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ABSTRACT. The 0-1 exact k-item quadratic knapsack problem (E − kQK P) consists of maximizing a

quadratic function subject to two linear constraints: the first one is the classical linear capacity constraint;

the second one is an equality cardinality constraint on the number of items in the knapsack. Most instances

of this NP-hard problem with more than forty variables cannot be solved within one hour by a commercial

software such as CPLEX 12.1. We propose therefore a fast and efficient heuristic method which produces

both good lower and upper bounds on the value of the problem in reasonable time. Specifically, it inte-

grates a primal heuristic and a semidefinite programming reduction phase within a surrogate dual heuristic.

A large computational experiments over randomly generated instances with up to 200 variables validates

the relevance of the bounds produced by our hybrid dual heuristic, which yields known optima (and prove

optimality) in 90% (resp. 76%) within 100 seconds on the average.

Keywords: quadratic programming; 0-1 knapsack; quadratic convex reformulation; semidefinite program-

ming; surrogate duality; hybridization, experiments.

1 INTRODUCTION

The 0-1 exact k-item quadratic knapsack problem consists of maximizing a quadratic function
subject to a linear capacity constraint with an additional equality cardinality constraint:

(E−kQK P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f (x) =
n∑

i=1

n∑
j=1

ci j xi x j

s.t.
n∑

j=1
a j x j ≤ b (1)

n∑
j=1

x j = k (2)

x j ∈ {0, 1} j = 1, . . . , n
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50 AN EFFICIENT METHOD FOR THE 0-1 EXACT k-ITEM QUADRATIC KNAPSACK PROBLEM

where n denotes the number of items, and all the data, k (number of items to be placed in the
knapsack), a j (weight of item j ), ci j (profit associated with the selection of items i and j ) and b
(capacity of the knapsack) are nonnegative integers. Without loss of generality, matrix C = (ci j )

is assumed to be symmetric.

Moreover, we assume that max j=1,...,n a j ≤ b <
∑n

j=1 a j in order to avoid either trivial so-
lutions or variable fixing via constraint (1). Let us denote by kmax the largest number of items
which could be filled in the knapsack, that is the largest number of the smallest a j whose sum
does not exceed b. We assume that k ∈ {2, . . . , kmax}, where kmax can be found in O(n) time
[3, 20]. If not, either the value of the problem is equal to maxi=1,...,n cii (for k = 1), or the
domain of (E − kQK P) is empty (for k > kmax).

Let us also note that on the one hand, by dropping constraint (1), (E−kQK P) is a k-cluster prob-
lem [6], and that on the other hand, by dropping constraint (2), it becomes a classical quadratic
knapsack problem [32]. We can therefore conclude that problem (E − kQK P) is NP-hard, as it
includes two classical NP-hard subproblems.

Numerous approaches have been proposed for solving general 0-1 quadratic problems (Q P).
Many are devoted to reformulations before searching an optimal solution of (Q P), including
0-1 linear reformulations [1, 36] and 0-1 convex quadratic reformulations [8, 9]. Various heuris-
tic and exact methods have been designed for (Q P), including algebraic, dynamic program-
ming, cutting plane, penalty and enumerative methods as well as metaheuristics, using different
types of relaxations, such as roof duality, Lagrangian relaxation and decomposition, semidefinite
programming, convex quadratic relaxation or convex hull relaxation (see, e.g., [12, 16, 25, 26,
30, 37]).

To the best of our knowledge, however, problem (E − kQK P) has not been studied before. It
is an extension of the 0-1 exact k-item linear knapsack problem [13, 19, 28] which may be con-
sidered as a subproblem of the 0-1 collapsing knapsack problem (see, e.g., [34]). Its applications
cover those found in previous references for k-cluster or classical quadratic knapsack problems
(e.g., task assignment problems in a client-server architecture with limited memory), but also
multivariate linear regression and portfolio selection. Specific heuristic and exact methods in-
cluding branch-and-bound and branch-and-cut with surrogate relaxations have been designed
for these applications (see, e.g., [4, 5, 10, 31, 35]).

Section 2 shows that this NP-hard problem can be considered as unsolvable to optimality for
sizes exceeding 40 variables by using a state-of-the-art software (e.g., CPLEX 12.1). More
specifically, it cannot be guaranteed that instances of equal or larger sizes can be solved exactly
within an hour (Section 2.2). Even using a quadratic convex reformulation [8, 9] as a prepro-
cessing phase, CPLEX cannot solve to optimality instances with sizes greater than 90 variables
(Section 2.3).

After presenting a basic primal heuristic (Section 3), we present efficient dual heuristics that
produce both good lower and upper bounds on the value of problem (E − kQK P) in reason-
able time. For this purpose, we propose to explore the potential of different types of duals of
(E − kQK P) based on either Lagrangian relaxations, or a positive semidefinite relaxation or a
surrogate relaxation (this work extends our previous works on this subject [29]).

Pesquisa Operacional, Vol. 34(1), 2014
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Testing different types of Lagrangian relaxations and Lagrangian decompositions produces poor

computational results, namely, weak upper bounds and large computation times. This lead us to
exclude the construction of effective bounds in this way.

Section 4 describes our first effective and fast dual heuristic. It is based on the quadratic convex
reformulation [8, 9] of Section 2.3 associated with the solution of a semidefinite relaxation. More

specifically, each step of this iterative procedure consists in fixing variables to zero in a solution
produced by a semidefinite relaxation, before using our fast primal heuristic over the reduced
problem.

Section 5 details another efficient dual heuristic. It is based on a surrogate relaxation after relax-

ing constraint (2) as an inequality constraint, and exploits the tree searches used at each step of
the solution of the surrogate dual.

Finally, in Section 6 we propose a fast and efficient hybrid heuristic method that combines our
previous three heuristics. It integrates the primal heuristic and the surrogate dual heuristic within

the semidefinite programming reduction phase.

A number of computational results obtained for randomly generated instances with up to 200
variables is presented throughout the paper (see Section 2.1 for details about the computa-
tional environment). They validate the relevance of the bounds produced by our hybrid heuris-

tic method, which yields known optima (and prove optimality) in 90% (resp. 76%) within 100
seconds on the average.

2 PRACTICAL DIFFICULTY OF THE PROBLEM

This section proposes to detail computational experiments to exhibit the practical difficulty of
the NP-hard problem (E − kQK P). For this purpose, we study the experimental behaviour of
the state-of-the-art software CPLEX 12.1 for solving exactly the benchmark instances described

in Section 2.1. We conduct two series of experiments by using CPLEX 12.1 with default settings:
the first one, on the original models, that is in particular without any previous reformulation of
the problem (Section 2.2); the second one, on the modified models produced by the quadratic
convex reformulation method QCR of the problem [8, 9] (Section 2.3). They show that CPLEX

either without or with this previous reformulation, is not able to solve to optimality instances
with more than 90 variables in a reasonable time.

2.1 Computational environment

All the experiments have been carried out on an Intel Xeon bi-processor dual core 3 GHz with
2 GB of RAM (using 4 cores for Sections 2.2 and 2.3, and only one core for all the other Sec-
tions).

For the benchmark, we always present average values over 10 instances. For n ∈ {10, 20, 30,

. . . , 200}, we fix k ∈ [1, n/4], b ∈ [50, 30k], and a j , ci j ∈ [1, 100]. These data intervals have
been empirically chosen with the aim to get hard instances.

Pesquisa Operacional, Vol. 34(1), 2014
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We always use the standard solver CPLEX 12.1 with default settings [18]. To solve semidefi-

nite programs, we choose the software CSDP, integrated into COIN-OR [17], which applies the
interior point method developed by Borchers [11].

In all the tables:

– δ represents the density of the quadratic matrix,

– the CPU time values are given in seconds,

– the duality gap for each upper bound proposed in this paper is defined as upper bound−opt
opt ×

100, where opt is the best known lower bound for the value of the problem, that is either
the optimal value, or the best lower bound found by one of our heuristics,

– in the same way, the duality gap for each lower bound proposed in this paper is defined

as opt−lower bound
opt × 100, where opt is the best known upper bound for the value of the

problem, that is either the optimal value, or the best upper bound computed by one of our
dual algorithms or by CPLEX 12.1.

Note that to compute these gaps, some optimal values and some best upper bounds were obtained
using CPLEX on a supercomputer (40 cores and 500 GB of RAM).

2.2 Numerical experiments with CPLEX 12.1

As the default preprocessing of CPLEX is able to convexify a non convex 0-1 problem, it is
possible to run this state-of-the-art software without any previous reformulation of the prob-
lem. Results of Tables 1 and 2 highlight how huge the duality gaps are, i.e., the gaps between

the optimal continuous and integer values. For smaller densities (Table 1), all instances can be
solved within one hour, except for δ = 50%, where one instance cannot be solved to optimality.
For larger densities (Table 2), for 40 and 50 variables, one or two instances cannot be solved

exactly (see the numbers in brackets).

Table 1 – Exact solutions with CPLEX 12.1 for smaller densities.

δ = 25 % δ = 50 %

n Gap % CPU time (s) Gap % CPU time (s)

10 174.24 0.01 251.67 0.01

20 154.87 0.02 316.22 0.07

30 159.93 0.27 293.30 0.77

40 135.56 2.36 295.09 25.68

50 157.28 245.48 214.56 >3600 (1)

2.3 A quadratic convex reformulation of the problem

Recent work by Billionnet, Elloumi & M-C. Plateau [9] and Billionnet, Elloumi & Lambert [8]
highlights the great interest of an adequate convexification of the problem. Indeed, the perfor-

Pesquisa Operacional, Vol. 34(1), 2014
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Table 2 – Exact solutions with CPLEX 12.1 for larger densities.

δ = 75 % δ = 100 %

n Gap % CPU time (s) Gap % CPU time (s)

10 255.52 0.02 321.09 0.02

20 311.45 0.23 353.79 0.58

30 306.56 9.01 725.26 21.36

40 364.78 >3600 (1) 414.04 >3600 (1)

50 752.33 >3600 (1) 726.20 >3600 (2)

mance of a state-of-the-art solver is greatly improved when it is applied after their quadratic
convex reformulation called QCR, i.e., these authors observed a drastic improvement in bound
quality as well as in efficiency. This is the case for the instances of our benchmark (see the re-

sults of Section 2.3.2). Section 2.3.1 details before the application of the QCR method for our
problem.

2.3.1 The QCR method

It consists of reformulating a nonconvex 0-1 quadratic maximization problem into an equivalent

0-1 program with a concave quadratic function. Then, the reformulated problem can be effi-
ciently solved by a classical branch-and-bound algorithm based on continuous relaxation. The
fundamental objective of this convexification method is therefore to construct a model whose

continuous relaxation is as tight as possible.

In summary, QCR is a two-phase method, whose main phase is the preprocessing one:

• Phase 1 – Replace the objective function f (x) by a concave quadratic objective function
fα,u (x) depending on two parameters α and u both in Rn to get an equivalent convex 0-1
program (see below).

• Phase 2 – Apply a standard 0-1 convex quadratic solver to this new problem.

To be more specific, the first phase consists of perturbing the objective function by subtracting
two functions, equal to zero on the feasible set and depending on two parameters.

Billionnet, Elloumi & M-C. Plateau [9] replace f (x) by:

fu,α (x) = f (x)−
n∑

i=1

ui

(
x2

i − xi

)
−

n∑
i=1

αi xi

⎛
⎝ n∑

j=1

x j − k

⎞
⎠ with u ∈ Rn and α ∈ Rn .

Following the results of Faye & Roupin [21], Billionnet, Elloumi & Lambert [8] propose to
replace f (x) by:

fu,v (x) = f (x)−
n∑

i=1

ui

(
x2

i − xi

)
− v

⎛
⎝ n∑

j=1

x j − k

⎞
⎠

2

with u ∈ Rn and v ∈ R .

Pesquisa Operacional, Vol. 34(1), 2014
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The use of either of these new functions leads to identical bounds at the end of phase 1 of the

QCR method. The use of the second, however, consumes the least amount of computation time.
We propose thus to exploit fu,v (x) for our experiments.

The aim is thus to determine the best values of the parameters u∗ ∈ Rn and v∗ ∈ R so that the
new function fu∗ ,v∗ (x) is concave and the upper bound obtained by its continuous relaxation is

minimal. They are the values that optimize the following problem:

(P) min
u∈Rn , v∈R

max
x∈[0,1]n : ∑n

j=1 a j x j≤b,
∑n

j=1 x j=k
fu,v (x)

To obtain these optimal parameters, following Billionnet et al. [8], we solve the following semi-

definite relaxation of (E − kQK P):

(E−kQK PS D P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

n∑
j=1

ci j Xi j

s.t. Xii = xi i = 1, . . . , n (3)

n∑
i=1

n∑
j=1

Xi j − 2k
n∑

j=1
x j = −k2 (4)

n∑
j=1

a j x j ≤ b

n∑
j=1

x j = k

(
1 xt

x X

)
� 0

x ∈ Rn, X ∈ Rn2

where constraint (4) has been introduced to tighten the optimal value of the problem. It consists

of replacing each product xi x j by a variable Xi j in
(∑n

j=1 x j − k
)2 = 0 (i.e., the square of

constraint (2)).

The optimal values u∗i (i = 1, . . . , n) (resp. v∗) of problem (P) are simply given by the optimal
values of the dual variables of (E − kQK PS D P ) associated with constraints (3) (resp. (4)).

2.3.2 Numerical experiments

As it is shown in [8, 9], the general QCR method produces better upper bounds and so better CPU

times (including times taken to solve SDP) for different classes of 0-1 quadratic programming
problems. Applying the QCR reformulation before solving our instances with CPLEX 12.1, it is
now possible to solve efficiently instances up to 90 items, except for one instance with δ = 75%

(see Tables 3 and 4, where CPU times include the QCR reformulation effort). For larger sizes,
up to 5 instances per class cannot be solved to optimality (see the numbers into brackets). Thus,
in spite of the major improvement realized by using the QCR method (see for n equal to 50, the

Pesquisa Operacional, Vol. 34(1), 2014
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large gap between results reached by CPLEX alone and CPLEX via QCR), all these experiments

reinforce our purpose to elaborate dual heuristics which are able to produce within reasonable
time both good lower and upper bounds for the value of problem (E − kQK P).

Table 3 – Exact solutions with CPLEX 12.1 via QCR for smaller densities.

δ = 25 % δ = 50 %

n Gap % CPU time (s) Gap % CPU time (s)

50 41.22 0.69 36.38 0.87

60 149.24 0.58 21.65 1.65

70 46.84 4.08 80.44 11.57

80 42.06 17.38 64.10 40.41

90 129.34 81.72 92.22 145.19

100 82.78 183.17 21.83 >3600 (1)

110 84.61 >3600 (2) 20.49 >3600 (3)

Table 4 – Exact solutions with CPLEX 12.1 via QCR for larger densities.

δ = 75 % δ = 100 %

n Gap % CPU time (s) Gap % CPU time (s)

50 114.26 0.52 69.45 1.66

60 150.84 3.91 69.06 3.90

70 63.77 22.96 66.18 31.18

80 92.31 101.41 49.19 240.64

90 42.12 >3600 (1) 29.93 376.36

100 27.22 >3600 (4) 106.57 >3600 (2)

110 148.16 >3600 (3) 24.24 >3600 (5)

3 A PRIMAL HEURISTIC

This section presents a first lower bound for the value of problem (E − kQK P). This basic

primal heuristic, denoted by Hpri , is derived from a classical heuristic devoted to the quadratic
knapsack problem [7]. As this straightforward approach exclusively provides a lower bound and
consumes negligible computation times, it should be considered as a basic tool for our dual

heuristics (see next Sections).

3.1 The heuristic Hpri

The primal heuristic method proposed below, denoted by Hpri , is an adaptation of a well-known
heuristic developed by Billionnet & Calmels [7] for the classical quadratic knapsack problem

(QKP). Thus, our approach links together a destructive phase and a constructive phase, the latter
including a greedy algorithm and a local search. These two phases are summarized below (see
Fig. 1 for more details):

Pesquisa Operacional, Vol. 34(1), 2014
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• Destructive phase – A greedy algorithm derived from that of Chaillou, Hansen & Ma-

hieu [15], is performed to produce a solution x starting from the vector e = 1n of Rn . This
destructive procedure is simply adapted to provide a solution satisfying the capacity con-
straint and with a number of items is less than or equal to k (i.e., ax ≤ b and ex ≤ k). This

is achieved by removing iteratively item i with the smallest utility function of the type

∑
j

ci j

ai
.

• Constructive phase – This part performs fill up and exchange procedures. Derived from
Gallo, Hammer & Simeone’s method [23], its objective is two-fold: first, to get from x a

feasible solution of (E − kQK P), that is a solution x ′ satisfying the constraint capacity
whose number of items placed in the knapsack is now exactly equal to k (i.e., ax ′ ≤ b and
ex ′ = k); second, to find finally a solution x pri which improves the quality of solution x ′.

3.2 Numerical experiments

As a general remark, we note that our primal heuristic Hpri is very fast, since for all instances it
took less than 0.04 seconds. The duality gaps are rather small, for all instance sizes (see Fig. 2

and Table 5). The best gap values are obtained for the larger densities. Nevertheless, these gaps
are markedly greater than those obtained for the classical quadratic knapsack problem, which are
generally less than 1%.

4 A SEMIDEFINITE PROGRAMMING HEURISTIC

Our first effective and fast dual heuristic, denoted by Hsd p, is based on semidefinite programming
(Section 4.1). Each step of this iterative procedure consists in fixing variables to zero in a solution
produced by a semidefinite relaxation of the problem, before using our very fast primal heuristic

over the reduced problem (Section 4.2). The computational experiments highlight the gain ob-
tained by this algorithmic tool which dominates heuristics Hpri for all instances (Section 4.3).
Hsd p is very fast, since for all instances it tooks less than 4 seconds on the average.

4.1 The semidefinite programming relaxation

Let us recall [8] that from the semidefinite relaxation (E − kQK PS D P ) defined in Section 2.3.1,
we get optimal multipliers u∗ ∈ Rn and v∗ ∈ R for the QCR method such that:

v(E − kQK PS D P ) = max
x∈[0,1]n : ax≤b, ex=k

fu∗,v∗(x)

We can therefore expect that problem (E − kQK PS D P ) produces good upper bounds for prob-
lem (E − kQK P) and at the same time, produces a solution, denoted by xsd p , which is not too

far from a good solution of (E − kQK P) (see [26, 27] for results concerning other types of 0-1
quadratic problems).

Pesquisa Operacional, Vol. 34(1), 2014
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/*Initial phase: provides a trivial solution x0 such that ax0 ≤ b and ex0 = k*/

J ← arg k smallest (a j ) j∈{1,...,n}
for j from 1 to n do

if j ∈ J then x0
j ← 1 else x0

j ← 0 endif

enddo

x pri ← x0 ; v(Hpri )← f (x0)

/*Destructive phase: provides a solution x1 such that ax1 ≤ b and ex1 ≤ k*/

x1 ← e = {1, . . . , 1}
U ← {1, . . . , n}
while

∑n
j=1 a j > b or card(U ) > k do

i∗ ← arg min(
∑

j∈U ci j /ai ).

x1
i∗ ← 0

U ← U − {i∗}
endwhile

if ex1 = k and f (x1) > v(Hpri ) then x pri ← x1 ; v(Hpri )← f (x1) endif

/*Constructive phase: fill up and exchange procedures to improve x1 */

x2 ← x1

bestgain← 1

while bestgain do

bestgain← 0; f illup ← f alse; exchange← f alse

for all variable xi such that x2
i = 0 do

if ex2 < k and ax2 + ai ≤ b then

gain ← δ fi /*first derivative of function f = ci +
∑n

j=1 ci j x2
j */

if gain > bestgain then

bestgain← gain; i f ill ← i, f illup ← true

endif

else /*ex2 = k*/

for all variable x j such that x2
j = 1 do

if ax2 − a j + ai ≤ b then

gain ← δ fi − δ f j − ci j − c j i /*second derivative of function f */

if gain > bestgain then

bestgain← gain; (iex , j ex)← (i, j ); exchange← true

endif

endif

endfor

endif

endfor

if exchange then

x2
iex ← 1; x2

j ex ← 0

else

if f illup then x2
i f ill ← 1 endif

endif

endwhile

if ex2 = k and f (x2) > v(Hpri ) then x pri ← x2 ; v(Hpri )← f (x2) endif

Figure 1 – The primal heuristic Hpri .

Pesquisa Operacional, Vol. 34(1), 2014
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sizes of instances

Figure 2 – Heuristic Hpri : duality gaps for each density of matrix C.

Table 5 – Hsd p vs. Hpri : Gap quality.

Gaps %
δ

Hpri Hsd p

25% 8.08 1.69

50% 7.09 1.67
75% 5.76 1.64

100% 3.70 1.04

Global results 6.16 1.51

Numerical experiments. Solving the semidefinite relaxation (E − kQK PS D P ) is rather fast:
CPU times increase with the sizes of the instances without exceeding five seconds. Observing

gap quality for all densities of matrix C in Figure 4 (a), the behavior of this relaxation is clearly
unstable. Even if the average gap can be large (up to 150% for some instances), we still propose
to use this semidefinite program for designing our heuristic Hsd p.

4.2 The heuristic Hsd p

This heuristic method solves first the semidefinite relaxation (E − kQK PS D P ) defined in Sec-
tions 2.3.1 and 4.1. Then an iterative procedure based on the associated solution xsd p is initiated.
More specifically, each step of this procedure consists in fixing more and more variables to zero

in xsd p, before using our very fast primal heuristic Hpri over the reduced problem. An attempt
to update the solution produced by Hpri is then applied by performing the fill-up and exchange
procedure of Figure 1 on the global problem, i.e., with the n variables (see Fig. 3 for more

details).

Pesquisa Operacional, Vol. 34(1), 2014
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xsdp ← solution of the semidefinite relaxation (E − kQK PS DP ) of the problem

ε ← 0

nreduce ← n

xsdp ← 0

while nreduce ≥ 1 do

repeat

ε ← ε + 0.01

until at least one variable is less than ε in xsdp

Eliminate variables with values less than ε in xsdp

Update nreduce

Perform heuristic Hpri over the reduced problem

Update x pri by performing the fill-up and exchange procedure on the global problem

if f (x pri ) > f (xsdp)

then

xsdp ← x pri

endif

endwhile

v(Hsdp)← f (xsdp)

Figure 3 – The semidefinite programming heuristic Hsd p.

4.3 Numerical experiments

The performance of heuristic Hsd p is analyzed through the numerical results laid out in Ta-
bles 5, 6 and 7. Table 5 shows a great improvement regarding the quality of the duality gap. It
is about three times better than that obtained by Hpri . Tables 6 and 7 complete this information

by splitting the results into two categories: small sizes (n ≤ 100) and larger sizes (n ≥ 110).
They reveal that CPU times remain rather low, since heuristic Hsd p tooks less than 4 seconds on
the average.

5 A SURROGATE DUAL HEURISTIC FOR (E − k QK P)

Let us consider another effective dual heuristic, denoted by Hsur , based on a surrogate relax-
ation. Eventually, this algorithmic tool will prove to be an efficient and robust method: it proves
optimality for 46% of the 640 instances, within one minute on the average.

5.1 A surrogate dual algorithm

We actually use a double relaxation. We first consider the following problem for which the
equality cardinality constraint (2) is transformed into an inequality constraint (2′):

(kQK P)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max f (x)

s.t. ax ≤ b (1)

ex ≤ k (2′)
x ∈ {0, 1}n
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Second, we consider a surrogate relaxation of this 0-1 quadratic bi-knapsack problem, by com-

bining the two constraints (1) and (2′). To solve the associated surrogate dual problem, we use
the scheme of the algorithm S ADE2 developed by Fréville & G. Plateau [22] for the surrogate
dual of linear 0-1 bi-dimensional knapsack problems. S ADE2 is a one-dimensional dichotomic

search over the compact interval [0,1], which revisits Glover’s method [24] for guaranteeing
optimality in a finite number of iterations.

In short, given a multiplier μ ∈ [0, 1], algorithm S ADE2 determines first an order on the two
constraints (1) and (2’), so that the surrogate relaxation can be written as:

(S(μ))

⎧⎪⎨
⎪⎩

max f (x)

s.t. (A1 + μA2)x ≤ (b1 + μb2)

x ∈ {0, 1}n

with either

(A1, b1) = (a, b) and (A2 , b2) = (e, k)

or
(A1, b1) = (e, k) and (A2 , b2) = (a, b)

For a given μ, let x∗(μ) be an optimal solution of problem (S(μ)), if x∗(μ) satisfies simultane-
ously the two constraints, it is obviously an optimal solution of problem (kQK P). If, in addition,
ax∗(μ) = k, the problem (E − kQK P) is solved. Otherwise, procedure S ADE2 performs its
dichotomic search by using the fact that x∗(μ) satisfies the first (resp. second) constraint and

violates the second (resp. first) one, and by exploiting the ratio (b1− A1 x∗(μ))/(A2 x∗(μ)− b2)

to update the interval bounds (see [22]).

As the theoretical results for this method depend only on properties of the bi-constraint system, its

adaptation for the quadratic case is straightforward. In addition, at each iteration of the procedure,
we propose to exploit the approach of Caprara, Pisinger & Toth [14] for solving the associated
quadratic 0-1 knapsack instance (this requires to adapt their code for accepting a constraint with
real data). The first step of Caprara et al.’s method consists of linearizing (S(μ)) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max f (x, y) = ∑
j∈N

c j j x j + ∑
j∈N

∑
i∈N\{ j}

ci j yi j

s.t.
∑
j∈N

(a1 j + μa2 j )x j ≤ b1 + μb2

∑
i∈N\{ j}

(a1i + μa2i )yi j ≤ (b1 + μb2 − (a1 j + μa2 j ))x j ∀ j ∈ N (5)

0 ≤ yi j ≤ x j ≤ 1 ∀(i, j ) ∈ N2, i 
= j

yi j = y ji ∀(i, j ) ∈ N2, i < j (6)

xi ,yi j ∈ {0, 1} ∀(i, j ) ∈ N2, i 
= j

where N denotes the set of {1, . . . , n}. For this 0-1 linear problem, denoted by (L P(μ)), the

binary variables yi j are introduced to replace the product xi x j . These new variables are linked
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to the old one by suitable inequalities. Indeed, constraints (5) result from multiplying the capac-

ity constraint by each variable and replacing x2
j by x j since the variables are binary variables.

They are redundant as long as the integer restriction on the variables is imposed. Caprara et al.
solve this problem by a branch-and-bound method based on a depth-first search strategy with

a static order of the variables for branching. It uses a preprocessing phase which reduces the
size of the problem through variable fixing. Its effectiveness is obtained by algorithmic choices
and data structures that favor simplicity and incrementality (as for the algorithm designed for

the linear 0-1 knapsack problem in [33]). In particular, their evaluation of nodes is based on a
Lagrangian relaxation of (L P(μ)) which dualizes the symmetric constraints (6). The authors
highlight a beautiful decomposition result which shows that solving this relaxation is equivalent

to solve n + 1 linear 0-1 knapsack problems. Furthermore, for controling time complexity, the
authors decide to relax the integer conditions on variables. This leads to an evaluation which
can be produced in 0(n2) time since each continuous linear knapsack problem can be solved in
0(n) time [20].

From a practical point of view, in order to control CPU times (i.e., to speed up achieving good
upper bound for v(kQK P) and thus for v(E − kQK P)), we propose to search an approxi-
mate value of the surrogate dual (S) of (kQK P) by means of the following two algorithmic
adaptations:

– approximation 1 (solving problem (S(μ))):

We add a CPU time limit (one minute, in our case) in the branch-and-bound search of Caprara

et al.’s method. Obviously, this stopping criterion is effective when the Lagrangian relaxation
evaluation is inefficient. In practice, this occurs for values of μ close to zero, or for the greater
instance sizes (around 200 variables). In this situation, we have retained first the upper bound

vup(S(μ)) on the value of (S(μ)), equal to the maximal evaluation over the pending nodes of the
search tree, and also the associated solution xup(μ) of (S(μ)).

– approximation 2 (in the dichotomic search):

The performance of Caprara et al.’s method is poor for a problem like (S(0)), whose constraint
coefficients are all identical (equal to one here). When no solution is found by Caprara et al.’s
method within the CPU time limit, we propose to increase multiplier μ step by step from zero

(i.e., we start with value 0.01, then double that value each time). This process stops as soon as
a multiplier μt is found such that problem (S(μt )) can be solved to optimality within the CPU
time limit.

While approximation 2 implies that the set M of multipliers generated by our approximate dual

algorithm may miss the optimal multiplier μ∗ for (S), with approximation 1, we can conclude
that our dual algorithm finds an upper bound v(S) of v(S) defined as follows:

v(S) = min
μ∈M

v(S(μ))

where v(S(μ)) is equal to vup(S(μ)) if approximation 1 is being used, or v(S(μ)) otherwise.
We can then state the following result:
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Proposition.

v(E − kQK P) ≤ v(kQK P) ≤ v(S) = min
μ∈[0,1] v(S(μ)) ≤ v(S) = min

μ∈M
v(S(μ))

Finally, in the algorithm of Figure 5, for any μ, solving (S(μ)) may be solve (S(μ)) approxi-
mately when approximation 1 occurs. In this case, we exploit the solution xup(μ) (see above)

that may differ from x∗(μ). All along our approximate dual method, we propose to denote this
solution by x(μ), which is equal to xup(μ) if approximation 1 is being used, or x∗(μ) otherwise.

sizes of instances

(a) Convexification via QCR

sizes of instances

(b) Surrogate dual

Figure 4 – Duality gaps for each density of matrix C.
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Numerical experiments. As for the linear case, our approximate surrogate dual value is

reached in a finite number of iterations (at most 10 iterations here). From the results obtained
with this dichotomic procedure, two global remarks may be mentioned: first, CPU times do not
exceed seven minutes on the average and above all the quality of upper bounds is very good

(see Fig. 4(b)). Second, more than 75% of gap values are improved in comparison with those
produced by the semidefinite programming relaxation (see Section 4).

5.2 The surrogate dual heuristic Hsur

Classically, our surrogate dual heuristic, denoted by Hsur , keeps the best feasible solution of

(E − kQK P), denoted by xsur , produced by the dichotomic procedure described in Figure 5.
It computes both a lower bound f (xsur ) and an upper bound v(S) (see Section 5.1) of v(E −
kQK P).

More specifically, at each iteration of our dichotomic procedure, that is for each multiplier μ in

the set M defined above, we retain the best feasible solution – denoted by x(μ) – produced by
the branch-and-bound depth first search, which satisfies the cardinality constraint exactly (i.e.,
ax(μ) ≤ b and ex(μ) = k).

As the procedure starts by using the very fast heuristic Hpri , the solution xsur produced by our

heuristic Hsur is such that:

f
(
xsur ) = max

{
f (x pri), max

μ∈M
f (x(μ))

}
Using an analysis of the experimental results of the previous section, the single adjustment of

our procedure consists in reducing to half a minute the CPU time threshold for solving (S(μ))

approximately (its solution is denoted by x(μ) (see Section 5.1)). This allows first, to speed up
the search with a negligible loss in gap quality and second, to get a dual heuristic which is both
effective and robust. Finally, it should be noted that problem (E − kQK P) is solved exactly

when a problem S(μ) is solved exactly for a given μ in M and when its optimal solution x(μ) is
primal feasible for (E − kQK P) (see Proposition of Section 5.1).

Numerical experiments. The numerical results of Figure 6 (associated with those of Table 6

and Table 7) show the high quality of the lower bounds provided by our surrogate dual heuristic
Hsur . It tends to dominate heuristic Hsd p on the instances of small sizes (n ≤ 100), while the
reverse is true for the larger sizes (n ≥ 110). It should be noted that 46% of the instances are in

fact exactly solved by our surrogate dual heuristic. Although CPU times of Hsur increase with
the size of the instances, they never exceed two minutes. Moreover, for each density, the mean
time is around one minute.

6 A HYBRID DUAL HEURISTIC

Our fast and efficient hybrid heuristic method, denoted by Hhybrid , combines the heuristics de-
scribed in Sections 3, 4 and 5. It integrates the primal heuristic and the surrogate dual heuristic
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Perform heuristic Hpri ; xsur ← x pri

/*Trust interval for the dichotomic procedure*/

(A1 , b1)← (a, b) ; (A2 , b2)← (e, k) ; end ← f alse

Solving of (S(1)) : max f (x) s.t . (a + e)x ≤ b + k; x ∈ {0, 1}n /*associated solution x(1)*/

if f (x(1) > f (xsur ) then xsur ← x(1) endif

if x(1) is primal feasible

then v(kQK P)← f (x(1)) /*v(S) = v(kQK P)*/

if ex(1) = k then xsur = x(1) is optimal for (E − kQK P) ; end ← true endif

else α← (b − ax(1))/(ex(1)− k)

if ax(1) > b

then

Solving of (S(0)) : max f (x) s.t . ax ≤ b; x ∈ {0, 1}n /*associated solution x(0)*/

if f (x(0) > f (xsur ) then xsur ← x(0) endif
if ex(0) ≤ k

then v(kQK P)← f (x(0)) /*v(S) = v(kQK P)*/

if ex(0) = k then xsur = x(0) is optimal for (E − kQK P) ; end ← true endif

else αl ← (b − ax(0))/(ex(0)− k); αr ← α

endif
else /*ex(1) > k*/

Solving of (S(∞)) : max f (x) s.t . ex ≤ k; x ∈ {0, 1}n /*associated solution x(∞)*/

if f (x(∞) > f (xsur ) then xsur ← x(∞) endif
if ax(∞) ≤ b

then v(kQK P)← f (x(∞)) /*v(S)= v(kQK P)*/

if ex(∞) = k then xsur = x(∞) is optimal for (E − kQK P) ; end ← true endif
else αl ← (ex(0)− k)/(b − ax(0)); αr ← 1/α

(A1 , b1)← (e, k) ; (A2 , b2)← (a, b) /*Permutation of the two constraints*/

endif

endif

endif
/*Extended dichotomy*/

μl ← 0;μr ← 0

while not end do
if αl ≥ αr

then v(S)← min{ f (x(μl )), f (x(μr ))}; end ← true

if f (xsur ) = v(S) then xsur is optimal for (E − kQK P) endif
else μ← (αl + αr )/2; Solving of (S(μ)) /*associated solution x(μ)*/

if f (x(μ) > f (xsur ) then xsur ← x(μ) endif

if x(μ) is primal feasible

then v(kQK P)← f (x(μ)) /*v(S)= v(kQK P)*/

if ex(μ) = k then xsur = x(μ) is optimal for (E − kQK P) ; end ← true endif
else α ← (b1 − A1 x(μ))/(A2 x(μ)− b2)

if A2 x(μ) > b2 then αl ← α;μl ← μ else αr ← α;μr ← μ /*A1 x(μ) > b1*/ endif

endif
endif

endwhile

v(Hsur )← f (xsur )

Figure 5 – The heuristic Hsur .
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sizes of instances

(a) Duality gaps

sizes of instances

(b) CPU times (s)

Figure 6 – Heuristic Hsur (results for each density of matrix C).

within the semidefinite programming reduction phase. It proves to get best duality gaps in a
reasonable time for all instances of our benchmark.

6.1 The heuristic Hhybr id

The aim of this heuristic (see Fig. 7) is to get better solutions than those provided by our heuristics
Hsd p and Hsur . It starts by performing Hsur which includes heuristic Hpri (see Fig. 5). We then
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apply heuristic Hsd p (see Fig. 3) in which heuristic Hsur is used for a second and last time. We

are thefore sure to find a solution xhybrid as good as that produced by both heuristics Hpri , Hsd p

and Hsur . In addition, computation times remain reasonable since heuristic Hsur is used only
two times. They are in addition to the reasonable time of Hsd p.

Perform heuristic Hsur

/*the value of Hsur = f (xsur ) is at least equal to the value of Hpri = f (x pri
f irst ) */

xhybrid ← xsur

xsdp ← solution of the semidefinite relaxation (E − kQK PS DP ) of the problem

ε ← 0

nreduce ← n

while nreduce ≥ 1 do

repeat

ε ← ε + 0.01

untill at least one variable is less than ε in xsdp

Eliminate variables with values less than ε in xsdp

Update nreduce

Perform heuristic Hpri over the reduced problem

if (xhybrid and x pri are not better than x pri
f irst ) and ε = 0.05

then /*heuristic Hsur is performed for the second and last time*/

Perform heuristic Hsur over the reduced problem

if f (xsur ) > f (x pri )

then

x pri ← xsur

endif

endif

Update x pri by performing the fill-up and exchange procedure on the global problem

if f (x pri ) > f (xhybrid )

then

xhybrid ← x pri

endif

endwhile

v(Hhybrid )← f (xhybrid )

Figure 7 – The heuristic Hhybrid .

6.2 Numerical experiments

The computational experiments validate the relevance of the bounds produced by our hybrid

heuristic method which combines quality (i.e., duality gap is about 1.20 % on the average) and
efficiency (i.e., CPU time is about one minute and a half on the average).

Figure 8 with Tables 6, 7 and 8 summarize the performance of heuristic Hhybrid . Additional
computational experiments have been realized by performing CPLEX 12.1, instance by instance,
within the associated CPU time of heuristic Hhybrid . The results with this limited time CPLEX
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sizes of instances

(a) Duality gaps

sizes of instances

(b) CPU times (s)

Figure 8 – Heuristic Hhybrid (results for each density of matrix C).

software, denoted by LT−C PL E X , are listed in Tables 6 and 7. Figure 9(a) (duality gaps) show
clearly, instance size by instance size, the dominance of Hhybrid over Hsur and LT − C PL E X .

Table 8 counts the percentage of instances for which optimality is proved (i.e., lower and upper
bounds coincide) or simply reached (550 of the 640 instances of our benchmark have a known
optimal solution). Results in brackets relate to these 550 instances.
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sizes of instances

(a) Duality gaps (%)

sizes of instances

(b) CPU time (s)

Figure 9 – Hhybrid vs. Hsur and limited time C P L E X .

For the set of 550 instances (resp. 640 instances), heuristic Hhybrid yields thus known optima in
90% (resp. 76%) of the cases and proves optimality in 63% (resp. 49%) of the cases, within less
than 100 seconds on the average. These scores are even better for instances with sizes from 50 to
100 variables. For example, Hhybrid yields known optima in 96% of the cases (i.e., 232 of 240
instances).

Finally, Figure 9(b) shows that CPU time of Hhybrid increases with the size of the instances, but

never exceed two minutes and a half.
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Table 6 – Hhybrid vs. Hsd p, Hsur and LT − C P L E X : average values for n = 50 to 100.

Heuristic Hsd p Heuristic Hsur Heuristic Hhybrid LT − C P L E X

δ Gap % CPU (s) Gap % CPU (s) Gap % CPU (s) Gap %

25 % 0.60 1.55 0.22 19.15 0.01 26.14 1.62

50 % 0.43 1.70 0.80 32.28 0.03 44.64 2.11

75 % 0.22 1.46 0.20 27.27 0.03 37.71 2.28

100 % 0.35 1.51 0.27 18.55 0.03 28.43 1.27

Global results 0.40 1.56 0.37 25.06 0.03 34.23 1.82

Table 7 – Hhybrid vs. Hsd p, Hsur and LT − C P L E X : average values for n = 110 to 200.

Heuristic Hsd p Heuristic Hsur Heuristic Hhybrid LT − C P L E X

δ Gap % CPU (s) Gap % CPU (s) Gap % CPU (s) Gap %

25 % 2.42 6.91 4.95 68.10 1.98 111.11 3.99

50 % 2.41 6.12 3.57 80.16 2.03 128.87 4.41

75 % 2.51 6.14 3.43 80.36 2.19 130.05 4.15

100 % 1.45 6.66 2.47 75.17 1.30 132.19 2.65

Global 2.20 6.46 3.61 75.95 1.88 125.56 3.80

Table 8 – Heuristic Hhybrid : performance for all sizes.

Optimality

δ Gap % CPU (s) Proved % Reached %

25 % 1.25 79.25 47.95 (58.82) 80.14 (92.13)

50 % 1.28 97.28 51.33 (65.25) 77.33 (89.92)

75 % 1.38 95.43 47.02 (61.74) 72.85 (88.00)

100 % 0.82 93.28 51.32 (66.67) 74.34 (88.28)

Global 1.18 91.31 49.42 (63.11) 76.13 (89.59)

7 CONCLUSION

This paper proposes fast computations of lower and upper bounds for the 0-1 exact k-item
quadratic knapsack problem (E − kQK P). Thanks to these bounds, our experiments highlight
the possibility to solve now instances up to 200 variables whatever their density. Computational

experiments point out the efficiency and the robustness of our hybrid heuristic method: it yields
known optima in 90% of the cases and proves optimality in 76% of the cases, within 100 sec-
onds in average. Further work concerns obviously the improvement of the lower bounds but we
presume that we have to concentrate one’s effort on the upper bounds for instances with large

sizes. Thus, we plan to study new types of relaxations such that the convex hull relaxation (see
[2]). A final perspective consists in embedding these high-quality bounds in a branch-and-bound
scheme for the exact solving of (E − kQK P).
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