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ABSTRACT. Variable selection plays an important rule in identifying possible factors that could predict

the behavior of clients with respect to the bill payments. The Cox model is the standard approach for mod-

eling the time until starting the lack of payments. Parsimony and capacity of predicting are some desirable

characteristics of statistical models. This paper aims at proposing a new forward stagewise Lasso (least ab-

solute shrinkage and selection operator) algorithm and applying it for variable selection in the Cox model.

The algorithm can be easily extended to run the Adaptive Lasso (ALasso) approach.

Keywords: proportional hazards model, partial likelihood, lasso regression.

1 INTRODUCTION

The cell phone market has grown fast in recent years. Modern cell phones, advantageous plans
and services provided by the telephone companies have attracted new clients. Also due to the

variety of companies with competitive services, the clients may change their telephone provider.
One of the greatest challenges faced by telephone companies, which were generated by such a
huge expansion in the market, is to identify the characteristics of their new and current clients.

It is in the company’s interest to attract faithful clients, or in a different perspective, to identify
the profile of in debt clients. This is imperative in order to define new politics which leads the
company to increase and to offer its clients more appropriate and specific services such as pre-

paid services.

In debt clients are either clients who start the service and do not pay their bill or who stop pay-
ments after a certain time. In both cases, the time until the lack of payments is the response
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variable. The goal is then to identify possible factors related to the client’s socioeconomic con-

ditions, the service provided by the company, among others that could predict the behavior of
the clients with respect to bill payments. In this context, survival analysis and variable selection
techniques are the common tools to handle the problem.

Survival analysis involves the study of response times from a well defined point in time to a

pre-specified outcome event and, in general, the interest focuses on the effect of covariates on
survival. Statistical analysis is often complicated by the presence of incomplete or censored ob-
servations in data sets. That is, frequently, the failure event is not observed for some subjects by

the end of follow-up or it is not observed exactly but, in such cases, it is known that it occurred
in a certain period of time. Literature in survival analysis has been increasing enormously after
the seminal work of Cox [1, 2] on the proportional hazards model. Classical texts include Cox &

Oakes [3], Kalbfleish & Prentice [4] and Lawless [5].

The most popular expression of Cox regression model, for covariates not dependent on time, uses
the exponential form for the relative hazard, so that the hazard function is given by:

λ(t) = λ0(t) exp(βT x), (1)

where λ0(t), the baseline hazard function, is an unknown non-negative function of time, βT =
(β1, . . . , βp) is a p × 1 vector of unknown parameters and x = (x1, ..., x p)

T is a row vector
of covariates. Inference for β is usually based on the partial log-likelihood function, taken into

consideration a sample of n individuals, in which it is observed k ≤ n failures at times t1 ≤ t2 ≤
· · · ≤ tk . In the absence of ties, for the model (1), this function is written as:

l(β) =
n∑

i=1

δi

⎡
⎣βT xi − log

⎛
⎝ ∑

jεR(ti )

exp(βT x j )

⎞
⎠

⎤
⎦ , (2)

where δi is the failure indicator and R(ti ) is the set of labels related to the individuals at risk at
time ti .

In real situations, it is very common that many covariates are collected by the researcher which
makes the analysis very complex. Therefore, variable selection becomes a crucial part of the

statistical analysis. Parsimony and capacity of predicting are some desirable characteristics of
statistical models. There are many techniques for variable selection in linear regression mod-
els (see, for instance, Draper & Smith [6]), and non-linear regression models (see, for instance,

Goncalves & Macrino [7]). Some of them can naturally be applied to the context of censored sur-
vival data, such as the well known stepwise procedure. Other techniques have been extended for
this type of data. More recently, Bayesian approaches for variable selection have been the sub-

ject of substantial research. An interesting approach can be found in George & McCulloch [8, 9].
Some of them have been extended to the Cox model, such as Faraggi & Simon [10], Ibrahim et
al. [11] among others. In the Bayesian approach, specifying meaningful prior distributions for

the parameters is a difficult task especially in the presence of many of them. Another drawback
of some Bayesian approaches for variable selection, such as Bayes factor, is the intensive com-
putational requirement.

Pesquisa Operacional, Vol. 35(2), 2015
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An alternative procedure that has shown a nice variable selection performance is the Lasso (Least

Absolute Shrinkage and Selection Operator) method proposed by Tibshirani [12]. This technique
has attracted attention in the literature mainly due to its capability as providing automatic variable
selection and optimized prediction performance. Some properties of it are presented by Knight

& Fu [13]. An estimate of the shrinkage parameter was proposed by Foster et al. [14] by using a
random linear model approach. In special for the Cox model, Tibshirani [15] applied the Lasso
method for variable selection. Recently, adaptive Lasso methods have been proposed by Zhang

& Lu [16] and Zou [17] for the proportional hazards model. These methods consider adaptive
penalizations for the regression coefficients.

Originally, the Lasso method requires a Newton-Raphson step in its iteractive process [15]. This
is a really difficult step especially in the presence of many covariates. Recently, Friedman et

al. [18] proposed a fast algorithm named glmnet to estimate the Lasso solutions based on the
Coordinate Descent algorithm [19]. Simon et al. [20] extended the Coordinate Descent algorithm
to the Cox model.

This paper aims at proposing a new Lasso algorithm for variable selection in Cox model as a non-

linear extension of the Forward stagewise linear regression algorithm Tibshirani et al. [21]. The
algorithm presents good performance for this model and it can be easily extended for other sorts
of models. Furthermore, the proposed algorithm can be extended to generate ALasso (Adaptive

LASSO) estimates. The ultimate goal is to identify characteristics of the in debt clients of a
Brazilian telephone company.

The structure of the present paper is as follows. The Lasso method is described in Section 2.
Section 3 presents the original algorithm proposed by Tibshirani [15]. The Forward Stagewise

Lasso algorithm is presented in Section 4 and also an extended version which generates ALasso
solutions. Monte Carlo simulations are used in Section 5 in order to compare Lasso, ALasso and
other variable selection techniques. In Section 6, variable selection techniques are applied to the

data set reported in Fleming and Harrington [22]. The Brazilian telephone company data set is
analyzed in Section 7. Discussion and Conclusion in Section 8 ends the paper.

2 THE LASSO METHOD

The Lasso method was proposed by Tibshirani [12]. It is originally aimed at minimizing the
constrained residual sum of squares (error) where the constraint is represented by the sum of the
absolute coefficients function as shown in the following:

β̂lasso = arg min
β

∑N
i=1

(
yi − ∑p

j=1 xi j β j

)2
,

subject to : ∑p
j=1 |β j | ≤ s.

(3)

where yi is the response for the i-th individual in the sample, which is usually assumed to be

normally distributed, and s is the Lasso parameter whose maximum value is associated to the
standard least squares estimates s0 = ∑p

j=1 |β̂ls
j |. The method is very similar to the norm con-

straint approach, named ridge regression [23] but with the important difference that the Lasso

Pesquisa Operacional, Vol. 35(2), 2015
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algorithm is also able to provide coefficients that are exactly zero, therefore providing variable

selection. In addition, it minimizes multi-collinearity and consequently leads to the improvement
of the model prediction performance.

The Lasso method was previously used for variable selection in the Cox model [15] to maximize
the partial likelihood subjected to the same constraint function presented in (3), that is,

β̂lasso = arg max
β

l(β),

subject to : ∑p
j=1 |β j | ≤ s.

(4)

It can be noticed from (3) and (4) that the solution depends on the constraint value s or Lasso

parameter, which must be chosen based on some quality measures. Originally, quality measures
such as cross-validation, generalized cross-validation and analytical unbiased estimate of risk
were used for linear models [12] and an approximated generalized cross validation statistic for
the Cox model [15]. In all these cases an approximation for the number of parameters involved

in the fitted β̂lasso is calculated using matrix algebra, which can be a hard task.

In addition, Leng et al. [24] reported that prediction accuracy criterion is not suitable for vari-
able selection using the Lasso method. Results were provided for linear regression models only.

Alternatively, we propose and evaluate the use of BIC (Bayesian Information Criteria) as the
optimization function for selecting the Lasso parameter.

2.1 The adaptive LASSO (ALASSO)

Zhang & Lu [16] proposed a weighted L1 penalty on the regression coefficients such that the
estimates can be found by solving the following maximization problem,

β̂alasso = arg max
β

l(β),

subject to : ∑p
j=1 |β j |/|β̂∗

j | ≤ s.
(5)

where β̂∗
j is the maximizer of the log partial likelihood, l(β). According to Zhang & Lu [16], the

ALasso approach has the desired theoretical properties and computational convenience. In this
work, we found that our algorithm can be extended to generate ALasso solutions. It is also worth

noting that by including a weighted penalty, the ALasso estimates exclude parameters with low
absolute values, and it therefore generates more compact models when compared to the original
Lasso estimates.

3 THE ORIGINAL LASSO ALGORITHM

Tibshirani [15] proposes an algorithm to obtain Lasso estimates as an adaptation of the Newton-
Raphson iterative least squares algorithm. Let η = Xβ be the linear predictor, where X is the

regression matrix, β is the coefficients vector. Let u = ∂l/∂η and A = −∂2l/∂ηηT . Consider
W as W = diag{aii } the diagonal matrix whose elements are the diagonal components of A and
assume z = η + A−1u. The algorithm has the following four steps:

Pesquisa Operacional, Vol. 35(2), 2015
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Step 1 Fix s and start with β̂ = 0.

Step 2 Compute η, u, A and z from β̂ .

Step 3 Minimize (z − Xβ)T W (z − Xβ) subject to
∑p

j=1 |β j | ≤ s.

Step 4 Repeat Steps 2 and 3 until β̂ does not change.

To perform Step 3, consider such minimization problem as a weighted least squares problem
subjected to a general linear inequality constraint, say,

Minimize (z − Xβ)T W (z − Xβ), subject to Cβ ≤ D,

for some matrices C and D. This approximation leads to the following solution:

β̃ = β̂ + (X T W X)−1CT
[
C((X T W X)−1)CT

]−1
(D − Cβ̂), (6)

where β̂ = (X T W X)−1 X T W z.

Instead of applying 2p possible constraints representing all possible combinations of signals
for the parameters β, Lawson & Hansen [25] suggest to grow matrices C and D, sequentially,

starting with D = s and CT = sign(β̂0), where sign() is the signal function, β̂0 is the non-
constraint solution and from Equation 6 find a new estimate β̃. If

∑
j=1 |β j | > s include a new

line i in matrices C and D with CT
i = sign(β̃ ), D = s1, 1 = (1, . . . , 1)T , and obtain a new

solution β̃k+1. The procedure stops at step k, k = 1, 2, . . . , m, when
∑

j=1 |β j |−s < ξ , where ξ

is the numerical tolerance, and m is the maximum number of steps. Both, ξ and m, are specified
by the user.

The tolerance ξ and the maximum number of steps m are used in both algorithms proposed by

Tibshirani [15] and Lawson & Hansen [25]. These parameters are associated to the convergence
speed and also to the estimates precision. It is worth noting that the overall algorithm first turns
the Cox model estimation into a dynamic weighted linear problem and then it sequentially incor-
porates the constraint by means of an adaptive linear inequality. Therefore, the algorithm has two

loops one for the Cox estimate and another to include the constraint. The tolerance and number
of steps are selected in order to generate a single solution. The influence of the tolerance param-
eter is presented in Figure 1 for the liver data set used previously by Tibshirani [15]. This data

was collected for the Mayo Clinic trial in PBC (Primary biliary cirrhosis) of the liver conducted
between January 1974 and May 1984 comparing the drug D-penicillamine with a placebo. It
has 17 variables and 276 observations. For the analysis four different values were chosen for the

tolerance ξ , ξ ∈ {10−3, 10−4, 10−5, 10−6}, and two different values for the maximum number of
steps: m = 50 (1.a) and m = 100 (1.b), respectively. The maximum partial likelihood estimate
is such that

∑ |β̂∗
j | ≈ 3.18. We used the algorithm to generate 200 solutions homogenously

distributed in the range s ∈ [1, 3]. According to Figure 1 when the tolerance is 10−3 the algo-
rithm converges on average in 5 steps. If the tolerance is changed to 10−4, the algorithm stops
mainly due to the maximum number of steps. The algorithm is also sensitive to the choice of s.

Pesquisa Operacional, Vol. 35(2), 2015
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Results show that for a particular range of s the algorithm reaches the tolerance before reaching

the maximum number of steps. As the tolerance decreases, the algorithm stops when it reaches
the maximum number of steps. Therefore, the algorithm is not capable of generating solutions if
the tolerance is below a certain threshold, in this example this threshold is approximately 10−4.

Figure 1(b) shows that even when selecting a higher number of steps (m = 100) the convergence
problem remains.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

0

10
1

10
2

s

st
ep

s 
(k

)

ε = 1e−3
ε = 1e−4
ε = 1e−5
ε = 1e−6

(a) m = 50

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

0

10
1

10
2

10
3

st
ep

s(
k)

s

ε = 1e−3
ε = 1e−4
ε = 1e−5
ε = 1e−6

(b) m = 100

Figure 1 – Number of steps for different values of tolerance ξ and constraint s for maximum number of

steps equal to m = 50 (a) and m = 100 (b).
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Table 1 shows the average for both, the number of steps for different values of tolerance ξ and

the computational time for 200 solutions within the previous range of s as shown in Figure 1(b).
According to Table 1 a single solution with tolerance equal to 10−3 converges, on average, in
4.84 steps or 0.9 seconds. As expected, for small values of ξ the mean number of steps tends to

be close to the maximum number of steps m. This represents a lower bound for the tolerance not
crossed by the algorithm.

Table 1 – Mean computational time in seconds for

original Lasso algorithm for different values of tol-

erance and maximum number of steps equals to 50.

Tolerance (ξ ) Mean Steps (m) Time (sec)

10−3 4.84 0.90

10−4 32.2 5.24
10−5 48.56 6.38

10−6 50 6.62

Following Zhang & Lu [16], the ALasso optimization problem is strictly convex and therefore
standard optimization packages available, for example, in Matlab and R can be used to generate
the estimates. The authors also propose minimizing the penalized log partial likelihood using a
variation of the Fu’s shooting algorithm [26].

An alternative approach to solve both Lasso and ALasso optimization problems is to use La-
grange Multiplier and rewrite the constrained optimization problem as λ · l(β) + (1 − λ) ·∑p

j=1 |β j |, for the Lasso estimate, and λ · l(β) + (1 − λ) · ∑p
j=1 |β j |/|β̂∗

j | for the ALasso
estimate. In this case, 0 ≤ λ ≤ 1, and therefore estimates might be provided by standard opti-

mization packages for different values of λ. Furthermore, in this case, the Lasso parameter, s,
and the Lagrange Multiplier, λ, are related.

4 THE FORWARD STAGEWISE LASSO ALGORITHM

In order to avoid the problems mentioned in the previous section, we proposed a new algorithm
that outperforms previous ones since it does not require computing first and second order deriva-
tives, and relies on simple programming code based on a test-and-update approach. However, our

approach increases the computational burden as compared to previous algorithms, which can be
substantially minimized using a more efficient programming language such as C/C++. The algo-
rithm is based on the forward stagewise linear regression [21]. The coefficients are initiated with
zero and a small increment, ε, is added to each one of them, separately. The log partial likelihood

is then measured and the candidate that maximizes the log-function is updated. The process is
continuously repeated until it reaches a maximum number of iterations, say M . The increment
ε switches between positive and negative values in order to give flexibility to the coefficients’

values. The proposed algorithm is presented in Figure 2.

Pesquisa Operacional, Vol. 35(2), 2015
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Algorithm
Initialize β̂ j = 0, j = 1, ..., p.

Set ε > 0 to some small constant and M large
For m = 1 to M

lmax = l(β̂)

For j = 1 to p

For x = 1 to 2

ε = −ε

βaux = β̂

βaux
j = βaux

j + ε

If l(βaux ) > lmax then
k∗ = j

α∗ = βaux
j

lmax = l(βaux )

end If
end For

end For
β̂k∗ = α∗

end For
end Algorithm

Figure 2 – Forward Stagewise Lasso algorithm.

Despite increasing computational cost with such a test-and-update approach, it is remarkable the
simplicity of the proposed algorithm and its capability of generating approximations of the Lasso

solutions without the need of computing first or second order derivatives. Originally, the Lasso
method was applied to the Cox model by means of an iterative Newton-Raphson update [15].
In that case, convergence is quite fast to a single solution, but multitudes of solutions have to

be generated in order to select the final one with the proper constraint value for the sum of the
absolute coefficients. Consequently, if a high resolution for the constraint is chosen, the compu-
tational effort might be greater than that for the proposed algorithm. Moreover, in our simulation

study and for the real data fitting, the proposed algorithm did converge to the maximum log-
likelihood estimate.

In a very similar way, our proposed Forward Stagewise Lasso algorithm has two parameters the
step length ε and the maximum number of steps M . However, these parameters are related to the

maximum amount of solutions M generated by the algorithm and the difference between the sum
of the absolute coefficients in two consecutive steps i.e.

∣∣∣∑ |β̂ j (k)| − ∑ |β̂ j (k − 1)|
∣∣∣ = ε. At

each step, only one coefficient is updated adding to it a negative or positive value of ε, as shown
in Figure 3(b). The updated coefficient is the one that makes the resulting partial log likelihood

ł(β) at each step k the highest one. The algorithm may stop before reaching M steps if, in a
particular step, the new solution does not generate a value for ł(β) higher than the obtained in
the previous step. This early stop event happens if the algorithm reaches a local maximum or

Pesquisa Operacional, Vol. 35(2), 2015
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the global maximum. The Forward Stagewise Lasso parameters, ε and m, when compared to the

original algorithm, do not control convergence. However, it is crucial to choose a suitable value
for ε otherwise the set of solutions will be biased. Figure 3(a) compares the partial log-likelihood
curve for original and the proposed algorithm. If ε = 0.01 the proposed approach generates

biased solutions and converges to a local maximum before reaching the maximum number of
steps M = 35, 000. If changed to ε = 10−4 the l(β) curve achieves its maximum with 33, 651
steps. Indeed, Figure 3(b) shows that our proposal provides a fine resolution with slightly higher

values for l(β) when solutions are closer to the maximum partial likelihood estimate β̂∗
j . In

addition, our approach generates on average one single solution in 0.1675 seconds. The 33, 651
solutions took approximately 93.94 minutes using a code implemented in Matlab software. It

is worth noting that computing speed can be substantially improved using C\C++ language.
Although the smaller the ε the higher the computational cost required to generate M solutions,
empirical results have shown that after a certain small value ε∗, the set of solutions becomes
stable, not differing substantially if an even smaller ε value is applied. An empirical approach to

select the parameter ε is to execute the algorithm several times, each one with a different ε value.

Comparing both algorithms, the original approach is very sensitive to the number of variables in
the model. For a large number of variables such algorithm leads to numerical problems due to
difficulties in the calculation of the inverse of matrices. Figure 4(a) shows the estimates for the

liver data set. For small values of s (s < 0.3), the algorithm is not able to generate solutions.
Problems with the numerical convergence appear as spikes and non-smooth sequential estimates.
However, this algorithm has the advantage of generating fast solutions for arbitrary values of s.

The proposed approach does not present problems with the numerical convergence since no
inverse matrices are needed. The estimates are very smooth as noticed in Figure 4(b). However,
although it generates one solution much faster than the original approach, we need to estimate a

large set of solutions with some relatively fine resolution starting from β̂ j = 0 which increases
computational cost considerably.

Furthermore, our approach can be extended to generate ALasso solutions. Briefly, the ALasso
approach penalizes parameters with low absolute values and it prioritizes the parameters with

large absolute values. In our algorithm this feature is implemented by replacing the parameters
update step, defined as βaux

j = βaux
j + ε, with βaux

j = βaux
j + ε · |β̂∗

j |. Figure 5 shows ALasso
solutions generated with an optimization package available in R software, as suggested by Zhang

& Lu [16], and also the solutions provided by our algorithm. Results show that our approach
minimizes instabilities due to numerical approximations.

5 COMPARING LASSO, GLMNET, ALASSO AND OTHER METHODS
FOR VARIABLE SELECTION

In this section a Monte Carlo study is performed in order to compare the Lasso, ALasso methods
and some standard procedures for variable selection, such as stepwise, AIC and BIC. All methods
are applied for selecting variables in the Cox model. We also evaluate the glmnet package [20]

which applies the Coordinate Descent algorithm to estimate Lasso solutions.

Pesquisa Operacional, Vol. 35(2), 2015
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(b) Forward-Lasso

Figure 3 – Partial log-likelihood as a function of s for original (Newton-Raphson) and Forward-Lasso
algorithms.

The BIC quality measure was used in this section as twofold: (1) in the Lasso-Cox approach,
this measure is estimated for each solution generated by the proposed algorithm and the Lasso
parameter is selected as the one that provides the highest value for BIC, and (2) as a variable se-
lection technique. BIC is computed through the formula B IC = 2l(β)− p log n. The expression

for AIC is: AIC = 2l(β) − 2 p. There are many stepwise procedures. We selected the one that
is presented by Collett [27]. It consists in a procedure that removes covariates in one step and
then tests again the ones that were excluded in the previous steps. This process goes on until no

covariates enter or leave the model.
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(b) Forward-Lasso

Figure 4 – Estimates for original Lasso and Forward Lasso algorithms. Numerical approximations to the

inverse of matrices leads to convergence problems in the original approach.
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(a) estimated ALasso solutions
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(b) Forward-ALasso

Figure 5 – Estimates for ALasso and Forward ALasso algorithms. Alasso coefficients were generated using

a numerical optimization package available in the R software.

The AIC and BIC measures were applied as variable selection techniques as the following. Given

p candidate variables, all 2p − 1 possible combinations were tested. The combinations with the
highest AIC and BIC values were compared to the true model.

For the glmnet package, we apply the leave-one-out cross-validation to select the Lasso parame-
ter.

Four scenarios are considered in the study. They are built taking into account different percent-

ages of censoring observations (0% and 30%), sample sizes (n = 50 and 100) and the numbers
of covariates (4 and 5). The response variable is generated from the Weibull model [28] with
the shape parameter α(x) = exp{∑p

l=1 xlβl } and scale parameter ρ > 0. Three different values
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for ρ are assumed: ρ = 0.5 (decreasing failure rate), ρ = 1 (constant failure rate) and ρ = 2

(increasing failure rate). Vector β is set equal to (1, 0, 0, 1) or (1, 0, 0, 1, 1) for scenarios which
consider 4 or 5 covariates, respectively. Covariates are generated from the following distribu-
tions: the standard normal (N), the Bernoulli (B) with parameter θ = 0.5, and the exponential

(E) with mean equal to 1. The scenarios are described in Table 2.

Table 2 – Scenarios for the Monte Carlo study.

Scenario Sample size Percentage of censoring Response variables

1 50 0.0 (N, N, B, B)

2 100 0.0 (N, N, B, B)
3 100 30.0 (N, N, B, B)

4 50 0.0 (N, N, B, B, E)

For each scenario, 5,000 replications generated using the Weibull model are considered and it

is calculated the percentage of times that the model is correctly selected by each method and
criteria. For the Lasso and ALasso methods, it is also assumed ε = 0.001 and M = 40, 000.
MATLAB and R packages were used in order to get the results.

Tables 3 and 4 show the results for Scenarios 1 and 2. From these tables, there may be observed

the effect of sample sizes as well as the failure rates in the variable selection, for all methods.

Table 3 – Percentage of correct model selection, Scenario 1.

Model Method Percentage

Weibull(α(x), 0.5)

Lasso 40.72

ALasso 72.24
glmnet 35.74

stepwise 64.62
AIC 64.84

BIC 79.48

Weibull(α(x), 1.0)

Lasso 40.94

ALasso 73.22
glmnet 34.28

stepwise 66.14
AIC 66.40

BIC 79.48

Weibull(α(x), 2.0)

Lasso 41.80
ALasso 73.04

glmnet 35.62

stepwise 66.42
AIC 66.64

BIC 79.26
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Table 4 – Percentage of correct model selection, Scenario 2.

Model Method Percentage

Weibull(α(x), 0.5)

Lasso 52.92

ALasso 87.68
glmnet 36.68

stepwise 69.24

AIC 69.28
BIC 92.16

Weibull(α(x), 1.0)

Lasso 52.86

ALasso 88.84
glmnet 36.04

stepwise 69.74
AIC 69.84

BIC 92.68

Weibull(α(x), 2.0)

Lasso 52.66

ALasso 88.72
glmnet 36.26

stepwise 69.72
AIC 69.76

BIC 93.08

Remarkably, the BIC approach presents the best performance, followed by the ALasso method.
The glmnet approach provides the worst results for all scenarios, followed by the standard Lasso.

It is worth noticing that glmnet applies leave-one-out cross validation to select the Lasso pa-
rameter whereas the Lasso approach applies the BIC statistic. As expected, for samples of size
n = 100 and all methods and criteria, the frequency in which the model is selected correctly
is higher than for smaller sample sizes. All methods tend to identify the correct model more

frequently for decreasing failure rate scenarios when compared with increasing failure rate sce-
narios, for both sample sizes. However, it can also be observed that all methods present better
performance when the data set is generated from the Weibull distribution with constant failure

rate (which corresponds to the exponential distribution).

It is well known that the presence of censoring observations in the data set may affect the esti-
mates of failure rates. The effect of different percentages of censoring observations in variable
selection can be observed from Tables 4 and 5. Similar to what was observed for scenarios 1

and 2, the BIC method presents the best performance, followed by the ALasso. However, it
is observed that the frequency by which the model is correctly identified is smaller for scenar-
ios including censoring observations. The presence of censoring observations also affects the

performance of BIC and ALasso – contrary to what was observed in scenarios with censoring
observations (see Table 4). On the other hand, AIC did achieve some minor improvement in the
presence of censoring observations.
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Table 5 – Percentage of correct model selection, Scenario 3.

Model Method Percentage

Weibull(α(x), 1.0)

Lasso 52.80

ALasso 84.90
glmnet 52.16

stepwise 69.62
AIC 75.40

BIC 90.00

From Table 6 it can be observed that the percentage by which the true model is correctly identi-

fied is higher for scenarios that presented larger numbers of covariates (see also Table 3) for all
methods. The BIC method is again the best procedure, followed again by ALasso. The AIC, in
this scenario, does not present good results, and Lasso is even worse, followed by glmnet.

Table 6 – Percentage of correct model selection, Scenario 4.

Model Method Percentage

Weibull(α(x), 1.0)

Lasso 45.04

ALasso 86.94

glmnet 41.80
stepwise 69.86

AIC 69.94
BIC 92.68

Regarding the performance of Lasso method for selecting each covariate, Figure 6 shows that
for scenarios 3 and 4 the Lasso and glmnet methods frequently select the true covariates. Never-
theless, it usually includes some additional covariates which compromises its capacity to detect

only the true covariates. BIC and ALasso performances are very close but BIC provides the best
results.

In order to illustrate the use of the proposed Lasso and ALasso algorithms, and the other variable
selection methods, discussed previously, they are presented below to analyze the data set reported

in Fleming and Harrington [22].

6 EXAMPLE: THE PBC DATA SET

The methods described in previous sections are applied to analyze the data set reported in Flem-
ing and Harrington [22] which correspond to data from the Mayo Clinic trial in primary biliary

cirrhosis (PBC) of liver. Biliary cirrhosis is a fatal and rare disease whose origin is unknown.
The trial was conducted between 1974 and 1984. A total of 424 PBC patients met eligibility cri-
teria for the randomized placebo controlled trial of the drug D-penicillamine. Missing data items

were excluded from the data set providing a sample of total size 276. The response variable T is
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(a) Scenario 3

(b) Scenario 4

Figure 6 – Percentage of correct covariate selection for scenarios 3 and 4.

the number of days between registration and the earliest death by cirrhosis of liver. Data related
to patients submitted to liver transplantation or that died by other causes except cirrhosis were
considered as censored observations. The covariates considered in the study are:

X1: Treatment code, 1 = D-penicillamine, 2 = placebo;
X2: Age in years;

Pesquisa Operacional, Vol. 35(2), 2015
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X3: Sex, 0 = male 1=female;

X4: Presence of ascites;
X5: Presence of hepatomegaly;
X6: Presence of spiders;

X7: Presence of edema;
X8: Serum bilirubin, in mg/dl;
X9: Serum Cholesterol, in mg/dl;

X10:Albumin, in gm/dl;
X11: Urine cupper, in μg/day;
X12: Alkaline phosphatase, in U/liter;

X13: SGOT, in U/ml;
X14: Triglycerides, in mg/dl;
X15: Platelet count;
X16: Prothombin time, in seconds;

X17: Histologic stage of disease, graded 1, 2, 3 or 4.

The most parsimonious models selected to describe the behavior of T provided by each procedure
are given in Table 7.

Table 7 – Selected models for each method – PBC data set.

Method Model

Lasso X2, X7, X8, X9, X10, X11, X13, X14, X15, X16, X17

ALasso X7, X8, X10, X11, X17

glmnet X4, X7, X8, X10, X11, X13, X16, X17

Stepwise X3, X7, X8, X10, X11, X13, X16, X17

AIC X3, X7, X8, X10, X11, X13, X16, X17
BIC X7, X8, X10, X11, X17

Notice from Table 7 that all procedures indicate that variables X7, X8, X10, X11 and X17 should
be in the model. Comparing the models obtained using the ALasso and BIC procedures, they

are exactly the same. However, the computing cost related to the BIC approach is 3.3 times
higher than the ALasso approach. Since there are 17 variables, the BIC approach tested 131,071
possible combinations. The ALasso algorithm used a maximum number of steps equal to 40,000.

Table 8 shows estimates of the coefficients and standard deviations in parentheses. Standard devi-

ations were estimated by fitting the regular Cox model with the selected covariates, as suggested
by Tibshirani [12, 15].

In general, the BIC and ALasso methods selected covariates with larger absolute values, except
for the X11 covariate which has a smaller absolute value. However, results show that this variable

is statistically significant as can be seen by its standard deviation. Therefore, for this data set,
the BIC and ALasso methods did select statistically significant covariates regarding the absolute
value of their estimates.
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Table 8 – Coefficients’ estimates and standard deviations for PBC data set.

Variables Full Model AIC, stepwise LASSO ALASSO, BIC GLMNET

X1 –0.18 (0.20) — — — —
X2 0.01 (0.01) — 0.02 (0.01) — —

X3 –0.46 (0.29) –0.46 (0.26) — — —
X4 0.11 (0.37) — — — 0.08 (0.34)

X5 0.08 (0.23) — — — —

X6 0.01 (0.23) — — — —
X7 0.97 (0.37) 0.78 (0.34) 0.89 (0.36) 0.81 (0.32) 0.67 (0.33)

X8 0.08 (0.02) 0.09 (0.02) 0.07 (0.02) 0.10 (0.02) 0.08 (0.02)
X9 4e-4 (4e-4) — 5e-4 (4e-4) — —

X10 –0.72 (0.29) –0.74 (0.25) –0.63 (0.26) –0.70 (0.25) –0.65 (0.27)
X11 3e-3 (1e-3) 3e-3 (1e-3) 4e-3 (1e-3) 4e-3 (1e-3) 4e-3 (1e-3)

X12 -3e-5 (4e-5) — — — —
X13 3e-3 (2e-3) 3e-3 (2e-3) 3e-3 (2e-3) — 3e-3 (2e-3)

X14 –1e-3 (1e-3) — –6e-4 (1e-3) — —
X16 0.16 (0.11) 0.17 (0.10) 0.16 (0.10) — 0.17 (0.10)

X17 0.50 (0.16) 0.51 (0.13) 0.51 (0.14) 0.52 (0.13) 0.50 (0.14)

7 CASE STUDY: A BRAZILIAN TELEPHONE COMPANY DATA SET

A certain Brazilian telephone company used to have a small number of clients owing their bills.
However, after a huge expansion of the company, the number of unpaid bills grew very fast
leading it to change its policies for accepting a new client. In order to establish rules that are

flexible enough to still allow the company to grow and also strict enough to avoid a large number
of unpaid bills, a study was carried out to identify, among the variables related to the clients
characteristics, the ones that could explain their tendency to be in debt with the company. A
sample of 530 clients was randomly selected from the company data base. The response variable

is the number of days between registration in the data base and its first unpaid bill. The percentage
of failures is 60%. The covariates considered in the study are:
X1: Client local calls restriction (1 yes; 0 no);

X2: Client budget restriction (1 yes; 0 no);
X3: Client general calls restriction (1 yes; 0 no);
X4: Number of payment parcels made to the company;

X5: Client has more than one unpaid bill in the past (1 yes; 0 no);
X6: Client has automatic debt in his bank account (1 yes; 0 no);
X7: Client has not paid the first bill (1 yes; 0 no);

X8: Client has more products from the company (1 yes; 0 no).

We initially investigate using the Kaplan-Meier curve the characteristics of the data set with
respect to potential cure fractions (clients that will never stop paying the bills in the due date), as
shown in Figure 7. Looking at the Kaplan-Meier curve, this hypothesis cannot be confirmed, i.e.,
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since the curve reaches zero which means that all clients in data base eventually stopped paying

their bills. Thus, since the response variable is the number of days between registration in the
data base and the first unpaid bill, eventually, most of the customers will pay at least one bill after
due date. This is the most likely situation because only 12.3% of the clients in the database had

automatic debit in banking account, known as an unpopular choice among Brazilians which do
prefer mail bills.

In addition, since the date at which the customer enters the database might be different from the
due date of the bill, and different customers can choose different due dates, it is natural to use

the number of days as the measure of time for the Cox model. By using a daily basis unit as the
measure of time and a follow-up around 10,000 days the standard Cox-model can be used in a
continuous scale.
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Figure 7 – Kaplan-Meier curve for the analysis of the Brazilian Telephone Company data set.

Models selected by the proposed methods are presented in Table 9. Results show that ALasso,
stepwise, AIC and BIC selected exactly the same model with three covariates: X1, X5 and X6.
The Lasso solution included the covariate X4 which is not statistically significant, as shown in
Table 10. The glmnet solution has the greatest number of variables.

The previous simulation study showed that the BIC achieved the best results but has a high
computational cost as compared to our proposed methods. The ALasso approach achieved the
second best results and presents a smaller computational cost. In our case study, the final model is
the one estimated with BIC, ALasso and AIC. This result is consistent with the simulation study.
It can be concluded based on the final model, that the hazard rates of unpaid bills for clients
with local call restrictions is 90% higher (e0.64 − 1) as compared to clients with no local call
restrictions. Clients with previous unpaid bills have hazard rates of future unpaid bills of 80%
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higher (e0.57) as compared to clients with no previous unpaid bills. Finally, clients with payments
automatically debited from their bank accounts have hazard rates of 42% smaller (1 − e−0.54) as
compared to clients with no automatic debits.

Table 9 – Selected models for each method – Telephone data set.

Method Model

Lasso X1, X4, X5, X6

ALasso X1, X5, X6
glmnet X1, X3, X5, X6, X7, X8

Stepwise X1, X5, X6
AIC X1, X5, X6

BIC X1, X5, X6

Table 10 – Coefficients’ estimates and standard deviations for Telephone data set.

Variables Full Model LASSO GLMNET others

X1 0.62 (0.18) 0.63 (0.18) 0.61 (0.18) 0.64 (0.17)
X2 0.10 (0.28) — — —

X3 0.14 (0.35) — 0.09 (0.32) —
X4 –0.03 (0.10) 0.01 (0.08) — —

X5 0.54 (0.23) 0.56 (0.23) 0.51 (0.22) 0.57 (0.21)
X6 –0.52 (0.17) –0.53 (0.17) –0.52 (0.17) –0.54 (0.17)

X7 0.52 (0.42) — 0.49 (0.42) —
X8 –0.10 (0.21) — -0.10 (0.21) —

8 DISCUSSION AND CONCLUSION

In this paper, new implementations of the Lasso and ALasso methods for variables selection in
the Cox model were proposed to address the problem of selecting the profile of in debt clients of
a Brazilian Telephone Company. Their performances were compared with some standard tech-
niques for variable selection, such as stepwise, BIC and AIC, through a Monte Carlo study.

From the Monte Carlo study it could be concluded that the BIC method achieved the best perfor-
mance followed by the ALasso. Lasso, in general, presented the worst performance. All methods
had their performances affected by the sample sizes, the presence of censoring observations as
well as by the characteristic of failure rate function.

For the Brazilian Telephone Company data set, the ALasso, stepwise, AIC and BIC selected the
same model with three covariates. Since BIC and ALasso methods were pointed out as the best
ones in the simulation study, the company should use the model as the reference to define future
policies.

The proposed Forward-Lasso and Forward-ALasso algorithms have two parameters, the incre-
ment ε and maximum number of steps M . An empirical approach to select these parameters is
to choose a maximum number of steps in such a way that the algorithm will stop before reaching
this value and performing the algorithm for more than one value for ε, usually 10−3 and 10−4.
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Although the BIC method achieved the best results in the simulation study, it tests all possible

combinations of the covariates. Consequenly, as the number of covariates increases the comput-
ing time gets very high. Therefore, the BIC method is unsuitable when the number of covariates
is large. When compare to the BIC method, the ALasso approach is computationally affordable

and provides similar results than BIC. The simulation study suggest that the difference between
BIC and ALasso is that the latter usually includes some additional covariates. This analysis
suggests that combing BIC and ALasso methods would provide better results than just applying

BIC or ALasso alone. Therefore, we suggest the following approach: first apply ALasso method
to select the initial set of covariates and then run BIC algorithm using the reduced number of
covariates selected by the ALasso method.

Discussions highlight that the proposed and original Lasso and ALasso algorithms have distinct

features as their main advantages. The original algorithms have the ability to generate arbitrary
solutions and our approach is insensitive to numerical problems. Further work aims at combining
both approaches by first reaching a reasonable estimator using the original approach and then

providing a fine grid of solutions using the proposed approach, taking the best of each algorithm.
This is an interesting topic for future research.

ACKNOWLEDGEMENTS

The authors thank CNPq, CAPES and FAPEMIG for financial support.

REFERENCES

[1] COX DR. 1972. Regression Models for Life Tables (with discussion). Journal of the Royal Statistical

Society, B, 34: 187–220.

[2] COX DR. 1975. Partial Likelihood. Biometrika, 62: 269–276.

[3] COX DR & OAKES D. 1984. Analysis of Survival Data, London, Chapman and Hall.

[4] KALBFLEISH JD & PRENTICE RL. 2002. The Statistical Analysis of Failure Time Data, New York,

Wiley.

[5] LAWLESS JF. 2002. Statistical Models and Methods for Lifetime Data, New York, Wiley.

[6] DRAPER NR & SMITH H. 1998. Applied Regression Analysis, New York, Wiley.

[7] GONCALVES LB & MACRINI LR. 2011. Pesquisa Operacional, 31(3): 499–519.

[8] GEORGE EI & MCCULLOCH RE. 1995. Two Approaches to Bayesian Model Selection with Ap-
plications. In Bayesian Statistics and Econometrics: Essays in Honor of Arnold Zellner (Edited by

BERRY D, CHALONER K & GEWEKE J): 339–348, New York, Wiley.

[9] GEORGE EI & MCCULLOCH RE. 1997. Approaches for Bayesian Variable Selection. Statistica

Sinica, 7: 339–373.

[10] FARAGGI D & SIMON R. 1998. Bayesian Variable Selection Method for Censored Survival Data.

Biometrics, 54: 1475–1485.

[11] IBRAHIM JG, CHEN MH & MACEACHERN SN. 1999. Bayesian Variable Selection for Proportional
Hazards Models. The Canadian Journal of Statistics, 27: 701–717.

Pesquisa Operacional, Vol. 35(2), 2015



�

�

“main” — 2015/6/30 — 23:03 — page 421 — #21
�

�

�

�

�

�

MARCELO A. COSTA, ENRICO A. COLOSIMO and CAROLINA G. MIRANDA 421

[12] TIBSHIRANI RJ. 1996. Regression Shrinkage via the Lasso. Journal of the Royal Statistical Society,

Series B (Methodological), 58(1): 267–288.

[13] KNIGHT K & FU W. 2000. Asymptotics for lasso-type estimators. Annals of Statistics, 28: 1356–

1378.

[14] FOSTER SD, VERBYLA AP & PITCHFORD WS. 2008. A random model approach for the Lasso.
Computational Statistics, 23: 217–233.

[15] TIBSHIRANI RJ. 1996. The Lasso method for variable selection in the COX model. Statistics in

Medicine, 16: 385–395.

[16] ZHANG HH & LU W. 2007. Adaptive Lasso for Cox’s proportional hazards model. Biometrika, 94:

691–703.

[17] ZOU H. 2008. A note on path-based variable selection in the penalized proportional hazards model.
Biometrika, 95: 241–247.

[18] FRIEDMAN J, HASTIE T & TIBSHIRANI R. 2010. Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1).

[19] FRIEDMAN J, HASTIE T, HOEFLING H & TIBSHIRANI R. 2007. Pathwise Coordinate Optimization.

The Annals of Applied Statistics, 2(1): 302–332.

[20] SIMON N, FRIEDMAN J, HASTIE T & TIBSHIRANI R. 2011. Regularization Paths for Cox’s Pro-
portional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5).

[21] TIBSHIRANI RJ, FRIEDMAN JH & HASTIE TJ. 2003. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Springer.

[22] FLEMING TR & HARRINGTON DP. 1991. Counting Processes and Survival Analysis, New York,

Wiley.

[23] MARQUARDT DW & SNEE RD. 1975. Ridge Regression in Practice. The American Statistician,
29(1): 3–20.

[24] LENG C, LIN Y & WAHBA G. 2004. A Note on the Lasso and Related Procedures in Model Selection.
Technical Report no. 1091r.

[25] LAWSON C & HANSEN R. 1974. Solving Least Squares Problems, Englewood Cliffs: prentice Hall.

[26] FU W. 1998. Penalized regression: the bridge versus the lasso. Journal of Computational and Graph-

ical Statistics, 7: 397–416.

[27] COLLETT D. 2003. Modelling Survival Data in Medical Research, London, Chapman and Hall.

[28] BENDER R, AUGUSTIN T & BLETTNER M. 2005. Generating survival times to simulate Cox pro-

portional harzards models Statistics in Medicine, 24: 1713–1723.

Pesquisa Operacional, Vol. 35(2), 2015


