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ABSTRACT. In this work we propose a heuristic algorithm for the layout optimization for disks installed

in a rotating circular container. This is a unequal circle packing problem with additional balance constraints.

It proved to be an NP-hard problem, which justifies heuristics methods for its resolution in larger instances.

The main feature of our heuristic is based on the selection of the next circle to be placed inside the container

according to the position of the system’s center of mass. Our approach has been tested on a series of

instances up to 55 circles and compared with the literature. Computational results show good performance

in terms of solution quality and computational time for the proposed algorithm.

Keywords: packing problem, layout optimization problem, nonidentical circles, heuristic algorithm.

1 INTRODUCTION

We study how to install unequal disks in a rotating circular container, which is an adaptation of
the model for the two-dimensional (2D) unequal circle packing problem with balance behavioral
constraints. This problem arises in some engineering applications: development of satellites and
rockets, multiple spindle box, rotating structure and so on. The low cost and high performance

of the equipment require the best internal configuration among different geometric devices.

This problem is known as layout optimization problem (LOP), and consists in placing a set of
circles in a circular container of minimum envelopment radius without overlap and with mini-
mum imbalance. Each circle is characterized by its radius and mass. There, the original three-

dimensional (3D) case (the equipment must rotate around its own axis) is simplified: different
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two-dimensional circles (see, Figure 1(c)) represent three-dimensional cylindrical objects to be

placed inside the circular container.

Figure 1 illustrates the physical problem. Figure 1(a) shows a rotating cylindrical container. The
symbol ω and the arrow illustrate the rotation around the axis of the equipment, ω is the angular
velocity. In another viewpoint, Figure 1(b) shows the interior of the equipment where distinct

circular devices need to be placed. In this example, six cylinders are placed, in which the radii,
masses and heights are not necessarily equal.

Figure 1 – Circular devices inside a rotating circular container and a feasible solution

Research on packing circles into a circular container has been documented and used to obtain
good solutions. Heuristic, metaheuristic and hybrid methods are used in most of them. There are

only a few publications discussing the disk problems with balance constraints.

LOP is a combinatorial problem and has been proved to be NP-hard (Lenstra & Rinnooy Kan,
1979). This problem was first proposed by Teng et al. (1994), where a mathematical model and
a series of intuitive algorithms combining the method of constructing the initial objects topo-

models with the model-changing iteration method are described, and the validity of the proposed
algorithms is verified by numerical examples. Tang & Teng (1999) presented a modified genetic
algorithm called decimal coded adaptive genetic algorithm to solve the LOP. Xu et al. (2007)

developed a version of genetic algorithm called order-based positioning technique, which finds
the best ordering for placing the circles in the container, and compare it with two existing nature-
inspired methods. Qian et al. (2001) extended the work (Tang & Teng, 1999) by introducing a

genetic algorithm based on human-computer intervention, in which a human expert examines the
best solution obtained through the loops of many generations and designs new solutions.

Methods based on particle swarm optimization (PSO) have been applied to the LOP. Li et
al. (2004) developed a PSO method based-mutation operator. This approach can escape from

the local minima, maintaining the characteristic of fast speed of convergence. Zhou et al. (2005)
proposed a hybrid approach based on constraint handling strategy suit for PSO, where improve-
ment is made by using direct search to increase the local search ability of the algorithm. Xiao
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et al. (2007) presented two nature-inspired approaches based on gradient search, the first hybrid

with simulated annealing (SA) method and the second hybrid with PSO method. Lei (2009) pre-
sented an adaptive PSO with a better search performance, which employs multi-adaptive strate-
gies to plan large-scale space global search and refined local search to obtain global optimum.

Huang & Chen (2006) proposed an improved version of the quasi-physical quasi-human algo-

rithm proposed by Wang et al. (2002) for solving the disk packing problem with equilibrium
constraints. An efficient strategy of accelerating the search process is introduced in the steepest
descends method to shorten the execution time. In Liu & Li (2010) the LOP is converted into an

unconstrained optimization problem which is solved by the basin filling algorithm presented by
them, together with the improved energy landscape paving method, the gradient method based
on local search and the heuristic configuration update mechanism. Liu et al. (2010) presented

a simulated annealing heuristic for solving the LOP by incorporating the neighborhood search
mechanism and the adaptive gradient method. The neighborhood search mechanism avoids the
disadvantage of blind search in the simulated annealing algorithm, and the adaptive gradient

method is used to speed up the search for the best solution. Liu et al. (2011) developed a tabu
search algorithm for solving the LOP. The algorithm begins with a random initial configuration
and applies the gradient method with an adaptive step length to search for the minimum en-
ergy configuration. He et al. (2013) proposed a hybrid approach based on coarse-to-fine quasi-

physical optimization method, where improvement is made by adapting the quasi-physical de-
scent and the tabu search procedures. The algorithm approach takes into account the diversity
of the search space to facilitate the global search, and it also does fine search to find the corre-

sponding best solution in a promising local area. Liu et al. (2015) presented a heuristic based on
energy landscape paving. The LOP is converted into the unconstrained optimization problem by
using quasi-physical strategy and penalty function method. Subsequently, the heuristic approach

combines a new updating mechanism of the histogram function in an improved energy landscape
paving, and a local search for solving the LOP.

In this paper, we propose a new heuristic to solve the LOP. The basic idea of our approach, called
center-of-mass-based placing technique (CMPT), is to place each circle according to the current

position of the center of mass of the system.

Results for a selected set of instances are found in Huang & Chen (2006), Xiao et al. (2007),
Lei (2009), Liu & Li (2010), Liu et al. (2010, 2011, 2015) and He et al. (2013). To validate our
approach, we compare the results of our heuristic with these instances. Computational results

show good performance in terms of solution quality and computational time.

The paper is organized as follows. Section 2 presents a formal definition of the unequal circle
packing problem with balance constraints, and some definitions are established. Section 3 de-
scribes our heuristic. In Section 4, we present and analyze the experimental results, and Section 5

concludes the paper.

Pesquisa Operacional, Vol. 36(2), 2016
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2 PROBLEM FORMULATION

We consider the following layout optimization for the disks installed in a rotating circular con-
tainer: given a set of circles (not necessarily equal), find the minimal radius of a circular container

in which all circles can be packed without overlap, and the shift of the dynamic equilibrium of
the system should be minimized. The decision problem is stated as follows.

Consider a circular container of radius r, a set of n circles i of radii ri and mass mi , i ∈ N =
{1, . . . , n}. Let (x, y)T be the coordinates of the container center, and (xi , yi )

T the center coor-

dinates of the circle i. Let f1(z) = r be the first objective function, and

f2(z) =
√√√√( n∑

i=1

miω2(xi − x)

)2

+
(

n∑
i=1

miω2(yi − y)

)2

the second objective function, which measures the shift in the dynamic equilibrium of the system

caused by the rotation of the container. Without loss of generality, we can consider ω = 1. The
problem is to determine if there exists a (2n + 3)-dimensional vector z = (r, x, y, x1, y1, x2,

y2, . . . , xn, yn)
T that satisfies the following mathematical formulation.

(LOP) Minimize f (z) = λ f1(z) + β f2(z)

subject to

r � max
1�i�n

{
ri +

√
(xi − x)2 + (yi − y)2

}
, (1)

(xi − x j )
2 + (yi − y j )

2 � (ri + r j )
2, i �= j ∈ N , (2)

z ∈ R2n+3,

where λ, β ∈ (0, 1) are a pair of preset weights, λ + β = 1. Constraint (1) states that circle i

placed inside the container should not extend outside the container, while constraints (2) require
that two any circles placed inside the container do not overlap each other.

Figure 1(c) illustrates a typical feasible solution to the LOP. The circles are numbered from 1 to

7, r3 is the radius of the circle 3, there is no overlap between the circles and the seven circles are
completely placed into the larger circle of radius r (radius of the container).

2.1 Definitions

We develop a constructive heuristic guided by a simple strategy. A suboptimal solution is reached

after gradually placing a circle at a time inside the container. Each circle is placed in an Euclidean
coordinates system on the following evaluation criteria: select as the new position of the circle
according to the current center of mass of the system without overlapping with the circles placed

earlier; attempt to fill the wasted spaces after placing this circle; and in the end, select as the
new coordinates of the container center that completely eliminate the dynamic imbalance of
the system.

Pesquisa Operacional, Vol. 36(2), 2016
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To perform the above criteria we need some notations and definitions. We denote by X (i) =
(xi , yi)

T the center coordinates of the circle i, by

d(i, j ) = d(X (i), X ( j )) =
√

(xi − x j )2 + (yi − y j )2

the Euclidean distance between the center coordinates of the circles i and j , and by �(i, j ) =
{(1 − λ)X (i) + λX ( j ) : 0 � λ � 1} the set of points on the line segment whose endpoints are
X (i) and X ( j ). Figure 2(a) illustrates the set �(10, 12).

Definition 1. (Contact Pair) If d(i, j ) = ri + r j , we say that {i, j } is a Contact Pair of circles.

Definition 2. (Layout) A partial Layout, denoted by L , is a partial pattern (layout) formed by a

subset of the m � 2 of the circle centers, which have already been placed inside the container
without overlap. Assume in addition that the container itself is in L . If m = n, then L is a
complete layout (or solution).

Figure 2(b) illustrates a partial Layout formed by 16 circles placed inside the container. Among

others, {5, 9} and {8, 15} are Contact Pairs.

Definition 3. (Placed Cyclic Order) Let C = i1i2 . . . it−1it , i p ∈ N , p = 1, . . . , t , be a cyclic
order of circles, which have already been placed inside the container without overlap. In addi-
tion, the intersection of any two sets �(i p1 , iq1) and �(i p2 , iq2) have at most one endpoint in

common, p1, p2, q1, q2 ∈ {1, . . . , t}. We say that C is a Placed Cyclic Order.

Definition 4. (Contact Cyclic Order) Let C be a Placed Cyclic Order. If the circles are two by
two Contact Pairs in C, we say that C is a Contact Cyclic Order.

Given a C = i1i2 · · · i p−1i pi p+1 . . . it−1it , we say that the circles i1, i2, . . . , i p−1 are in counter-
clockwise order in relation to circle i p and the circles i p+1, . . . , it−1it are in clockwise order in

relation to circle i p .

Definition 5. (Main Area) Let C be a Placed Cyclic Order. We say that the area bounded by
the union of the line segments �(i p, iq ), where i p, iq are in C, is the Main Area of C, which is
denoted by A(C).

Figure 2(a) illustrates a Contact Cyclic Order C̄ formed by 12 circles placed inside the container.

Note that all {i, j } in C̄ are two by two Contact Pairs. In Figure 2(b), in addition to C̄ , it is
illustrated a Contact Cyclic Order C formed by 4 circles. Note that all circles in C (dashed lines)
are completely placed on A(C̄ ). This is a feature of our approach, since several Contact Cyclic

Order are obtained by circling each other. This approach is an important requirement, since it
can yield a more compact layout.

Let N̄ ⊂ N be a subset of circles placed inside the container and |N̄ | be the cardinality of N̄ . We
denote the centroid of N̄ by the coordinates XC = 1

|N̄ |
∑
i∈N̄

X (i).

Pesquisa Operacional, Vol. 36(2), 2016
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Figure 2 – Two Contact Cyclic Orders and a partial Layout.

Pesquisa Operacional, Vol. 36(2), 2016
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Definition 6. (Border) Let L be a partial Layout and C be a Contact Cyclic Order. If the

center of each circle in L belongs to A(C), we say in addition that C is the Border of the partial
Layout L .

Figure 2(b) illustrates the Border C̄ (12 circles) of the partial Layout L (16 circles). Note that all
circle centers in L belong to A(C̄ ). On the other hand, C = 1|3|2|4 is not a Border of L , since

X (5) /∈ A(C).

We consider two cases of inclusion for placing circles. In the first case, we require that the circle
k to be included must touch at least two previously placed circles. After this, in the second case,
we require that another circle � to be included occupies the wasted spaces after placing the circle

k. This is a reasonable requirement, since it will generally yield a more compact layout than one
defined by separate circles.

These two cases of inclusion can be explained by a partial Layout of the LOP example with
seven existing circles illustrated in Figure 3. In Figure 3(a), it is shown the first case of inclusion.

There are two positions to place the circle 9 (dashed lines) touching the Contact Pair {1, 7}, and
two positions to place the circle 6 (dashed lines) touching the Contact Pair {2, 3}. Each position
can be obtained by the solutions of the following particular case of the problems of Apolonio

(Coxeter, 1968). ⎧⎨
⎩
√

(x − xip )
2 + (y − yip )

2 = rk + rip√
(x − xiq )2 + (y − yiq )

2 = rk + riq

(3)

We denote by St (k, i p, iq ) the coordinates of the solution of the System (3) which does not
belong to A(C). Note that the System (3) has two real solutions whenever d(i p , iq) � rip +
riq + 2rk . In Figure 3(a), by choosing St (9, 7, 1) as the coordinates of the circle 9, we obtain a
feasible layout. However, it is not enough to choose St (6, 2, 3) as the coordinates of the circle 6,
because the circle 6 overlaps the circles 1 and 5.

In our approach, we always select the coordinates St (k, i p, iq ) /∈ A(C) in order to place the new

circle k touching the Contact Pair {i p , iq} in the Border C (in Figure 3(a), we have k = 6 and
{i p , iq } = {2, 3}), but due to the potentially large differences in the radii, it is possible to occur
overlap with the circles in the Border C. As it is illustrated in Figure 3(a), we get around this

situation by repositioning the circle k to the coordinates of the solution of new System (3) for k,
i p̄ and iq̄ , where now the circle k touches the circles i p̄ and iq̄ (in Figure 3(b), we have k = 6,
i p̄ = 1 and iq̄ = 5). This first case of inclusion and the possible reposition define the following

placement approach.

Definition 7. (External Placement) Let L be a partial Layout and C be the Border of L . An
External Placement is the placement of a circle k inside the container, so that there is no overlap,
its center does not belong to A(C), and it becomes Contact Pair with at least two circles in C.

We denoted an External Placement by pE (k).

Pesquisa Operacional, Vol. 36(2), 2016
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The External Placement is always selected outside A(C), however if there is overlap on C, the

repositioning of the new circle k (as explained above) is done in the following routine.

Procedure 1: External Placement routine

Input: a circle k, a Contact Pair {i p , iq }, a partial Layout L and the Border C

Output: an External Placement pE (k), p and q

Step 1. Calculate St (k, i p, iq ) by System (3) and pE(k)← St (k, i p , iq). If the circle k does not

overlap any circles in C stop, otherwise go to Step 2.

Step 2. While there is overlap between the circle k and the circles in C repeat. If the circle
k overlaps the circle i p̄ furthest with respect to the counterclockwise order of the Border C,
p ← p̄, and if the circle k overlaps the circle iq̄ furthest with respect to the clockwise order of

the Border C, q ← q̄ , and choose pE (k) as the solution of the System (3) that is furthest from
the centroid of the circles in L with respect to the Euclidean distance.

First, if the new circle k does not overlap any circles in Border C, the External Placement routine

selects pE (k) = St (k, i p , iq). In our approach, this case is the most convenient way to place
the next circle. However, if there is overlap, in Step 2 the routine identifies such circles (i p̄ and
iq̄ ) in order to reposition the circle k further from the centroid of the partial Layout, eventually

avoiding any kind of overlap.

To obtain a more compact layout, after including the circle k, it is checked the possibility of
including another circle to occupy the wasted spaces after placing the circle k. We check among
the remaining circles outside the container (preferably the largest one) if there is a circle � that can

be placed into the container in a centralized position without overlap. Each centralized position
is the centroid coordinates of a certain set of circles which includes the circle k and the two
circles touching the circle k. Figure 3(b) illustrates the second case of inclusion, which we can
investigate the possibility of positioning a circle in the wasted space after placing the circle 9

touching the Contact Pair {1, 7} (centroid X̂C of the circles {1, 7, 9}), and in the wasted space
after placing the circle 6 touching the circles 1 and 5 (centroid X̄C of the circles {1, 2, 3, 4, 5, 6}).

Definition 8. (Internal Placement). Let L be a partial Layout, C be the Border of L , and {i p, k},
{k, iq } be Contact Pairs in C, where k is the previous circle included. An Internal Placement is

the placement of a circle � inside the container, so that its center belongs to A(C), � does not
overlap with any other circle, and the center of � is placed at the centroid coordinates of the
subset N̄ , where {k, i p , iq } ⊆ N̄ . We denote an Internal Placement by pI (N̄ , �), meaning that �

is to be placed at the centroid coordinates XC of N̄ .

Let L be a partial Layout and C be the Border of L . In our algorithm, each positioning in the
first case of inclusion is always done by looking at the Contact Pairs in the Border C. Suppose
that the remaining circle k is selected to be placed touching the Contact Pair {i p, iq } in C. The

Pesquisa Operacional, Vol. 36(2), 2016
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Figure 3 – Two cases of inclusion: (a) External Placement and (b) Internal Placement.

placement of the circle k causes the addition of one element in L and one index in C, and perhaps
the removal of some indices from C. This will be represented by the following operation.

O+− (k, i p , i p+s)(C) = C + {k} − {i p+1, . . . , i p+s−1} = i1i2 · · · i p k i p+s · · · it−1it ,

where 1 � s � �(t − 2)/2�.
With this choice for s there are fewer indices between p and p + s than p + s and p.

The operation O+− (k, i p , i p+s)(C) applied to C means that the circle k was placed inside the
container touching the circles i p and i p+s without overlap. Then the index k is added to C, the
subset of indices {i p+1, . . . , i p+s−1} between p and p+s is removed from C, and the coordinates

X (k) are added to the partial Layout L . Note that if s = 1 there is no removal of indices from C,
and the index k is inserted in C between the indices i p and i p+1.

Pesquisa Operacional, Vol. 36(2), 2016
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The possible placement of the circle � after the placement of the circle k only causes the possible

addition of the coordinates X (�) to the partial Layout L .

In our approach, we require the imbalance of the system be zero. It seems intuitive that this
requirement may result in a good solution. We denote the center of mass of the system by

XCM = (xCM , yCM ) = (1/

n∑
i=1

mi )

(
n∑

i=1

mi xi ,

n∑
i=1

mi yi

)
,

then one can shift the center of the rotating circular container to the center of mass of the system

to have zero imbalance. This shift is made at each outer iteration and at the end of the algorithm,
but it may increase the envelopment radius. Thus, if the Layout L represents a complete solution
of the LOP, we denote the radius r of the container by

r = R(L) ≡ max
1�k�t

{
rik + d(XCM , X (ik ))

}
.

Moreover, the index where R(L) is reached is denoted by kmax ≡ arg(R(L)).

3 CENTER-OF-MASS-BASED PLACING TECHNIQUE (CMPT)

We present a new placing technique which yields compact layouts and quality solutions in an
efficient manner. Let α = (α(1), α(2), . . . , α(n)) be a permutation of (1, 2, . . . , n). We place
the circles in the partial Layout L one by one according to the order defined by this permutation.

Given a order of inclusion, the first circles α(1), α(2), α(3) and α(4) must be positioned as
follows.

Procedure 2: Initial layout routine

Input: the circles α(1), α(2), α(3) and α(4)

Output: an initial Layout L and the initial Border C

Place the circle α(1) at coordinates X (α(1)) = (0, 0). Choose the coordinates X (α(2)), such
that α(2) touches α(1). For each circle α(3) and α(4), solve the System (3) and place them at co-
ordinates X (α(3)) = (xα(3), yα(3)) = St (α(3), α(1), α(2)) and X (α(4)) = St (α(4), α(1), α(2))

without overlap. L = {X (α(1)), X (α(2)), X (α(3)), X (α(4))} and C ← α(1)|α(3)|α(2)|α(4).

Figure 2(b) illustrates the initial L = {X (1), X (2), X (3), X (4)} and the initial Border C =
1|3|2|4. Among many optional positions we can choose X (α(2)), for example, at the x-axis with
the coordinates (rα(1) + rα(2), 0).

Suppose we have already placed the circles α(1), α(2), . . . , α(k − 1), we describe our approach
for placing the circle α(k), and after that, we verify the possibility of placing another circle
α(�), k < � � n.

Pesquisa Operacional, Vol. 36(2), 2016
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When we place the circle α(k) (where k > 4, see Procedure 2), we require that the circle touches

at least two previously placed circles (see Figure 3(a) and Procedure 4). This will generally yield
a more compact layout. However, we can increase the compactness of the layout if the wasted
spaces after placing the circle α(k) can be occupied by another circle α(�) (see Figure3(b) and

Procedure 4).

We observe that for each additional circle, the envelopment radius of a layout is generally en-
larged. In order to minimize the rate of growth of this radius during inclusions, we must properly
choose a new position for circle α(k) which yields a smaller envelopment radius. Our strategy

CMPT attempts to reduce the rate of growth of the envelopment radius by including every circle
around the coordinates of the center of mass of the system, which is updated during each outer
iteration.

This strategy consists of shifting the origin of the Euclidean plane to the current center of mass

of the system. Then we require that the circle α(k) touches the circles of a Contact Pair arbitrar-
ily chosen among the elements of the Border C, taking into consideration the quadrants of the
Euclidean plane. This approach is performed according to the following routine.

Procedure 3: CMPT routine

Input: a partial Layout L and the Border C

Output: the sets Q1, Q2, Q3 and Q4

Step 1. Calculate the coordinates of the center of mass XCM of the circles in L , and translate the
origin of the Euclidean plane to XCM .

Step 2. Include each Contact Pair {i p, i p+1} of C in the set Qh if the center of i p belongs to the

quadrant h of the Euclidean plane, for h = 1, 2, 3, 4.

Given the Border C, the Procedure 3 only separates the Contact Pairs in C according to the
quadrants of the Euclidean plane with origin shifted to the current center of mass of the system.

Figure 4 illustrates the Procedure 3. In Figure 4(a) we observe that the coordinates of the center of

mass XCM of the system do not coincide with the coordinates of the origin X (α(1)) = (0, 0). We
wish to place the next circle α(k) around the coordinates XCM in order to mitigate the growth
of the envelopment radius. By dividing the plane into quadrants, we can obtain a Border C

with a more circular shape. We see in Figure 4(b) that if we place each new circle α(k) at a
different quadrant of the Euclidean plane (with the origin shifted to XCM ), then the layout is more
evenly distributed.

The choice of different quadrants (a Contact Pair in Qh (h = 1, 2, 3, 4)) to position the next circle

α(k), and the operation O+− on the Border C lead to a updated Border C more similar to a circular
shape. This will generally yield a more compact layout, because the wasted space between the
Main Area A(C) and envelopment radius is minimized (see the example in Figure 5).
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Figure 4 – Example of the CMPT routine.
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Next we describe the two cases of inclusion in the following routine.

Procedure 4: Inclusion routine

Input: a circle α(k), a permutation α, the sets Qh , h = 1, 2, 3, 4, a Contact Pair {i p , iq} in a set
Qh , a partial Layout L and the Border C

Output: a partial Layout L , the Border C and the sets Qh , h = 1, 2, 3, 4

Step 1. Obtain an External Placement pE (α(k)) and the new values for p and q by Procedure

1. If there are fewer indices in the Border C between q and p than those between p and q , then
p̄← p, p← q and q ← p̄.

Step 2. C ← O+−(α(k), i p , iq )(C), X (α(k))← pE (α(k)), L ← L∪{X (α(k))} and Qh ← Qh \{{i p , i p+1}, . . . , {iq−1, iq}
}
, h = 1, 2, 3, 4 (note that q = p + s, where 1 � s � �(t − 2)/2�).

Step 3. If it is possible to obtain an Internal Placement pI (N̄ , α(�)) for the set N̄ = {α(k), i p ,

i p+1, . . . , iq−1, iq } and a circle α(�) (preferably the largest) in the permutation α, k < � � n,
then X (α(�))← pI (N̄ , α(�)), L ← L ∪ {X (α(�))}, and exclude α(�) from α.

The Inclusion routine attempts to place the new circles in a more compact layout. First, it com-

putes an External Placement for the next circle α(k) by Procedure 1 and updates the values for p
and q in order to obtain fewer indices between p and q than those between q and p. In Step 2, the
Border C is updated by the operation O+− , where the indices between p and q are removed from

C (by Step 1, those indices correspond to the internal circles from the Border when compared to
the indices between q and p), and α(k) is added to C. The circle α(k) is placed inside the con-
tainer and all Contact Pairs between p and q (including {i p , i p+1} and {iq−1, iq}) are removed

from the sets Qh , h = 1, 2, 3, 4. This choice guarantees that the operation O+− will exclude
the internal circles from the Border C. Finally, a search to place another circle α(�) (Internal
Placement) is performed.

Post-optimization

A post-optimization is performed after the algorithm builds a complete solution (represented by
Layout L), which contemplates improvements via circle repositioning at the Border C of L .
This post-optimization process causes changes in C, where an index is removed and then it is

repositioned in C by operation O+− . The removal of the index from C will be represented by the
following operation.

D(i p)(C) = i1i2 · · · i p−1 i p+1 · · · it−1it .

The operation D(i p)(C) applied to C means that the circle i p is deleted from its position. We

delete the current X (i p) from the Layout L , and we test if a new position pE (i p) for i p improves
the radius R(L) of the container.
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Main routine

We choose to position each circle inside the container according to the following main procedure.

Main routine

Input: a permutation α = (α(1), α(2), . . . , α(n))

Output: a Layout L (complete solution)

Step 1. (Initialization) Obtain the initial Layout L and the initial Border C by Procedure 2,

k ← 5.

Step 2. (CMPT) Obtain the sets Qh , h = 1, 2, 3, 4 by Procedure 3.

Step 3. (Layout construction) While there are Contact Pairs in any Qh and circles outside the
container, repeat for each h = 1, 2, 3, 4.

If Qh �= ∅, choose an arbitrary {i p , iq} ∈ Qh and include the circle α(k) and the possible

circle α(�), k < � � n, by Procedure 4 and k← k + 1.

Step 4. If there are circles outside the container, return to Step 2. Otherwise, go to Step 5.

Step 5. (Post-optimization) L̄ ← L , C̄ ← C, r̄ ← R(L̄ ), compute kmax in C̄ and k ← kmax.

Step 5.1. (x̄ , ȳ) ← X (ik ), delete the current X (ik ) and repeat Step 5.2. for each Contact Pair
{i p , iq} of C̄ , excluding {ik−1, ik } and {ik , ik+1}.
Step 5.2. Obtain an External Placement pE(ik ) and the new values for p and q by Procedure
1, and X (ik ) ← pE (ik ). If the radius of the container is improved, then C̄ ← D(ik )(C̄),

C̄ ← O+− (ik , i p, iq)(C̄), L ← L̄ , C ← C̄ and return to Step 5.

Step 5.3. X (ik ) ← (x̄ , ȳ) and finish the routine with the complete solution L ← L̄, whose
container center is the center of mass of the system.

Given a permutation α, the Main routine builds an initial Layout L in Step 1 by placing the first

four circles as in Procedure 2. Next, in Step 2 the main aspect of our approach is performed by
Procedure 3 (CMPT routine), where the Euclidean plane is divided into four parts and the subsets
Qh (h = 1, 2, 3, 4) of Contact Pairs are obtained. Next, Step 3 is repeated by looking at each

subset Qh and while there are circles remaining to be placed. In this step, an arbitrary Contact
Pair in Qh is chosen and the two cases of inclusions are performed by Procedure 4. After we
finish placing all circles inside the container, we obtain a complete solution L and its Border

C. Then, in Step 5, a post-optimization is performed via circle repositioning at the Border C,
which attempts improvements in the envelopment radius. In the end, the center of the container
is shifted to center of mass of the system, which achieves zero imbalance.
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Order of placement of the circles

As previously described, a permutation α = (α(1), α(2), . . . , α(n)) of (1, 2, . . . , n) is used as an
input in our algorithm to generate a layout by specifying the order in which the circles are placed.

Since there exist n! possible permutations for n circles, we need an appropriate technique in order
to search in such a large space. Preliminary tests show that the wasted spaces after placing circles
are minimized with greater efficiency when the order of addition of the circles favors those of

larger radii.

Let α = (α(1), α(2), . . . , α(n)) be a sequence obtained by considering their radii in descending
order of the circles, i.e., rα(k) � rα( j) , 1 � k < j � n. Choose an integer b, 1 � b � n
and subdivide the terms of the sequence α in � = �n/b� blocks. Thus, it is possible to obtain a

subsequence ᾱ of α to be used as an input to the algorithm, by permuting the positions of the first
α(1), . . . , α(�) elements of α, the α(�+1), . . . , α(2�) elements of α, and so on, until we permute
the positions of α(b�), . . . , α(n − 1), α(n) last elements of α. With this procedure, several sub-

sequences to place the different circles may be generated. Actually, there are ((�!)b)(n − (b�))!
possibilities, so that 1 � ((�!)b)(n−(b�))! � n!. Thus, when b = n, we only obtain the sequence
ᾱ = α, and when b = 1, we can generate at most n! distinct subsequences. In our numerical

experiments, for each instance of dimension greater than or equal to 10 we chose b = 5 to
generate such sequences.

Complexity

The analysis of the real computational time of the Main routine is difficult, because it does not

depend only on the number of circles, but also on the diversity of the circle radii and the number
of circles in a current Border C, as well as the implementation. Here, we analyze the upper bound
of the complexity of the Main routine, when it finds a complete solution L with Border C, such

that |C| = λn, where 0 < λ � 1, including the post-optimization process. Recall that, before
post-optimization, the circles in Border C are two by two Contact Pair.

Given a partial Layout L with m circles already placed inside the container and n − m circles
outside. Let |C| be the number of circles in the Border C of the partial Layout L .

The strategy CMPT in Procedure 3 checks the position of |C| circles in the Euclidean plane,

which is done in O(|C|).
When we position the circle ik (where k > 2, see Procedure 2) touching two circles in Border C,
|C| existing circles can define 2 × |C| positions, since two existing circles define two possible
positions for the third ik . To determine an External Placement for ik , we must check the overlap

with A(C) or with any circles in C. This is the same that we check the overlap with each circle
in L , that is, m circles (a good implementation can reduce the number of checks). Because we
assess 2 × |C| positions when we place the circle ik , each time checking for overlaps m times,

then the complexity to obtain an External Placement is about 2× m × |C|.
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|C3| = 27

1

|C2| = 12

|C1| = 4

•
ikmax

•
XCM

Figure 5 – A suboptimal solution: 45 circles inside the container.

After placing the circle ik , we must check if there is a circle i� outside the container to be placed

in an Internal Placement, then we must check the overlaps among n − m circles and a subset N̄
in C, which is done in about |N̄ | × (n −m) � |C| × (n − m).

In the post-optimization process, we select one circle in C and assess at most (|C| − 2) Contact
Pairs in C to try to improve of the envelopment radius by checking at most 2× (|C|−2) External

Placements, thus the complexity of the post-optimization is bounded by 2× (n − 1)× (|C| − 2).

Therefore the complexity of placing n circles during the Main routine is bounded by O(n2|C|).
After placing the new circle ik , the operation O+− modifies the Border C. This operation controls
the size of C during the iterations. Since |C| � n, the theoretical upper bound is O(n3).

4 EXPERIMENTAL RESULTS

In this section, we measure the quality and performance of our algorithm on a series of in-
stances up to 55 circles from literature. We tested three sets of instances from the literature.
We compare our approach with a series of hybrid nature-inspired approaches based on sim-

ulated annealing and particle swarm optimization (Xiao et al. 2007; Lei, 2009), a hybrid ap-
proach based on simulated annealing, neighborhood search mechanism and the adaptive gradient
method (Liu et al. 2010), a hybrid tabu search algorithm and gradient method (Liu et al. 2011), a
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series of heuristics based on energy landscape paving, gradient method and local search (Liu &

Li, 2010; Liu et al. 2010, 2015), and a series of algorithms based on quasi-physical approaches,
gradient method and local search (Huang & Chen, 2006; He et al. 2013; Liu et al. 2015).

Table 1 – Data of each instance. First set of instances (Liu & Li, 2010).

Size Radii Mass Size Radii Mass

5 [20.71, 50] [20.71, 50] 7 [8.5, 12] [72.25, 144]
9 [0.17, 0.41] [0.17, 0.41] 40 [81, 120] [6, 14]
5 [6, 11] [36, 121]

Second set of instances (Huang & Chen, 2006)

Size Radii Mass Size Radii Mass

7 [20, 20] [400, 400] 17 [5, 25] [25, 625]
12 [23.72, 100] [562.64, 104] 37 [20, 20] [400, 400]
15 [1, 15] [1, 225] 50 [20, 20] [400, 400]

Third of instances (Xiao et al., 2007)

Size Radii Mass Size Radii Mass

10 [5, 23] [20, 93] 35 [7, 24] [10, 99]
15 [6, 24] [12, 98] 40 [6, 23] [12, 99]
20 [5, 24] [11, 94] 45 [6, 24] [11, 99]
25 [6, 24] [11, 96] 50 [5, 24] [10, 99]
30 [6, 24] [12, 97] 55 [6, 24] [13, 99]

These methods search for the optimal layout by directly evolving the positions of every circle,
as well as considering imbalance. We use the benchmark suite of 21 instances of the problem

described in Table 1 to test our algorithm. For each instance we present the range for ri and
mi . A more detailed description of the instances can be found in Huang & Chen (2006), Liu &
Li (2010) and Xiao et al. (2007).

The routines were implemented in MATLAB language, and executed on a PC with an Intel Core

i7, 7.7 GB of RAM and Linux operating system.

Except for the instances 1.1 and 1.3, both of them with 5 circles, we decide to generate 7! = 5040
distinct permutations α as input for the algorithm in each instance, i.e., we fixed in 5040 the
number of executions of the Main routine for each instance and the best solution found was

selected. This amount of tests proved adequate for our comparisons.

The results from the first, second and third sets of instances are presented in Tables 2, 3 and 4
respectively, where we compare our approach with those described in each indicated reference.
The results are shown for the size of the instances, the best radius of the container obtained (first

objective function f1), the imbalance obtained (second objective function f2), and the running
time t (in seconds).
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Table 2 shows that our approach proved to be competitive. We obtained the best value for f1 on

instance 1.1, tied in instance 1.2, while obtained results 6.1%, 0.2% and 4.0% worse than the
best result on instances 1.3, 1.4 and 1.5 respectively.

Similar results were obtained in the second set test, as can be seen in Table 3. Our algorithm
tied in instance 2.1 and 2.2, while obtained results at most 7.7% worse than the best result on

instances 2.3, 2.4, 2.5 and 2.6.

In Table 4 we compare our approach with three other algorithms. The first set of data are from
a version of simulated annealing (SA), the second set of data are from the same reference, but
one of them is a version of particle swarm optimization (PSO), while the third set of data is a

heuristic based on energy landscape paving. Again, our approach proved to be competitive. In
relation to the envelopment radius we obtained better results in 5 out of the 10 instances. We only
obtained worse results in five cases, but they were on average approximately 0.63% worse than

the results from literature for such instances.

Overall, running time obtained by our algorithm can be considered good. Since the center of the
rotating circular container is shifted to the center of mass of the system we always have f2 = 0,
making our solutions more interesting than the others for this first set of instances.

Figure 5 illustrates a typical solution obtained by our algorithm for an instance of 45 circles.

Note that the large Border C3 have 27 circles, i.e., 60% of the size, and when we carefully read
the CMPT routine, we can see that the initial Border C1 (|C1| = 4) is iteratively transformed in
the Border C2 (|C2| = 12), and finally the latter is iteratively transformed in the Border C3. In

this example there were only two inclusions by Internal Placement.

The computational results show that the proposed algorithm is an effective method for solving
the circular packing problem with additional balance constraints.

5 CONCLUSIONS

We have presented a new heuristic called center-of-mass-based placing technique for packing
unequal circles into a 2D circular container with additional balance constraints. The main feature
of our algorithm is the use of the Euclidean plane with origin in the center of mass of the system

to select a new circle to be placed inside the container. We evaluate our approach on a series of
instances from the literature and compare with existing algorithms. The computational results
show that our approach is competitive and outperforms some published methods for solving this
problem. We conclude that our approach is simple, but with high performance. Future work will

focus on the problem of packing spheres.
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Table 4 – Numerical results for the third set of instances

Instance n Xiao et al. (2007) (SA) Xiao et al. (2007) (PSO)
f1 f2 time(s) f1 f2 time(s)

3.1 10 60.96 0 3237 59.93 0 2898

3.2 15 68.77 0 8320 67.65 0 8659
3.3 20 83.09 0 18431 83.06 0 20035

3.4 25 83.97 0 34032 84.24 0 36815

3.5 30 99.58 0 54565 99.89 0 62360
3.6 35 102.86 0 76760 102.71 0 86537

3.7 40 115.15 0 128112 115.58 0 122390
3.8 45 120.63 0 167484 119.67 0 153006

3.9 50 125.82 0 198071 126.19 0 199050
3.10 55 138.22 0 198071 138.89 0 244171

Instance n Liu et al. (2015) Our algorithm

f1 f2 time(s) f1 f2 time(s)

3.1 10 59.92 5.40×10−9 – 59.96 0 28

3.2 15 67.39 6.44×10−9 – 67.59 0 39
3.3 20 82.99 2.48×10−9 – 83.85 0 82

3.4 25 82.98 5.10×10−9 – 83.68 0 107
3.5 30 98.97 4.14×10−9 – 98.95 0 134

3.6 35 102.32 4.50×10−9 – 102.15 0 155
3.7 40 115.00 5.82×10−9 – 114.15 0 96

3.8 45 119.07 7.64×10−9 – 117.69 0 118
3.9 50 124.98 4.45×10−9 – 124.32 0 136

3.10 55 136.13 2.19×10−9 – 137.37 0 154
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