spiegel-
halter et al. (2002), this criterion is defined as:

DI C = D
(
α̂
)
+ 2MD (21)

where D
(
α̂
)

= −2 ln L
(

Z|
_
α
)

+ C is the deviation assessed in the posterior mean, ln L
(

Z|
_
α
)

is the natural logarithm of the likelihood function, C is a constant that is canceled and need not
be known when comparing models and MD is the effective number of parameters of the model,
given by: MD = D − D

(
α̂
)
, where D = E {D (α)} is the posterior mean deviation, which

measures the model’s goodness of fit. The model with the lowest DIC value will be considered
the most suitable to represent the data.

The DIC is commonly used for Bayesian models whose posterior distribution of parameters
was obtained through MCMC simulation algorithms as well as proposed models for analysis of
financial series.

6.3 Predictive ordinate criterion (POC)

In the criterion for selecting models based on predictive ordinate density (Carlin & Chib, 1995)
we use the distribution of zT +m , subject to the data Z and the parameters α =

[
α0 α1 . . . αq

]′.
Thus, the predictive density is given by:

π (zT +m |Z) =
∫

α

π(zT +m |Z, α)π(α|Z)dα

cm = π (zT +m |Z) =
∫

α

(
1

2π hT +m

)1/2

exp

{

−
1

2

z2
T +m

hT +m

}

π (α|Z) dα

(22)
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where π (α|Z) is the posterior distribution of the parameters α and the integral in (22) is a mul-
tiple integral in the parameters space.

Assessing the observations α
(i)
j , j = 0, 1, . . . , q obtained by MCMC simulation and considering

hT +m as a function of the parameters α, the Monte Carlo estimate of the predictive density is
given by:

ĉm =
1

M

M∑

i=1

1
√

2πhT +m(α(i))
exp

{

−
1

2

z2
T +m

hT +m(α(i))

}

(23)

A low value of ĉm indicates that the observation zT +m is unlikely for the model in question.
Thus, the POC consists of choosing the model l that provides the greatest value of

ĉ (l) =
T +K∏

m=T +1

ĉm (l) .

7 APPLICATION

The analyzed time series consists of daily prices of shares of Telebras (Brazilian telecom hold-
ing company controlled by the federal government), traded on the Bovespa in the period from
January 2, 1992 to January 5, 1996, for a total of 986 observations.

This was one of the most liquid papers (according to the number of trades and financial volume)
in the Brazilian stock market during the study period, i.e. one of the most representative of those
making up the Bovespa index (Ibovespa). The behavior of the Telebras stock has been widely
studied in the literature and among the works on this issue, we can mention: Baidya & Costa
(2001), Oliveira (2005) and Sáfadi & Andrade (2007).

Let pt be the closing price of Telebras shares on a trading day, in which the return is given by
zt = ln

(
pt

/
pt−1

)
. The share prices of Telebras and their returns are illustrated in Figure 1.

The graphs in Figure 2 also show the behavior of the series of squared returns of Telebras, z2
t .

We can see that this series is correlated. This behavior is typically associated with that of ARCH
(q) models.

In implementing the Metropolis-Hastings algorithm, for each model (CBM and EBM), we sim-
ulated a chain with 50,000 iterations for each parameter, then discarded 50% of the values to
decrease the effect of initial conditions and then took values spaced 5 to 5, for a total sample
of 5,000 observations. The convergence of the algorithm was verified by Geweke’s criterion
(1992), at a significance level of 5% for the test under the null hypothesis Ho. The convergence
was considered for values obtained by the diagnosis between −1.96 and 1.96. In this work, all
the computational algorithms were implemented using the MATLAB c© software.

For CBM, the adjusted model for the Telebras series, according to the AIC, DIC and POC
(Table 1), was an ARCH (7), described as:

zt =
(
α0 + α1z2

t−1 + α2z2
t−2 + α3z2

t−3 + α4z2
t−4 + α5z2

t−5 + α6z2
t−6 + α7z2

t−7

) 1
2
εt (24)
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Figure 1 – Price (a) and return (b) of the Telebras series.
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Figure 2 – Series of squared returns of Telebras, z2
t (a), and its autocorrelation function (b).

Table 1 – Model selection criteria for the ARCH (q) process, considering CBM.

Model order
AIC BIC DIC POC – E{log l}

(
× 103) (

× 103) (
× 103) (

× 1027) (
× 103)

q = 6 −5.13244 −5.09818 −1.27337 1.16306 −2.00322

q = 7 −5.13583 −5.09668 −1.27675 1.25362 −2.00591

q = 8 −5.12954 −5.08550 −1.27302 0.77599 −2.00377

Table 2 shows the estimates and 95% credibility intervals (CI) for α =
[
α0 α1 . . . αq

]′, using the
CBM, obtained in accordance with the procedures proposed for the inference about parameters of
ARCH(q) processes, q = 7. The convergence of parameters was checked by Geweke’s criterion
(GC), which was observed for those. The last column of this table also shows the acceptance
rates (AR) for the parameter values generated by the Metropolis-Hastings algorithm.

As previously mentioned, in the EBM we partitioned the data set such that the first half of the
data series was used in Bayesian analysis in the first step, according to the procedure presented
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Table 2 – Complete Bayesian estimate and 95% CI.

Mean
Standard

Median Mode CI (95%) GC AR (%)
Deviation

α0 0.00069 0.00003 0.00069 0.00055 [0.00063; 0.00076] 0.90273 85.098

α1 0.10307 0.01923 0.10219 0.11560 [0.06635; 0.13683] 0.15009 86.314

α2 0.15264 0.01982 0.15474 0.15780 [0.11469; 0.18763] 0.11001 87.456

α3 0.10277 0.01884 0.10270 0.10770 [0.06639; 0.13749] 1.88097 86.368

α4 0.09878 0.01902 0.09564 0.10460 [0.06468; 0.13449] 0.00754 84.584

α5 0.05173 0.01857 0.05338 0.05240 [0.01688; 0.08664] −1.55891 84.318

α6 0.10362 0.01912 0.10107 0.12090 [0.06587; 0.13771] 0.78153 85.960

α7 0.10379 0.01871 0.10292 0.11350 [0.06727; 0.13761] −0.79080 85.606

in Section 4.2, to obtain posterior estimates α =
[
α0 α1 . . . αq1

]′. Thus, the model fit to the data
Telebras series, according to the AIC, BIC and POC (Table 3) was an ARCH (6), given by:

zt =
(
α0 + α1z2

t−1 + α2z2
t−2 + α3z2

t−3 + α4z2
t−4 + α5z2

t−5 + α6z2
t−6

) 1
2
εt (25)

Table 3 – Model selection criteria for the ARCH (q1) process, considering EBM:

Bayesian analysis of the first step.

Model order
AIC BIC DIC POC – E{log l}

(
× 103) (

× 103) (
× 103) (

× 1028) (
× 102)

q1 = 5 −2.45388 −2.42452 −5.89629 2.31037 −5.82941

q1 = 6 −2.48262 −2.44836 −6.00084 2.66551 −5.98308

q1 = 7 −2.47961 −2.44046 −6.07358 2.46414 −5.97805

Table 4 shows the estimates and 95% credibility intervals (CI) for α =
[
α0 α1 . . . αq1

]′, obtained
in the first stage of the EBM, according to an ARCH(q1) process, q1 = 6.

This information served to elucidate the informative prior distribution of α∗, π(α∗), where their
hyperparameters a j and b j assumed values of lower and upper bounds, respectively, in the 95%
credibility intervals presented in Table 4 (in bold), and σ 2

j = 1, for j = 0, 1, . . . , q2.

Thus, the second half of the data series was used in the second stage (main analysis), with π(α∗)

resulting in posterior summaries of interest. The model fit to the Telebras data series in the main
analysis, according to the model selection criteria (Table 5), was an ARCH (5), given by:

zt =
(
α0 + α1z2

t−1 + α2z2
t−2 + α3z2

t−3 + α4z2
t−4 + α5z2

t−5

) 1
2
εt (26)

Table 6 shows the estimates and 95% credibility intervals (CI) for α∗ =
[
α0 α1 . . . αq2

]′, using
EBM, obtained from the main analysis by an ARCH(q2) process, q2 = 5.
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Table 4 – Empirical Bayesian estimate and 95% CI of the first step.

Mean
Standard

Median Mode CI (95%) GC AR (%)
Deviation

α0 0.00071 0.00003 0.00071 0.00070 [0.00064; 0.00077] –0.85421 87.734

α1 0.09549 0.03084 0.09359 0.09556 [0.04179; 0.15933] 0.56397 69.398

α2 0.09081 0.03617 0.08880 0.09103 [0.02916; 0.16344] 1.15489 73.296

α3 0.09826 0.03416 0.09723 0.09803 [0.03566; 0.16578] –0.14777 75.122

α4 0.17912 0.04231 0.17801 0.17971 [0.10014; 0.26113] –0.01410 73.816

α5 0.09748 0.03483 0.09578 0.09665 [0.03348; 0.16691] –1.03893 76.228

α6 0.19613 0.03854 0.19580 0.19677 [0.12089; 0.26848] –1.68313 70.296

Table 5 – Model selection criteria for the ARCH(q2) process, considering EBM:

main Bayesian analysis.

Model order
AIC BIC DIC POC – E{log l}

(
× 103) (

× 103) (
× 103) (

× 1027) (
× 102)

q2 = 4 –2.61215 –2.58768 –6.49695 1.53242 –6.61074

q2 = 5 −2.62362 −2.59426 −6.51874 1.83186 −6.67811

q2 = 6 –2.60406 –2.56980 –6.48157 0.90524 –6.59028

Table 6 – Empirical Bayesian estimate and 95% CI: Main analysis.

Mean
Standard

Median Mode CI (95%) GC AR (%)
Deviation

α0 0.00071 0.00003 0.00071 0.00071 [0.00070; 0.00072] –0.41660 98.400

α1 0.12299 0.01847 0.12546 0.12881 [0.08050; 0.15075] –1.56153 48.112

α2 0.12926 0.01741 0.13228 0.14029 [0.08874; 0.15455] 0.97803 33.782

α3 0.11652 0.02331 0.11922 0.13008 [0.06607; 0.15356] –0.53695 65.944

α4 0.15254 0.02725 0.14804 0.13122 [0.11293; 0.21611] –0.78737 52.852

α5 0.09784 0.02562 0.09736 0.09750 [0.05117; 0.14758] –0.95037 89.318

The graphs in Figure 3 represent the histograms constructed from the sample selected for the
parameters α0, α1, . . . , α7, i.e., the posterior distribution of the parameters of the ARCH (7)
model, which was adjusted to the Telebras series considering a complete Bayesian model.

The graphs in Figure 4 represent the histograms constructed from the sample selected for the
parameters α0, α1, . . . , α5, i.e., the posterior distribution of the parameters of the ARCH (5)
model, which was adjusted to the Telebras series considering the main analysis of an empirical
Bayesian model.

Figure 5 shows the estimated volatility versus the observed volatility (values of z2
t ). When the

model is appropriate to the data, i.e., it properly estimates the volatility of the series, we expect
the graphic representation of this relationship to show those values grouped in a straight line. In
this respect, this behavior can be observed in both cases (complete and empirical models).
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Figure 3 – Posterior distribution of the parameters – CBM.
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Figure 4 – Posterior distribution of the parameters – EBM.
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Figure 5 – Estimated volatility versus z2
t : Complete Bayesian model (a) and empirical Bayesian model (b).

As the BIC and other selection criteria similar to it are influenced by sample size, the criterion
based on predictive ordinate density is the best for the final comparison between the two Bayesian
procedures presented.

Thus, although the plots in Figure 5 show that both approaches presented very close results
regarding fit, the graphs about predictive ordinate (and values of POC) in Figure 6 highlight that
the EBM best fitted the data of daily Telebras share prices, and it is even more parsimonious than
the CBM. This fact suggests that the use of a prior information can lead to a more representative
model of that data series.
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Figure 6 – Predictive ordinate criterion (cm , m = 30): Complete Bayesian

model and empirical Bayesian model.

Finally, Figure 7 illustrates the estimated volatility from the best model, EBM. It can be seen that
events were detected generating significant behavioral changes in the series of returns during the
period studied, often irregular, of which we can highlight the crisis in Mexico in February and
March 1995.
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Figure 7 – Estimated volatility – Telebras series.

8 CONCLUDING REMARKS

In general, it is important to emphasize the feasibility of the Bayesian approach in the inference
of the parameters of ARCH(q) processes, since it allows the possibility of incorporating the
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experience of experts in finance, which usually is a relevant issue in the analysis of economic
and financial series.

In this context, studies show that empirical Bayesian models present similar results to those pre-
sented by complete Bayesian models, but the former have the advantage of being easily integrated
for various cases.

In this paper, we performed an empirical Bayesian analysis, through a detailed study. However,
due to the complexity of this analysis, posterior estimates could only be found numerically and,
so we used MCMC simulation algorithms.

The results were compared to those obtained by using the complete Bayesian model and showed
that the two methods have adjusted ARCH processes with different orders. We noted that
the empirical Bayesian model provides a more parsimonious adjustment to the Telebras series,
i.e., with a smaller number of parameters for the ARCH process, compared to the complete
Bayesian model. Moreover, the selection criterion of models based on the ordinate predictive
density showed that the empirical Bayesian model provided better adjustment than the complete
Bayesian model.

It is worth noting that the use of empirical prior distributions and of reparametrization contributed
to faster convergence of the process of inference of the parameters of ARCH(q) models using
MCMC simulation algorithms.
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Computação.

[34] PITT M & WALKER S. 2005. Constructing stationary time series models using auxiliary variables

with applications. Journal of the American Statistical Association, 100: 554–564.

[35] POLASEK W. 2001. MCMC Methods for Periodic AR-ARCH Models. Technical report, University

of Basel.

[36] POLASEK W & KOZUMI H. 2000. The VAR-VARCH Model: A Bayesian Approach. Technical

report, University of Basel.

[37] SÁFADI T & ANDRADE MG. 2007. Abordagem Bayesiana de Modelos de Séries Temporais. Mini-
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[38] SCHWARZ G. 1978. Estimating the Dimension of a Model. The Annals of Statistics, 6: 461–464.

[39] SPIEGELHALTER D, BEST N, CARLIN B & VAN DER LINDE A. 2002. Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society, 64: 583–639.

Pesquisa Operacional, Vol. 32(2), 2012


