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ABSTRACT. The Karush-Kuhn-Tucker type necessary optimality conditions are given for the nonsmooth

minimax fractional programming problem with inequality and equality constraints. Subsequently, based on

the idea of L-invex-infine functions defined in terms of the limiting/Mordukhovich subdifferential of locally

Lipschitz functions, we obtain sufficient optimality conditions for the considered nonsmooth minimax frac-

tional programming problem and also we provide an example to justify the existence of sufficient optimality

conditions. Furthermore, we propose a parametric type dual problem and explore duality results.

Keywords: Limiting subdifferential, L-invex-infine function, minimax programming, optimality condi-

tions, duality.

1 INTRODUCTION

The importance of minimax problems is well known in optimization theory as they occur in enor-
mous numbers of applications in economics and engineers. Over the last decade much research
has been conducted on sufficiency and duality for minimax fractional programming problems,
which are not necessarily smooth. The interested reader is referred to [1, 2, 3, 4, 11, 13, 16,
23, 24, 27] for more information of sufficiency and duality for minimax fractional programming
problems and to [5, 9, 10, 12, 17] for some of its applications in practice.

There exists a generalization of convexity to locally Lipschitz functions, with derivative replaced
by the Clarke generalized gradient (see e.g. [3, 4, 15, 16, 27]). Antczak and Stasiak [4] in-
troduced a new class of nonconvex nondifferentiable functions, called locally Lipschitz (�, ρ)-
invex functions as a generalization of (�, ρ)-invexity notion introduced by Caristi et al. [6], with
the tool Clarke generalized subgradient. Later, Antczak [3] established parametric and nonpara-
metric optimality conditions and several duality results in the sense of Mond-Weir and Wolfe for
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a new class of nonconvex nonsmooth minimax programming problems involving nondifferen-
tiable (�, ρ)-invex functions. However, the results cannot be applied to generalized fractional
programming involving equality constraints.

During the last two decades there has been an extremely rapid development in subdifferential
calculus of nonsmooth analysis and which is well recognized for its many applications to opti-
mization theory. The Mordukhovich subdifferential is a highly important notion in nonsmooth
analysis and closely related to optimality conditions of locally Lipschitzian functions of opti-
mization theory (see [19, 22]). The Mordukhovich subdifferential is a closed subset of the Clarke
subdifferential and this subdifferentials are in general nonconvex sets, unlike the well-known
Clarke subdifferentials. Therefore, from the point of view of optimization and its applications,
the descriptions of the optimality conditions and calculus rules in terms of Mordukhovich sub-
differentials provide sharp results than those given in terms of the Clarke generalized gradient
(see e.g. [7, 8, 18]).

Sach et al. [21] observed that the usual notion of invexity is suitable for optimization problem
with inequality constraints, but it is not suitable for optimization problem with equality con-
straints. Therefore, Sach et al. [21] defined the notion of infine nonsmooth functions for locally
Lipschitz functions, which is a generalization of invexity [14] and studied several characteriza-
tions of infineness property. Very recently, Chuong [7] introduced the concept of L-invex-infine
functions by employing the limiting/Mordukhovich subdifferential instead of the Clarke subdif-
ferential one which has been used before in the definitions of invex-infine functions [20, 21].

Consequently, in the present paper, we concentrate on studying nonsmooth minimax fractional
programming problem with inequality and equality constraints to derive optimality conditions
and duality results by means of employing L-invex-infine functions. Although many efforts have
been made on this topic, it still remains a very attractive and challenging area of research. There
are several approaches developed in the literature, see [1, 2, 3, 4, 8, 15, 16, 20, 21, 27] and the
references therein.

The summary of the paper is as follows. Section 2 contains basic definitions and a few basic
auxiliary results, which will be needed later in the sequel. Section 3 is devoted to the optimality
conditions, and in Section 4 we turn to an investigation of the notion of duality for the nonsmooth
minimax fractional programming problem. Here we propose a parametric type dual problem
and prove weak, strong and strict converse duality theorems. The final Section 5 contains the
concluding remarks and further developments.

2 PRELIMINARIES

In this section, we gather for convenience of reference, a number of basic definitions which will
be used often throughout the sequel, and recall some auxiliary results.

Let Rn be the n-dimensional Euclidean space and Rn+ be its non-negative orthant. Unless other-
wise stated, all the spaces in this paper are Banach whose norms are always denoted by ‖.‖. Given
a space X , it’s dual is denoted by X∗ and the canonical pairing between X and X∗ is denoted by
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〈., .〉. The polar cone of a set S ⊂ X is defined by S◦ = {u∗ ∈ X∗ : 〈u∗, u〉 ≤ 0, ∀u ∈ S} and
the notation clS represents the closure of S.

Definition 2.1 (Mordukhovich [18]). Given a multifunction F : X ⇒ X∗ between a Banach
space and its dual, the notation

Lim sup
u→ū

F(u) = {
u∗ ∈ X∗ : ∃ sequences un → ū and u∗

n
w∗→ u∗

with u∗
n ∈ F(un) for all n ∈ N}

signifies the sequential Painlevé-Kuratowski upper/outer limit with respect to the norm topology

of X and the weak∗ topology of X∗, where the notation
w∗→ indicates the convergence in the weak∗

topology of X∗ and N denotes the set of all natural numbers.

Definition 2.2 (Mordukhovich [18]). Given S and ε ≥ 0, define the set of ε-normals to S at
ū ∈ S by

N̂ε(ū, S) = {
u∗ ∈ X∗ : Lim sup

u
S→ū

〈u∗, u − ū〉
‖u − ū‖ ≤ ε

}
, (1)

where u
S→ ū means that u → ū with u ∈ S. When ε = 0, the set N̂(ū, S) = N̂0(ū, S) in (1) is

a cone called the Fréchet normal cone to S at ū. If ū /∈ S, we put N̂ε(ū, S) = ∅ for all ε ≥ 0.

Definition 2.3 (Mordukhovich [18]). The limiting/Mordukhovich normal cone to S at ū ∈ S,
denoted by N(ū, S), is obtained from N̂ε(u, S) by taking the sequential Painlevé-Kuratowski
upper limits as

N(ū, S) = Lim sup
u

S→ū
ε↓0

N̂ε(u, S) (2)

If ū /∈ S, we put N(ū, S) = ∅. Note that one can put ε = 0 in (2) when S is (locally) closed
around ū, i.e., there is a neighborhood U of ū such that S ∩ clU is closed (see Mordukhovich
[18], Theorem 1.6).

Definition 2.4 (Mordukhovich [18]). The limiting/Mordukhovich subdifferential of an extended
real-valued functionψ : X → R̄ = [−∞,∞], at ū ∈ X with |ψ(ū)| < ∞ is defined by

∂ψ(ū) = {
u∗ ∈ X∗ : (u∗,−1) ∈ N((ū , ψ(ū)), epiψ)

}
,

where epiψ = {(u, μ) ∈ X × R : μ ≥ ψ(u)}.
If |ψ(ū)| = ∞, one puts ∂ψ(ū) = ∅. It is known (cf. Mordukhovich [18]) that when ψ is a
convex function, the above-defined subdifferential coincides with the subdifferential in the sense
of convex analysis (cf. Rockafellar [25]).

Definition 2.5 (Mordukhovich [18]). A set S ⊂ X is sequentially normally compact (SNC)

at ū ∈ S if for any sequence (εn , un, u∗
n) ∈ [0,∞) × S × X∗ satisfying εn ↓ 0, un

S→ ū

and u∗
n
w∗→ 0 with u∗

n ∈ N̂εn(un , S), one has
∥∥u∗

n

∥∥ → 0 as n → ∞.
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In the above definition, εn can be omitted when S is closed around ū. Obviously, this property is
automatically satisfied in finite dimensional spaces. The reader is referred to Mordukhovich [18]
for various sufficient conditions ensuring the fulfillment of the SNC property.

In the sequel of the paper, assume that S is a nonempty locally closed subset of X , and let
I = {1, 2, . . . , p}, J = {1, 2, . . . , q} and K = {1, 2, . . . , r} be index sets. In what follows, S is
always assumed to be SNC at the point under consideration.

The problem to be considered in the present analysis is the minimax fractional programming
problem of the form:

(P) min
x∈F

max
1≤i≤p

fi (x)

gi (x)

subject to

h j (x) ≤ 0, j ∈ J, �k (x) = 0, k ∈ K ,

where the functions fi , gi , i ∈ I , h j , j ∈ J and �k , k ∈ K are locally Lipschitz on X .
The region where the constraints are satisfied (feasibility region) is given by F = {x ∈ S :
h j (x) ≤ 0, j ∈ J, �k = 0, k ∈ K }. Hereafter, we use the notation f = ( f1, f2, . . . , f p),
g = (g1, g2, . . . , gp), h = (h1, h2, . . . , hq) and � = (�1, �2, . . . , �r ).

Definition 2.6. Let φ(x) = max
i∈I

fi (x)

gi(x)
, x ∈ X. A point ū ∈ F is termed to be a local optimal

solution of problem (P) if there is a neighborhood U of ū such that

φ(ū) ≤ φ(x), ∀x ∈ U ∩ F. (3)

If the inequality in (3) holds for every u ∈ F, then ū is said to be a global optimal solution (or
simply, optimal solution) of problem (P).

For ū ∈ S we put

J (ū) = { j ∈ J : h j (ū) = 0}, K (ū) = {k ∈ K : �k (ū) = 0}.

Definition 2.7. The problem (P) is said to satisfy the Constraint qualification (CQ) at ū ∈ S if
there do not exist β j ≥ 0, j ∈ J (ū) and γk ≥ 0, k ∈ K (ū), such that

∑
j∈J (ū)

β j + ∑
k∈K (ū)

γk �= 0

and
0 ∈

∑
j∈J (ū)

β j ∂h j (ū)+
∑

k∈K (ū)

γk(∂�k (ū) ∪ ∂(−�k )(ū))+ N(ū, S).

Remark 2.1. If we consider ū ∈ F, S = X and all the functions are continuously differentiable,
then the above-defined (CQ) reduces to Mangasarian-Fromovitz constraint qualification; see
e.g., Mordukhovich [18] for more details.
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Now, we define the concept of generalized convexity-affineness type for locally Lipschitz func-
tions as follows on the lines of Chuong [7].

Definition 2.8. We say that ( f,−g, h; �) is L-(strictly) invex-infine on S at ū ∈ S if for any
x ∈ S, x∗

i ∈ ∂ fi (ū), y∗
i ∈ ∂(−gi )(ū), i ∈ I , z∗

j ∈ ∂h j (ū), j ∈ J and ξ ∗
k ∈ ∂�k (ū) ∪ ∂(−�k )(ū),

k ∈ K there exists ν ∈ N(ū, s)◦ such that

fi (x) − fi (ū)(>) ≥ 〈
x∗

i , ν
〉
, i ∈ I, (x �= ū),

−gi(x) + gi (ū) ≥ 〈
y∗

i , ν
〉
, i ∈ I,

h j (x)− h j (ū) ≥
〈
z∗

j , ν
〉
, j ∈ J,

�k(x) − �k (ū) = wk
〈
ξ ∗

k , ν
〉
, k ∈ K ,

where wk = 1 (respectively, wk = −1) whenever ξ ∗
k ∈ ∂�k(ū) (respectively, ξ ∗

k ∈ ∂(−�k )(ū)).

In the subsequent part of this paper, we assume that wk = 1 (respectively, wk = −1) whenever
ξ ∗

k ∈ ∂�k (ū) (respectively, ξ ∗
k ∈ ∂(−�k )(ū)) and ū ∈ S .

It is well known that the problem (P) is equivalent (see [27]) to the following nonfractional
parametric problem:

(Pv) V (v) = min
x∈F

max
1≤i≤p

{ fi (x)− vgi (x)} ,

where v ∈ R+ is a parameter.

Lemma 2.1 (Zalmai [26]). Problem (P) has an optimal solution at ū with the optimal value v̄ if
and only if V (v̄) = 0 and ū is an optimal solution of (Pv̄).

Lemma 2.2 (Zalmai [26]). For each x ∈ F, one has

φ(x) = max
1≤i≤p

fi (x)

gi (x)
= max

α∈�

∑
i∈I
αi fi (x)∑

i∈I
αi gi(x)

,

where � = {α ∈ R p
+ : ∑

i∈I
αi = 1}.

3 OPTIMALITY CONDITIONS

In this section, we first derive Karush-Kuhn-Tucker type necessary conditions for (local) optimal
solutions of problem (P) and then using the notion of generalized convexity-affineness-type for
locally Lipschitz functions, we also establish sufficient optimality conditions.

Theorem 3.1 (Karush-Kuhn-Tucker Type Necessary Conditions). If x̃ is a local optimal
solution of problem (P), and the constraints qualification (CQ) is satisfied at x̃ , then there exist
ṽ = φ(x̃) ∈ R+ , ᾱ ∈ R p

+ \ {0}, β̄ ∈ Rq
+ , and γ̄ ∈ Rr+ such that

0 ∈
∑
i∈I

ᾱi
[
∂ fi(x̃)− ṽ∂gi(x̃)

]+
∑
j∈J

β̄ j ∂h j (x̃)+
∑
k∈K

γ̄k

(
∂�k (x̃)∪ ∂(−�k )(x̃)

)
+ N(x̃ , S), (4)

Pesquisa Operacional, Vol. 36(2), 2016
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ᾱi ( fi (x̃)− ṽgi(x̃)) = 0, i ∈ I, (5)

β̄ j h j (x̃) = 0, j ∈ J. (6)

Proof. If x̃ is a local optimal solution of problem (P), by Lemma 2.1, it is a local optimal

solution of (Pṽ ) with optimal value ṽ = max
1≤i≤p

fi (x̃)

gi (x̃)
= φ(x̃). By Theorem 3.3 [8], there exist

ᾱ ∈ R p
+ \ {0}, β̄ ∈ Rq

+ , and γ̄ ∈ Rr+ such that the conditions (4)-(6) are satisfied. �

Theorem 3.2 (Sufficient Optimality Conditions). Let (x̃ , ᾱ, β̄, γ̄ ) ∈ F× R p
+ \ {0} × Rq

+ × Rr+
satisfy the relations (4)-(6) and φ(x̃) = ṽ ∈ R+ . Assume also that ( f,−g, h; �) is L-invex-infine
on S at x̃ . Then x̃ is a global optimal solution of problem (P).

Proof. Since (x̃, ᾱ, β̄, γ̄ ) ∈ F× R p
+ \ {0} × Rq

+ × Rr+ satisfy the relations (4)-(6), there exist
x∗

i ∈ ∂ fi (x̄), y∗
i ∈ ∂(−gi )(x̄ ), i ∈ I , z∗

j ∈ ∂h j (x̄), j ∈ J and ξ ∗
k ∈ ∂�k (x̄) ∪ ∂(−�k )(x̄), k ∈ K

such that

−
⎛
⎝∑

i∈I

ᾱi
[
x∗

i + ṽy∗
i

] +
∑
j∈J

β̄ j z∗
j +

∑
k∈K

γ̄kξ
∗
k

⎞
⎠ ∈ N(x̃ , S), (7)

ᾱi ( fi (x̃)− ṽgi(x̃)) = 0, i ∈ I, (8)

β̄ j h j (x̃) = 0, j ∈ J. (9)

Suppose to the contrary that x̃ is not a global optimal solution of (P). Then, there exists a feasible
solution x0 ∈ F such that

φ(x̃) > φ(x0).

Using this inequality along with Lemma 2.2 and φ(x̃) = ṽ, we get

ṽ = φ(x̃) > φ(x0)

= max
1≤i≤p

fi (x0)

gi(x0)

= max
α̂∈�

∑
i∈I
α̂i fi (x0)∑

i∈I
α̂i gi(x0)

≥
∑
i∈I
ᾱi fi (x0)∑

i∈I
ᾱi gi(x0)

. (10)

Consequently, relations (8) and (10) yield∑
i∈I

ᾱi ( fi (x0)− ṽgi (x0)) < 0 =
∑
i∈I

ᾱi ( fi (x̃)− ṽgi(x̃)) . (11)

Pesquisa Operacional, Vol. 36(2), 2016
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By assumption, ( f,−g, h; �) is L-invex-infine on S at x̃ . Then, by Definition 2.8, there exists
ν ∈ N(x̃ , s)◦ such that the following inequalities

fi (x0)− fi (x̃) ≥ 〈
x∗

i , ν
〉
, i ∈ I, (12)

−gi(x0)+ gi(x̃) ≥ 〈
y∗

i , ν
〉
, i ∈ I, (13)

h j (x0)− h j (x̃) ≥
〈
z∗

j , ν
〉
, j ∈ J, (14)

�k(x0)− �k(x̃) = wk
〈
ξ ∗

k , ν
〉
, k ∈ K , (15)

hold for any x0 ∈ F, x∗
i ∈ ∂ fi (x̃), y∗

i ∈ ∂(−gi )(x̃), i ∈ I , z∗
j ∈ ∂h j (x̃), j ∈ J and

ξ ∗
k ∈ ∂�k (x̃) ∪ ∂(−�k )(x̃), k ∈ K .

Since ṽ ∈ R+ , then inequalities (12) and (13) together yield

[ fi (x0)− ṽgi(x0)] − [ fi (x̃)− ṽgi(x̃)] ≥ 〈[x∗
i + ṽy∗

i ], ν〉 , i ∈ I. (16)

Multiplying each inequality (16) by ᾱi , i ∈ I , each inequality (14) by β̄ j , j ∈ J and each
inequality (15) by γ̄k, k ∈ K , then summing resultant inequalities, we get∑

i∈I

ᾱi
[

fi (x0)− ṽgi(x0)
] −

∑
i∈I

ᾱi
[

fi (x̃)− ṽgi(x̃)
]

+
∑
j∈J

β̄ j
[
h j (x0)− h j (x̃)

] +
∑
k∈K

γ̄k

wk

[
�k (x0)− �k(x̃)

]

≥
∑
i∈I

ᾱi
〈[

x∗
i + ṽy∗

i

]
, ν

〉 + ∑
j∈J

β̄ j

〈
z∗

j , ν
〉
+

∑
k∈K

γ̄k
〈
ξ ∗

k , ν
〉
. (17)

Now using the definition of polar cone, it follows from (7) and ν ∈ N(x̃ , s)◦ that∑
i∈I

ᾱi
〈[

x∗
i + ṽy∗

i

]
, ν

〉 + ∑
j∈J

β̄ j

〈
z∗

j , ν
〉
+

∑
k∈K

γ̄k
〈
ξ ∗

k , ν
〉 ≥ 0. (18)

By (9), (17), (18) and the fact x0 ∈ F, x̃ ∈ F, we see that∑
i∈I

ᾱi
[

fi (x0)− ṽgi (x0)
] −

∑
i∈I

ᾱi
[

fi (x̃)− ṽgi(x̃)
] ≥ 0,

which contradicts (11). This completes the proof. �

Now we give an example of minimax fractional programming problem, where to prove optimality
the concept of L-invexity-infiness may be applied.

Example 3.1. Consider the problem

(P) min
x∈F

max
1≤i≤2

fi (x)

gi(x)
=

⎧⎪⎪⎨
⎪⎪⎩

x2 + |x|
−i + x

; if x ≤ 0

x2 + |x|
−i − x

; if x > 0

Pesquisa Operacional, Vol. 36(2), 2016
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subject to

h(x) = −|x| ≤ 0, �(x) = 0,

and let S = R. Note that the set of feasible solutions of (P) is F = R and for x̃ = 0 ∈ F,
we have N(x̃ , S) = {0} and N(x̃ , S)◦ = R. It is easy to see that there exist ṽ ∈ R+ , ᾱ =
(ᾱ1, ᾱ2) ∈ R2+ \ {0}, β̄ ∈ R+ , and γ̄ ∈ R+ such that the relations (4)-(6) hold. Also, for any
x ∈ S, x∗

i ∈ ∂ fi (x̃) = {1,−1}, y∗
i ∈ ∂(−gi )(x̃ ) = {1,−1}, i = 1, 2; z∗ ∈ ∂h(x̃) = {1,−1} and

ξ ∗ ∈ ∂�(x̃ )∪ ∂(−�)(x̃ ) = {0}, by taking ν = h(x) − h(x̃)

z∗ ∈ N(x̃ , S)◦, it is not difficult to prove

that ( f,−g, h; �) is L-invex-infine on S at x̃ = 0. However, ( f,−g, h; �) is not invex-infine [21]
on S at x̃ = 0 (see Chuong [7], Example 3.3 ). Since all hypotheses of Theorem 3.2 are satisfied,
then x̃ = 0 is optimal in the considered minimax fractional programming problem.

4 DUALITY

In this section, we study the following parametric duality model for (P):

(D) max v

subject to

0 ∈
∑
i∈I

αi [∂ fi (y)− v∂gi(y)] +
∑
j∈J

β j∂h j (y)+
∑
k∈K

γk(∂�k (y) ∪ ∂(−�k )(y))+ N(y, S), (19)

αi [ fi (y) − vgi (y)] ≥ 0, i ∈ I, (20)

β j h j (y) ≥ 0, j ∈ J, (21)

γk�k (y) ≥ 0, k ∈ K , (22)

y ∈ S, α ∈ �, v ∈ R+, β ∈ Rq
+, γ ∈ Rr+, �(y) ∈ (γ −�(0, ‖γ ‖))◦ , (23)

where �(0, ‖γ ‖) = {σ ∈ Rr : ‖σ‖ = ‖γ ‖}. We denote by W the set of all feasible solutions
(y, α, β, γ, v) ∈ S ×�× Rq

+ × Rr+ × R+ of problem (D).

The following theorems show that (D) is a dual problem for (P).

Theorem 4.1 (Weak Duality). Let x ∈ F and (y, α, β, γ, v) ∈ W. Assume also that ( f,−g,
h; �) is L-invex-infine on S at y, then φ(x) ≥ v.

Proof. Since (y, α, β, γ, v) ∈ W satisfy the relations (19)-(23), there exist x∗
i ∈ ∂ fi(x̄), y∗

i ∈
∂(−gi )(x̄), i ∈ I , z∗

j ∈ ∂h j (x̄), j ∈ J and ξ ∗
k ∈ ∂�k(x̄) ∪ ∂(−�k )(x̄ ), k ∈ K such that

−
⎛
⎝∑

i∈I

αi [x∗
i + vy∗

i ] +
∑
j∈J

β j z∗
j +

∑
k∈K

γkξ
∗
k

⎞
⎠ ∈ N(y, S), (24)

αi [ fi (y) − vgi (y)] ≥ 0, i ∈ I, (25)

Pesquisa Operacional, Vol. 36(2), 2016
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β j h j (y) ≥ 0, j ∈ J, (26)

γk�k(y) ≥ 0, k ∈ K , (27)

〈γ − σ, �(y)〉 ≤ 0, ∀σ ∈ Rr with‖σ‖ = ‖γ ‖ . (28)

Suppose to the contrary that
φ(x) < v.

Using this inequality along with Lemma 2.2, as in the proof of Theorem 3.2, we get∑
i∈I

αi ( fi (x)− vgi (x)) < 0. (29)

By assumption, ( f,−g, h; �) is L-invex-infine on S at y. Then, by Definition 2.8, there exists
ν ∈ N(y, s)◦ such that the following inequalities

fi (x)− fi (y) ≥ 〈
x∗

i , ν
〉
, i ∈ I, (30)

−gi (x) + gi(y) ≥ 〈
y∗

i , ν
〉
, i ∈ I, (31)

h j (x)− h j (y) ≥
〈
z∗

j , ν
〉
, j ∈ J, (32)

�k(x)− �k(y) = wk
〈
ξ ∗

k , ν
〉
, k ∈ K , (33)

hold for any x ∈ F, x∗
i ∈ ∂ fi(y), y∗

i ∈ ∂(−gi )(y), i ∈ I , z∗
j ∈ ∂h j (y), j ∈ J and ξ ∗

k ∈
∂�k (y) ∪ ∂(−�k )(y), k ∈ K .

As seen in the proof of Theorem 3.2, the above relations (30)-(33) leads to the following
inequality ∑

i∈I

αi
[

fi (x)− vgi (x)
] −

∑
i∈I

αi
[

fi (y)− vgi (y)
]

+
∑
j∈J

β j
[
h j (x) − h j (y)

] +
∑
k∈K

γk

wk

[
�k(x) − �k (y)

] ≥ 0.

Thus, by setting σk = γk

wk
, k ∈ K , we have

∑
i∈I

αi
[

fi (x)− vgi (x)
] −

∑
i∈I

αi
[

fi (y)− vgi (y)
]

+
∑
j∈J

β j
[
h j (x)− h j (y)

] +
∑
k∈K

σk
[
�k (x)− �k(y)

] ≥ 0.

From (25), (26) and the fact that x ∈ F, above inequality yields∑
i∈I

αi
[

fi (x) − vgi (x)
] −

∑
k∈K

σk�k(y) ≥ 0,

Pesquisa Operacional, Vol. 36(2), 2016



�

�

“main” — 2016/8/3 — 15:58 — page 236 — #10
�

�

�

�

�

�

236 OPTIMALITY AND PARAMETRIC DUALITY FOR NONSMOOTH MINIMAX FRACTIONAL PROGRAMMING

equivalently, ∑
i∈I

αi
[

fi (x) − vgi (x)
] −

∑
k∈K

γk�k (y)+ 〈γ − σ, �(y)〉 ≥ 0, (34)

where σ = (σ1, σ2, . . . , σr ) ∈ Rr . Notice that ‖σ‖ = ‖γ ‖ and thus, by (27), (28) and (34), we
get ∑

i∈I

αi
[

fi (x) − vgi (x)
] ≥ 0,

which contradicts (29). This completes the proof. �

Theorem 4.2 (Strong Duality). If x̃ is a local optimal solution of (P), and the constraint qual-
ification (CQ) is satisfied at x̃ , then there exist (α̃, β̃, γ̃ , ṽ) ∈ � × Rq

+ × Rr+ × R+ such that
(x̃ , α̃, β̃, γ̃ , ṽ) is a feasible solution of (D) and the two objectives have the same values. Assume
also that the conditions of Theorem 4.1 hold for all feasible solutions of (D), then (x̃, α̃, β̃, γ̃ , ṽ)
is a global optimal solution of (D).

Proof. By assumption, x̃ is a local optimal solution of problem (P), and the constraint qualifi-
cation (CQ) is satisfied at x̃ . Then, there exist ᾱ ∈ R p

+ \ {0}, β̄ ∈ Rq
+ , γ̄ ∈ Rr+ and ṽ ∈ R+ such

that the Karush-Kuhn-Tucker type necessary conditions (Theorem 3.1) are fulfilled at x̃ . Thus,
we have

0 ∈
∑
i∈I

ᾱi
[
∂ fi (x̃)− ṽ∂gi(x̃)

]+
∑
j∈J

β̄ j ∂h j (x̃)+
∑
k∈K

γ̄k (∂�k (x̃) ∪ ∂(−�k )(x̃))+ N(x̃ , S), (35)

ᾱi ( fi (x̃)− ṽgi(x̃)) = 0, i ∈ I, (36)

β̄ j h j (x̃) = 0, j ∈ J. (37)

Take

α̃i = ᾱi∑
i∈I
ᾱi
, i ∈ I, β̃ j = β̄ j∑

i∈I
ᾱi
, j ∈ J, and γ̃k = γ̄k∑

i∈I
ᾱi
, k ∈ K .

It is easy to see that α̃ = (α̃1, α̃2, . . . , α̃r ) ∈ �, β̃ = (β̃1, β̃2, . . . , β̃q) ∈ Rq
+ and γ̃ =

(γ̃1, γ̃2, . . . , γ̃r ) ∈ Rr+.

Observe that the conditions (35)-(37) are also valid when ᾱi ’s, β̄ j ’s, and γ̄k’s are replaced by
α̃i ’s, β̃ j ’s, and γ̃k’s, respectively.

Since, �k(x̃) = 0, k ∈ K for x̃ ∈ F. Consequently this gives that 〈γ̃ − σ, �(x̃)〉 = 0, for all
σ ∈ Rr with ‖σ‖ = ‖γ̃ ‖. That is �(x̃) ∈ (γ̃ −�(0, ‖γ̃ ‖))◦. Therefore, (x̃, α̃, β̃, γ̃ , ṽ) is a
feasible solution of (D), moreover, the corresponding objective values of (P) and (D) are equal.
The global optimality of (x̃, α̃, β̃, γ̃ , ṽ) for (D) follows from weak duality Theorem 4.1. �

Theorem 4.3 (Strict Converse Duality). Let x̃ and (ỹ, α̃, β̃, γ̃ , ṽ) be optimal solutions of (P)
and (D), respectively, and assume that the assumptions of Theorem 4.2 are fulfilled. Also, assume
that ( f,−g, h; �) is L-strictly invex-infine on S at ỹ, then x̃ = ỹ; that is, ỹ is an optimal solution
of (P).

Pesquisa Operacional, Vol. 36(2), 2016



�

�

“main” — 2016/8/3 — 15:58 — page 237 — #11
�

�

�

�

�

�

ANURAG JAYSWAL, KRISHNA KUMMARI and VIVEK SINGH 237

Proof. Suppose to the contrary that x̃ �= ỹ. By Theorem 4.2, it follows that

φ(x̃) = ṽ. (38)

Now, proceeding as in Theorem 4.1, we see that the L-strictly invex-infine of ( f,−g, h; �) on S
at ỹ, yields the following inequality∑

i∈I

α̃i
[

fi (x̃)− ṽgi(x̃)
]
> 0.

Using this inequality along with Lemma 2.2, we see that

φ(x̃) = max
α̂∈�

∑
i∈I
α̂i fi (x̃)∑

i∈I
α̂i gi(x̃)

≥
∑
i∈I
α̃i fi (x̃)∑

i∈I
α̃i gi(x̃)

> ṽ,

which contradicts (38). This completes the proof. �

5 CONCLUSION

In this paper, we have established optimality conditions and duality results for a class of non-
smooth minimax fractional programming problems possessing L-invex-infiness property. This
paper extends entirely earlier works, in which optimality conditions and duality results have
been obtained in terms of the Clarke generalized gradient for a generalized optimization prob-
lems (for example, the results of Ahmad [2], Antczak [3], Zalmai [26] and Zheng and Cheng
[27]). We are going to extend the results established in the paper to a larger class of nonsmooth
variational and nonsmooth control problems. This will orient the future research of the author.
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