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ABSTRACT. Interior point methods have been widely used to determine the solution of large-scale linear
programming problems. The predictor-corrector method stands out among all variations of interior point

methods due to its efficiency and fast convergence. In each iteration it is necessary to solve two linear sys-
tems to determine the predictor-corrector direction. Solving such systems corresponds to the step which

requires more processing time, and therefore, it should be done efficiently. The most common approach to

solve them is the Cholesky factorization. However, Cholesky factorization demands a high computational
effort in each iteration. Thus, searching for effort reduction, the continued iteration is proposed. This tech-

nique consists in determining a new direction through projection of the search direction and it was inserted
into PCx code. The computational results regarding medium and large-scale problems, have indicated a

good performance of the proposed approach in comparison with the predictor-corrector method.

Keywords: interior point methods, linear programming, continued iteration.

1 INTRODUCTION

Linear programming is an optimization technique widely used due to its robustness, the efficiency of its

algorithms and the large number of problems that can be formulated through it. The study of interior point

methods for linear programming has been one of the most active areas of research in optimization in recent

decades because of great advances described by Gondzio [12]. Among the variations of the interior point

methods for the solution of linear programming problems, the predictor-corrector method presented by

Mehrotra [15] has great prominence due to its efficiency and fast convergence.This is a primal-dual method

that needs to solve two linear systems with the same symmetric positive definite matrix in each iteration.

To solve these systems the most used approach is the Cholesky factorization. Thus, interior point methods

present a critical step in its computational performance, since this factorization in most cases demands a

large computational effort. Vavasis & Ye [19] propose an algorithm that follows the central path, using
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488 USE OF CONTINUED ITERATION ON THE REDUCTION OF ITERATIONS OF THE INTERIOR POINT METHOD

short steps or a layered least squares step, which return an exact optimum after a finite number of steps.

Besides Mehrotra’s correction direction [15], other technique which determine correction directions have

been developed over the last decades to improve interior point methods. Gondzio [5, 11] presented the

multiple centrality corrections to interior point methods that consist in computing a direction so that xi zi

belongs to the neighborhood of the central path [20], thereby enhancing convergence.

Jarre & Wechs [13] propose to generate corrector directions making use of recursion in a modification of

Mehrotra’s corrector direction. The idea is to change the residual vector ra for another vector r in the linear

system which computes the predictor direction. They question what the best choice would be for r to get a

good search direction. In general, it is not easy to find a good value for r . So, they propose to find a subspace

spanned by k different directions, (dx1, dy1, dz1), . . . , (dxk , dyk , dzk), generated for each r1, r2, . . . , rk ,

where each one of these directions is a predictor-corrector type. They formulate a small linear subproblem

to find the best combination of weights in the generated directions to increase the stepsize and the reduction

of the complementarity gap.

Mehrotra & Li [16] follow the approach of Jarre & Wechs [13]. They found multiple corrector directions by

using information generated by a suitable Krylov subspace. The affine-scaling direction (d̃x, d̃ y, d̃z), the

Mehrotra’s corrector direction (d̄x, d̄ y, d̄z) and the first k directions (dx1, dy1, dz1), . . . , (dxk , dyk, dzk )

generated by Krylov subspace are combined with appropriate weights. Thus a linear programming problem

is solved to determine the best set of weights in the combined search direction.

Numerical experiments have shown that direct methods provide sufficiently accurate solutions for inte-

rior point methods to achieve fast convergence regardless the ill-conditioning involved [1]. Such results

are also supported by theory [20]. However, iterative methods have good accuracy when applied to well-

conditioning systems or when preconditioners, as proposed by Oliveira & Sorensen [18], are used for an

ill-conditioning system [12]. The direct methods take advantage of the factorization already computed to

determine the solution of additional linear systems, but using iterative methods this advantage is lost.

We present in Section 3 an alternative technique to improve the predictor-corrector interior point method as

[12, 13, 16], using direct methods. Inspired by the original continued iteration proposal presented on [17]

for the dual affine-scaling method, we present the continued iteration for the predictor-corrector interior

point method. The technique is incorporated in the predictor-corrector method in order to reduce the total

number of iterations required to solve a linear programming problem.

The continued iteration consists in determining a new projection direction. Additionally, to take advantage

of the Cholesky factorization already computed, the new direction is found by minimizing the deviation

from the original rescaled direction. This technique is used when an iteration of the predictor-corrector

method is completed.

This paper is organized as follows: In Section 2, we define the linear programming problem and describe,

briefly, the primal dual interior point method. In Sections 3 and 4, the continued iteration is presented and

incorporated into the predictor-corrector interior point method for linear programming problems, whether

with bounded variables or not. Section 5 shows the results of computational experiments conducted with

several problems selected from different collections. Finally, in Section 6, the conclusions are presented.

Pesquisa Operacional, Vol. 36(3), 2016
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2 INTERIOR POINT METHODS

The linear programming problem in standard form is given by:

min cT x

s.t. Ax = b

x ≥ 0,

(1)

in which A ∈ Rm×n, rank(A) = m, x ∈ Rn , c ∈ Rn and b ∈ Rm .

The problem (1) is called primal problem. The dual problem, associated with it, is given by:

max bT y

s.t. AT y + z = c

z ≥ 0,

(2)

in which y ∈ Rm represents the vector of free dual variables and z ∈ Rn represents the slack dual variables.

The first order optimality conditions (Karush-Kuhn-Tucker) of problems (1) and (2) are given by [20]:

Ax − b = 0

AT y + z − c = 0
X Ze = 0

(x, z) ≥ 0,

(3)

in which X = diag(x), Z = diag(z) and e ∈ Rn, such that e = (1.1 . . . , 1)T .

2.1 Primal-Dual Affine-Scaling Interior Point Method

The primal-dual affine-scaling method entails applying Newton’s method to F(x, y, z) = 0, which is

formed by the optimality conditions (3), ignoring (x, z) ≥ 0, but starting from an interior point (x, z) > 0.

Thus, the primal and dual problems are solved simultaneously. The affine-scaling direction is obtained by

solving the linear system given below:⎡
⎢⎣ A 0 0

0 AT I

Z 0 X

⎤
⎥⎦

⎡
⎢⎣ d̃ x

d̃ y

d̃ z

⎤
⎥⎦ =

⎡
⎢⎣ r p

rd

ra

⎤
⎥⎦ , (4)

in which r p = b − Ax, rd = c − At y − z and ra = −X Ze.

We use variables substitution to determine the solution of (4). By eliminating the variable d z̃ = X−1(ra −
Zd̃x), we obtain the augmented system:[

−D−1 At

A 0

][
d̃ x

d̃ y

]
=

[
r1

r p

]
,

in which D = X Z−1 and r1 = rd − X−1ra . Now eliminating d̃ x = D(At d̃ y − r1), the following
symmetric and positive definite normal equations system is obtained

AD AT d̃ y = r p + ADr1 . (5)

As AD AT is symmetric positive definite, the most used approach for solving system (5) is the Cholesky
factorization [9].

Pesquisa Operacional, Vol. 36(3), 2016



�

�

“main” — 2017/1/2 — 16:12 — page 490 — #4
�

�

�

�

�

�

490 USE OF CONTINUED ITERATION ON THE REDUCTION OF ITERATIONS OF THE INTERIOR POINT METHOD

The primal αP and dual αD stepsize, to keep the interior point in each iteration are given by:

αP = min

{
1, τ min

t

{
− xt

d̃ xt
|xt + d̃ xt ≤ 0

}}
,

αD = min
{

1, τ min
t

{
− zt

d̃ zt
|zt + d̃ zt ≤ 0

}}
,

in which τ ∈ (0, 1).

Remark 2.1. In the primal-dual affine-scaling method, the products xi zi of ra can converge to zero at

different speeds. Thus, the method may fail or progress slowly. To avoid this, the parameter (μ) is added to
the optimality conditions so that xi zi = μ, which is updated every iteration and tends to zero as the method

approximates to a solution.

2.2 Predictor-Corrector Interior Point Method

The predictor-corrector method presented by Mehrotra [15] consists in using a direction that contains three
components: the affine-scaling direction, the centering direction and the non-linear correction direction.

The affine-scaling direction is determined by (4). The centering direction is computed to prevent products
xi zi from ra converging to zero at different speeds as mentioned in Remark (2.1). Mehrotra [15] presents

a proposal for computing μ.

When αP = αD = 1, the primal and dual constraints are satisfied, but the complementary products

have xi zi = d̃xi d̃zi , then a non-linear correction direction is computed. Consider, D̃x = diag(d̃x) and
D̃z = diag(d̃z), the corrector direction d̄ is the combination of the centering and the non-linear correction

direction, which is obtained by solving:⎡
⎢⎣ A 0 0

0 AT I

Z 0 X

⎤
⎥⎦

⎡
⎢⎣ d̄ x

d̄ y

d̄ z

⎤
⎥⎦ =

⎡
⎢⎣ 0

0

μe− D̃x D̃ze

⎤
⎥⎦ . (6)

Thus, the (d) predictor-corrector direction, given by the sum of two directions found, i.e., d = d̃ + d̄, can

be interpreted as a solution of the linear system:⎡
⎢⎣ A 0 0

0 AT I

Z 0 X

⎤
⎥⎦

⎡
⎢⎣ dx

dy

dz

⎤
⎥⎦ =

⎡
⎢⎣ r p

rd

rs

⎤
⎥⎦ , (7)

in which rs = ra + μe− D̃x D̃ze. Solving the system (7), the predictor-corrector direction is given by:

dy = (AD AT )−1[r p + AD(rd − X−1rs )],
dx = D(AT dy − rd + X−1rs ),

dz = X−1(rs − Zdx).

(8)

Note that, the most expensive step is solving a linear system with the same matrix AD AT . The Cholesky

factorization is used and it has been already computed to obtain the affine-scaling direction.

Therefore the predictor-corrector method is an iterative method that starts from an interior point (x0, y0, z0)

by computing a new point:
xk+1 = xk + αP dxk ,

Pesquisa Operacional, Vol. 36(3), 2016
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yk+1 = yk + αDdyk ,

zk+1 = zk + αDdzk ,

in which (dxk , dyk , dzk) is given in (8) and k varies from 0 to a maximum number of iterations.

2.2.1 Stopping criteria

Consider εp, εd , εo primal feasibility, dual feasibility and optimality tolerances, respectively, then the

stopping criteria is given by:
||rk

p||2
1+ ||b||2

≤ εp,

||rk
d ||2

1+ ||c||2 ≤ εd ,

(xk )T zk

1+ |cT xk | ≤ εo .

For further details on the predictor-corrector interior point methods see [14, 15, 19].

3 CONTINUED ITERATION

The continued iteration is proposed in order to reduce the total number of predictor-corrector interior point

method iterations, and consequently, reduce the total computational time. This iteration determines a new
direction, after computing the predictor-corrector step, without being necessary to perform a new Cholesky

factorization. The new direction is determined by setting some of its components to zero and thus, the devi-
ation from the predictor-corrector direction is kept to a minimum. Furthermore, the Cholesky factorization

of AD At , already computed in the predictor-corrector method iteration, is used again for solving the lin-

ear systems involved. Therefore, the computing of this new direction is not very expensive in comparison
with a new predictor-corrector method iteration. This new direction is called continued predictor-corrector

direction.

3.1 Computing the continued predictor-corrector direction

The continued predictor-corrector direction is computed in an analogous way to the computing of the
predictor-corrector direction. Initially, the continued affine-scaling direction is computed, after that the cen-

tering and nonlinear correction direction is computed. More details on these directions will be seen later,
because before that we need to define the blocking components.

The components that must be fixed at zero, in the new direction, are those responsible for blocking in the
previous direction. The blocking components in the directions (dx, dz) are given by:

i = arg min
t

{
− xk

t

dxk
t
|xk

t + dxk
t ≤ 0

}
,

j = arg min
t

{
− zk

t

dzk
t
|zk

t + dzk
t ≤ 0

}
.

(9)

As blocking component in any or both directions may not exist, some likely cases can be considered: two,
one or none blocking component.

Pesquisa Operacional, Vol. 36(3), 2016
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Remark 3.1. If there is more than one blocking component i or j , only the first blocking determined

component is considered in this study. When there is no blocking component, the continued iteration is not
performed.

In the original proposal of continued iteration to the predictor-corrector method only one of the blocking
components was fixed at zero [3]. In this work, the two blocking components (i and j) are fixed at zero.

3.1.1 Two blocking components

In the continued affine-scaling direction, in which d̃ is to be computed, the components that perform block-
ing in the previous direction are fixed at zero, thus, we get:

d̃xi = 0 and d̃z j = 0, (10)

which are additional conditions to the linear system (4). We compute d̃ approximately, since linear system

(4) admits a unique solution. In addition, we are imposing new conditions (10) to such system.

Similarly to the idea of Dikin [7] by developing the primal affine-scaling method, we find the solution of
this system using an auxiliary problem to determine d̃x. The auxiliary problem is built using (10) and the

first equation of (4). The component d̃x j corresponding to d̃ z j is computed using the third equation of (4),
in which the value must be −x j . We formulate a problem that determines d̃ x rescaling the new direction

and minimizing the deviation in relation to the original rescaled direction, so that the Cholesky factorization
is already computed and used. The problem is given by:

min 1
2‖D− 1

2 d̃ x − D− 1
2 dx‖2

s.t. Ad̃x = r p

d̃xi = βa

d̃x j = βb,

(11)

in which D = Z−1 X, d̃ x, dx ∈ Rn, βa = 0, and βb = −x j .

Consider: θi = AT
i (AD AT )−1 Ai , θ j = AT

j (AD AT )−1 A j and θi j = AT
i (AD AT )−1 A j .

Since the problem (11) is quadratic, we find the solution to this problem using the Lagrangian function,
which is given by:

d̃ x = dx − D AT v − αdii ei − γ d j j e j ,

in which
v = −αdii (AD AT )−1 Ai − γ d j j (AD AT )−1 A j ,

α = dxi−βa+γ dii d j j θi j
dii (1−diiθi )

,

γ =
dx j−βb+

[
(dxi−βa )d j j θi j

1−diiθi

]
,

d j j ξ

ξ = 1−
[

dii d j jθ
2
i j

1−diiθi

]
− d j j θ j .

(12)

Pesquisa Operacional, Vol. 36(3), 2016
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From the last two equations of (4), and using least squares in the overdetermined system to compute d̃ y,

we find the remaining directions given by:

d̃ z = X−1(ra − Zd̃x),

d̃ y = (AD AT )−1 AD(rd − d̃ z).
(13)

Remark 3.2. The continued affine-scaling direction computation implies solving three linear systems
with AD AT . We solve two linear systems: one to obtain v in (12) and another to get d̃ y in (13).

Given the continued affine-scaling direction, when performing the centering and non-linear correction, we
obtain continued predictor-corrector direction, similarly as done in the predictor-corrector method (2.2).

Keeping the components that block at zero, in direction d̂ we should have:

d̂ xi = 0 and d̂z j = 0. (14)

Furthermore, the direction d̂ should be an approximate solution of the linear system (7). We determine d̂ in

a similarly way to determine the continued affine-scaling direction described above. However in auxiliary
problem (11) there is an change in the value βb due to the computing of centering and non-linear correction.

If d̂z j = 0, we find the value of the component d̂x j corresponding to the last equation of (7). Then, the
auxiliary problem, in this case, is given by:

min 1
2‖D− 1

2 d̂x − D− 1
2 dx‖2

s.t. Ad̂x = r p (15)

d̂ xi = βa

d̂x j = βb,

in which D = Z−1 X, d̂ x, dx ∈ Rn , βa = 0 and βb = −x j + μ
z j

.

Solving the problem (15), it is obtained:

d̂ x = dx − D AT v − αdii ei − γ d j j e j .

We find the remaining directions in (7) by:

d̂ z = X−1(rs − Zd̂x),

d̂ y = (AD AT )−1 AD(rd − d̂ z).

Remark 3.3. To determine the direction d̂ above it is not necessary to solve again the linear systems

involving the matrix AD At to compute v. In fact, it is necessary to solve only a linear system with matrix
AD At to determine d̂ y.

Remark 3.4. The computing of direction d̂ is analogous whether there is only one or two blocking

components. That is, in (10) and (14) only one condition is considered. In the auxiliary problems (11) and
(15), the restriction that has no blocking component is disregarded.

Pesquisa Operacional, Vol. 36(3), 2016
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Remark 3.5. As the direction d̂ is determined in such a way that the change from the direction d is as

low as possible, the stepsizes α̂P and α̂D , adopted are

α̂P = min
{
τ min

t

{
− xt

d̂ xt
|xt + d̂ xt ≤ 0

}
, 1− αP

}

and

α̂D = min
{
τ min

t

{
− zt

d̂ zt
|zt + d̂zt ≤ 0

}
, 1− αD

}
.

Thus, α̂P + αP ∈ (0, 1] and α̂D + αD ∈ (0, 1]. In [3], there is no limitation on the new stepsizes.

3.2 Criteria for using continued iteration

Consider r̂ = (r̂ p, r̂d , r̂a )t , formed by new residuals produced by the continued iteration e r = (r p,

rd , ra)t . Given that the primal infeasibility, the dual infeasibility and/or the complementary products are

reduced with continued iteration, then the continued direction only is used if ||r̂ ||2 < ω1||r ||2 in which

ω1 ∈ (0, 1). This is an improvement over the implementation described in [3].

4 CONTINUED ITERATION WITH BOUNDED VARIABLES

Consider the primal linear programming problem with bounded variables in its standard form:

min cT x

s.t. Ax = b

x + s = u

x ≥ 0, s ≥ 0,

(16)

in which s ∈ Rn represents the slack of bounded variables, and u ∈ Rn represents the upper bound of x.

The dual problem in its standard form associated with (16) is given by:

max bT y − uT w

s.t. AT y + z − w = c

z ≥ 0, w ≥ 0,

(17)

in which w ∈ Rn represents the dual variables associated with the slack variables s.

The first order optimality conditions (Karush-Kuhn-Tucker) of the problems (16) and (17) are as follows:

Ax − b = 0
x + s − u = 0

AT y + z −w − c = 0

X Ze = 0
SW e = 0

(x, s) ≥ 0
(z, w) ≥ 0,

in which S = diag(s) and W = diag(w).

Pesquisa Operacional, Vol. 36(3), 2016
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4.1 Computing the continued predictor-corrector direction

In this case, it is conducted the blocking components and they are given by the directions (dx, ds, dz, dw).
The blocking components i and j in directions dx and dz are defined as in (9). Consequently, the blocking
components in the directions ds, dw are defined by:

l1 = arg min
t

{
− sk

t

dsk
t
|sk

t + dsk
t ≤ 0

}
,

l2 = arg min
t

{
− wk

t

dwk
t
|wk

t + dwk
t ≤ 0

}
.

The computing for determining the null components in the new direction is performed as follows.

Consider h = min{−xk
i /dxk

i ,−sk
l1

/dsk
l1
} and g = min{−zk

j /dzk
j ,−wk

l2
/dwk

l2
}. If h = −xk

i /dxk
i , then in

the new direction d̂ xi = 0. Otherwise, we assign i ← l1 and d̂si = 0. If g = −zk
j /dzk

j , then in the new

direction d̂z j = 0; otherwise, j ← l2 and d̂w j = 0.

4.1.1 Two blocking components

With the given components, we have computed the continued affine-scaling direction d̃ so that:

d̃ xi = 0 or d̃si = 0,

d̃ z j = 0 or d̃w j = 0.
(18)

Additionally, the continued affine-scaling direction should be an approximate solution of the linear system
obtained when Newton’s method is applied to the optimality conditions of the problem, being the corre-
sponding linear system given by:⎡

⎢⎢⎢⎢⎢⎣

A 0 0 0 0
I I 0 0 0

0 0 AT I −I

Z 0 0 X 0
0 W 0 0 S

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

d̃x

d̃s

d̃ y

d̃z

d̃w

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

r p

ru

rd

ra

rb

⎤
⎥⎥⎥⎥⎥⎦ , (19)

in which d̃x, d̃s, d̃z, d̃w ∈ Rn and d̃ y ∈ Rm .

To determine the direction d̃, initially, we compute d̃ x analogously to (3.1.1), using an auxiliary problem,
which in this case is given by:

min 1
2‖D− 1

2 d̃x − D− 1
2 dx‖2

s.t. Ad̃x = r p

d̃xi = βa

d̃x j = βb,

(20)

in which D = (X Z−1 + SW−1)−1,

βa =
{

0, if d̃ xi = 0;
(ru )i , if d̃si = 0,

and

βb =
{
−x j , if d̃z j = 0;
(ru ) j + s j , if d̃w j = 0.

Pesquisa Operacional, Vol. 36(3), 2016
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Problem (20) is similar to the problem (11), in which only the values βa e βb may change. Thus,

d̃ x = dx − D AT v − αdii ei − γ d j j e j .

For the remaining equations (19), we obtain:

d̃s = ru − d̃ x,

d̃ z = X−1(ra − Zd̃x),

d̃w = S−1(rb − W d̃s),

d̃ y = (AD AT )−1 AD(rd − d̃ z + d̃w).

The procedure performing centering and non-linear correction is similar to the case without bounds, thus
obtaining the continued predictor-corrector direction.

Remark 4.1. When there is one blocking component, the direction computation is similar to (4.1.1).
Furthermore, the equations related to the missing blocking component are disregarded in (18) and (20).

Remark 4.2. The criterion for using the continued iteration with bounded variables is similar to that
given in (3.2); in this case, r̂ = (r̂ p, r̂u , r̂d , r̂a , r̂b)t and r = (r p, ru , rd , ra , rb)t .

5 COMPUTATIONAL EXPERIMENTS

The computational experiments were performed on an Intel Core i7, 8 GB RAM, 1TB HD and Linux
Operating System.

The continued iteration was implemented in language C and incorporated into the PCx code [6] with
multiple centrality corrections turned off [11]. To analyze the performance of PCx with the proposed ap-
proach, the computational experiments were performed with free access problems belonging to Netlib [10],
Kennington [4] and Qaplib [2] collection.

The PCx has a good behavior near a solution, thus the continued iteration was not used in the last iterations.
Based on criteria defined in (2.2.1), the continued iteration is to be applied if:

xt z + stw

(1+ |ct x|) > ω2,

in which ω2 ∈ (0, 1) .

For the computational experiments ω1 = 10−7 in (3.2) and ω2 = 0.99.

Table 1 shows, in the first column, the name of the selected problems and in the second and third columns,
are the dimension of the problems (number of rows and columns) after the preprocessing of the PCx. In the
fourth column, there is the density of the Cholesky factor provided by PCx, which performs a reordering
to obtain this sparse factor. The fifth column relates the number of variables with bounds (VB) for each
problem. The last column indicates the collection to which the problem belongs.

Table 2 shows the results by incorporating the continued iteration into PCx code. The first column shows
the tests problems. The second column presents the results obtained by PCx standard version without mul-
tiple centrality corrections. The third column has the results obtained by PCx with the continued iteration,
which will be referred to as PCx-IC. The columns PCx and PCx-IC indicate the total number of iterations
(k) performed by the interior point methods and running time in seconds (t). In addition, PCx-IC has the
number of performed continued iterations (ic).

Pesquisa Operacional, Vol. 36(3), 2016



�

�

“main” — 2017/1/2 — 16:12 — page 497 — #11
�

�

�

�

�

�

LILIAN F. BERTI, AURELIO R.L. OLIVEIRA and CARLA T.L.S. GHIDINI 497

Table 1 – Test problems.

Problem
Dimension

Density VB Collection
Rows Columns

DFL001 5984 12143 0.09132 13 Netlib

MAROS-R7 2152 7440 0.23023 0 Netlib

PILOT87 1971 6373 0.21863 1578 Netlib

STOCFOR3 15362 22228 0.00144 0 Netlib

CRE-B 5336 36382 0.01728 0 Kennington

CRE-D 4102 28601 0.02497 0 Kennington

KEN11 10085 16740 0.00192 16740 Kennington

KEN13 22534 36561 0.01130 36561 Kennington

KEN18 78862 128434 0.00061 128434 Kennington

OSA-07 1081 25030 0.04747 0 Kennington

OSA-14 2300 54760 0.02255 0 Kennington

OSA-30 4313 104337 0.01214 0 Kennington

OSA-60 10243 243209 0.00497 0 Kennington

PDS06 9156 28472 0.01395 8448 Kennington

PDS10 15648 48780 0.01372 15125 Kennington

PDS20 38722 106180 0.01357 33150 Kennington

PDS30 47968 156042 0.01271 51389 Kennington

PDS40 64276 214385 0.01363 72686 Kennington

PDS50 80339 272513 0.01293 95668 Kennington

PDS60 96514 332862 0.01247 119785 Kennington

PDS70 111896 386238 0.01257 143325 Kennington

PDS80 126120 430800 0.01185 165193 Kennington

PDS90 139752 471538 0.01136 186292 Kennington

PDS100 152300 498530 0.01036 206383 Kennington

CHR25A 8149 15325 0.07689 0 Qaplib

CHR22B 5587 10417 0.08850 0 Qaplib

ELS19 4350 13186 0.40664 0 Qaplib

KRA30A 18059 85725 0.51777 0 Qaplib

KRA30B 18059 85725 0.51777 0 Qaplib

ROU20 7359 37640 0.76870 0 Qaplib

SCR15 2234 6210 0.53284 0 Qaplib

SCR20 5079 15980 0.51710 0 Qaplib

STE36A 27683 131076 0.46092 0 Qaplib

STE36B 27683 131076 0.46092 0 Qaplib

STE36C 27683 131076 0.46092 0 Qaplib
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Table 2 – Comparison between PCx and PCx-IC.

Problema
PCx PCx-IC

k t k t ic

DFL001 56 18.34 54 18.17 6

MAROS-R7 16 0.71 19 0.91 11
PILOT87 33 1.80 35 1.91 17

STOCFOR3 30 0.23 29 0.31 5
CRE-B 41 0.88 45 1.10 6

CRE-D 41 0.73 47 0.97 8
KEN11 20 0.13 19 0.16 10

KEN13 23 0.41 23 0.53 11
KEN18 29 3.50 31 4.37 11

OSA-07 22 0.13 22 0.18 8
OSA-14 25 0.40 18 0.42 6

OSA-30 24 0.96 18 1.06 10
OSA-60 33 4.02 18 3.77 9

PDS06 34 2.62 33 2.60 10

PDS10 39 13.88 39 14.15 8
PDS20 55 149.65 52 144.23 10

PDS30 67 448.41 60 407.16 7
PDS40 66 1223.58 64 1195.83 4

PDS50 66 2115.27 71 2275.74 8
PDS60 69 3695.15 69 3710.79 5

PDS70 75 6298.36 70 5912.77 9
PDS80 74 8890.05 71 8580.14 11

PDS90 76 11275.48 76 11303.87 9
PDS100 78 12841.34 77 12711.74 9

CHR25A 28 11.49 26 11.07 1
CHR22B 27 4.59 28 4.96 1

ELS19 26 33.48 26 33.92 1

SCR15 21 5.45 20 5.31 1
SCR20 20 64.04 20 64.63 1

ROU20 16 290.70 16 293.19 1
KRA30A 26 3704.38 25 3585.43 2

KRA30B 27 3841.13 28 3998.78 2
STE36A 32 13191.43 31 12857.36 1

STE36B 31 12801.62 31 12860.21 0
STE36C 31 12808.24 30 12467.26 1

In Table 2, we find 18 problems in which the number of iterations is reduced by PCx-IC. The PDS problems
present the largest reductions in both of iterations and time by the proposed method. The OSA-60 problem

has the highest iteration reduction ratio at 45%. Particularly in terms of time, the largest time reduction
ratio stands at 7% in the PDS70 problem among the 14 problems displaying time reduction. As for the
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problems that require more processing time whenever PCx-IC reduces the number of iterations the time is

also reduced. However, there is no time reduction in the problems solved by PCx in a few seconds and with
low reduction. This occurs due to the increased effort exerted by the continued iteration. Thus, excellent

performance is obtained by PCx-IC in most large-scale problems regarding iterations reduction as well as

for total computational effort.

Figure 1 shows the performance profile [8] by PCx and PCx-IC regarding the total number of iterations.
Note that the method PCx-IC offers better performance compared with PCx. It solves 78% of the test

problems with a smaller number of iterations.

Figure 1 – Total number of iterations.

Figure 2 shows the performance profile of the methods considering the total running time as performance

measure. In this case, PCx is the most efficient for approximately 60% of the test problems solved in less
time. Moreover, both methods are robust for solving all tested problems.

Figure 2 – Total time for solving problems.
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6 CONCLUSIONS

In this study, the continued iteration has been proposed for the predictor-corrector interior point method
with and without bounded variables. The main objective is to reduce the total number of predictor-corrector

interior point method iterations and consequently, the total computational time. In the continued iteration,
a new direction is determined, considering that some of its components are null according to the blocking

component in the last computed direction. The continued predictor-corrector direction is determined by
setting to zero some of its components and thus the deviation from the predictor-corrector direction is kept

to a minimum. The Cholesky factorization, already computed in the predictor-corrector method iteration, is
used again for solving the linear systems involved. Thus, it avoids computing a new Cholesky factorization.

Then, the new method is applied on two levels. On the outer level, the Cholesky factorization and the

traditional predictor-corrector direction are computed. On the inner level, a new direction employing the
existing Cholesky factorization on the outer level is used by the continued iteration. The computational

effort of each continued iteration is dominated by the solution of up to four linear systems with the same
matrix already factored. The computational results show that the continued iteration reduces the number

of iterations in most of the test problems. The problems that the PCx needs more time to solve also have
their time reduced by PCx-IC. Although the continued iteration with the proposed direction has reduced the

number of iterations in most problems, the extra effort per iteration to compute the new direction in smaller
problems does not affect the reduction of total computational time. In future work other continued directions

will be searched aiming to reduce the extra effort that such directions add in the predictor-corrector method.

ACKNOWLEDGEMENTS

This research was sponsored by the Brazilian Agencies CAPES, CNPq and FAPESP.

REFERENCES
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