
�

�

“main” — 2017/8/24 — 12:27 — page 229 — #1
�

�

�

�

�

�

Pesquisa Operacional (2017) 37(2): 229-245
© 2017 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2017.037.02.0229

DEMAND FORECAST AND OPTIMAL PLANNING
OF INTENSIVE CARE UNIT (ICU) CAPACITY

Simone A. Angelo1, Edilson F. Arruda1, Rosane Goldwasser2*,
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ABSTRACT. Critical Care is a medical specialty which addresses the life-saving and lifesustaining man-

agement of patients at risk of imminent death. The number of Intensive Care Unit (ICU) beds has an impact

on patient’s prognosis. This paper aims to determine the optimal number of ICU beds to reduce patient’s

waiting time. Time series was applied to predict demand making use of information on the daily patient’s

requests for ICU beds to obtain a demand forecast by means of exponential smoothing and Box-Jenkins

models, which provided the input of a Queuing model. The outputs were the optimal number of ICU beds,

in different scenarios, based on demand rate and patient’s length of stay (LOS). A maximum waiting time in

the queue of 6 hours was proposed and compared to government recommendation (118-353 beds). The need

for ICU beds varied from 345 to 592 for a 6-hour waiting time (for a LOS of 6.5 to 11.2 days, respectively).

The results show that managing demand and discharge timing could control the queue. Moreover, they also

suggest that the current recommendation is inadequate for the demand.

Keywords: intensive care unit, hospital bed capacity, health services accessibility, unified health system,

time series, systems theory.

1 INTRODUCTION

Critical Care is a medical specialty which addresses the life-saving and life-sustaining manage-
ment of patients at risk of imminent death. The most critical delays for healthcare are arguably
those associated with emergencies and critical care. Lack of Intensive Care Unit (ICU) beds

may cause ambulance diversion and surgery cancellation. Overcrowding in either the emergency
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Department or the ICU typically results in long waiting times which, in turn, can lead to adverse

clinical consequences. When the number of patients requiring intensive care is greater than the
number of beds available, ICU entry flow is obstructed (Levin & Sprung, 2001). As critically
ill patients need early interventions to improve their outcomes, delayed ICU bed availability has

been suggested to be associated with higher mortality (e.g., Blow et al., 1999; Chalfin et al., 2007;
Rivers et al., 2001; Young et al., 2003).

In the face of an aging and increasingly morbid global population, timely access to ICU beds
becomes increasingly important (Angus et al., 2000). Official government data states that the

Brazilian population nearly tripled in the last 54 years, going from approximately 70 million in
1960 to about 200 million in 2014. In addition to this steep growth, life expectancy also raised,
thus increasing the elder population, which amounts to about 10.7% of the current Brazilian

population. According to official estimates, the Brazilian elderly population will correspond
nearly 26 million people in 2025 (IBGE, 2013). It is estimated that patients older than 65 occupy
approximately 60% of ICU beds and their length of stay (LOS) is seven times greater than that

for a younger population. Moreover, the incidence of respiratory failure treated with mechanical
ventilation increases 10 times from 55 to 85 years, resulting in increasing numbers of elderly
requiring intensive care (Angus et al., 2000). These and other statistical data can only provide
a small glimpse of the complex dynamics behind the ever increasing demand for ICU’s. While

it does encompass the dynamics of population growth, it is also influenced by other countless
factors which are hard to predict and quantify, such as case-mix (by diagnosis and severity) and
unexpected epidemiological demands (epidemics). On top of that, the expansion of ICU’s is

complex and expensive due to both the technology and the high costs involved. As a result, the
increase in ICU beds typically does not meet the increase in demand, and the imbalance thus
created typically results in long queues, large waiting times and higher mortality.

From the preceding hints one can infer that ICU scheduling and planning is a very impor-

tant problem. As such, it received much attention in the literature (e.g., Cardoen et al., 2010).
Scheduling and allocation rules are proposed and studied by Cayirli & Veral (2003); Kim &
Horowitz (2002), Van Houdenhoven et al. (2008), Litvak et al. (2008), Gupta & Denton (2008),

and Sadki et al. (2013). Studying pediatric ICU occupation rates for a specific population in the
UK over a one-year period, Milne & Whitty (1995) derived the required number of ICU beds
as a linear function of the population size, and showed that over this period the arrivals closely

follow a Poisson process with constant rate. This study suggests that a Poisson process may be
used to derive the queueing model of ICU units for a short-term period. Pearson et al. (2012)
addressed the same problem and employed both a Poisson model and a more complex Monte

Carlo simulation model. Their study suggested that the variation in the mean demand rates for
ICU beds may not be linear with respect to the population size. It also suggested that seasonal
factors may have an impact in the demand rate variation.

Discrete event simulation is also a popular technique in estimating the need for ICU beds in a

given population. Indeed, this technique enables one to develop a highly detailed and possibly
complex model of the system under study (e.g., Griffiths et al., 2005; Ridge et al., 1998; Zhu
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et al., 2012). It is also flexible to the point of enabling the decision maker to test and compare

different scenarios for improving the operation. The complexity of the system, however, may
remain poorly understood and that may render the proposal of efficient optimizing rules infeasi-
ble. Queuing models may provide a better understanding of the system, while also simplifying

the derivation of optimizing policies. Shmueli et al. (2003) made use of queuing theory to com-
pare distinct admission policies, whereas McManus et al. (2004) reported that queuing models
proved very precise in a typical real world ICU problem.

In this paper, we make use of the rationale behind the works of Milne & Whitty (1995) and

Pearson et al. (2012) and assume that, for a short span of time, the arrival process of ICU’s can
be modeled as a stochastic process with constant rate. However, such rate may vary because
of seasonal factors, changing population dynamics, and a series of complex factors which are

very hard, if not impossible, to quantify (e.g. Pearson et al., 2012). Nonetheless, we argue that
such a variation must be accounted for. In that sense, we propose that the dynamic variations
in the average demand rate for ICU beds be modeled by means of time series (e.g. Hyndman

& Khandakar, 2008; Hyndman et al., 2008). These models are suggested because they offer a
framework to describe complex processes whose dynamics remain hidden, but can be inferred
to a certain degree of precision by observing past data.

The novelty in the proposed approach is that we treat the demand for ICU beds as a time varying

stochastic process. The varying parameter in the proposed time varying process is the daily de-
mand rate for ICU beds, which is studied by means of time series models. That enables one to use
classical queueing models to optimize the ICU capacity for a prescribed performance criterion
over a short time frame. To address the long-term planning problem, we proceed in two steps.

At the first step, the decision maker makes use of time series models to predict the average de-
mand for ICU beds over a given period of interest in the future. With such a prediction, we can
apply a classical queuing model, with a prescribed performance criterion, to derive an optimal

expansion plan.

The time series evaluations employed in the proposed framework make use of exponential
smoothing and ARIMA, which are very efficient methods for time series forecasting (Hyndman
& Khandakar, 2008; Hyndman et al., 2008). While it can be argued that exponential smoothing is

a more general framework than ARIMA, both methods typically yield good responses and there
is no obvious answer on which performs better for a given set of data. As a result, this paper
applies both methods to foresee the input rate of the queuing process that describes the usage of

ICU beds, and makes use of the method which performs best for the available data.

To validate the proposed technique, we apply it to the problem of planning the adult ICU capacity
for a subset of hospitals in the metropolitan region of Rio de Janeiro. Healthcare regulation in
Rio de Janeiro is a function of the State Regulation Center (Central Estadual de Regulação –

CER). The CER is a network that manages existing health demands and available resources with
the objective of improving citizens’ access to high and medium complexity health services and
procedures, supporting their right to health care. CER regulates access to public ICU beds based

on pre-defined clinical protocols, lines of care and assistance flows. Given an incoming request

Pesquisa Operacional, Vol. 37(2), 2017
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from any pre-hospital health unit, such as a hospital Emergency Department or an Emergency

Unit (Unidade de Pronto Atendimento – UPA), they strive to find an available bed, by location,
resources or specialty, in any of the hospitals they regulate. When they find an ICU bed, the
incoming patient is then routed to the selected hospital.

To estimate the incoming rate of requests for ICU beds, we make use of a time series comprised

of the daily incoming requests for ICU beds from January 2010 to November 2011. This time
series is studied by means of efficient time series models, that are employed to make a long-term
prediction of the demand rate for ICU units. Such a rate is then inputted to a queuing model to

find the optimal number of ICU beds in the long-term. Note that the time series model predictions
are used only to estimate the mean rate of arrival of ICU patients in a stochastic queuing model.
Note also that, since a stochastic queuing model is used, it does account for the stochastic fluc-

tuations in the daily demand.

With respect to the case study, the objectives of are:

• Identify the most adequate forecast method for the daily rate of ICU requests, making use
of the data made available by CER;

• Determine an optimal expansion plan for the ICU beds in the metropolitan area of Rio de
Janeiro, considering different scenarios with respect to the average LOS;

• Compare the number of ICU beds yielded by the model under different scenarios with
Brazilian government’s recommendation wich indicates the number of ICU beds as a linear
function of the total population.

Figure 1 features a graphical representation of the methodology.

Figure 1 – Steps of the methodology.

Pesquisa Operacional, Vol. 37(2), 2017
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This paper is organized as follows. Section 2 features a brief introduction to time series, and

applies this approach to the data arising from the case study. Section 3 deals with queuing theory
and proposes a queuing model to address the ICU planning problem. The proposed models are
applied to the case study in Section 4, and Section 5 concludes the paper.

2 TIME SERIES FORECASTING

A time series can be seen as a set of chronologically ordered observations (Chatfield, 2000).
A typical application of a time series study is to forecast future values of a data series based on
the past history of this and possibly other series. Detailed treatments of time series can be found

in Box & Jenkins (1970) and Brockwell & Davis (1991), among others.

There is a wide range of prediction methods for time series, such as moving average, classical
decomposition, exponential smoothing, Box-Jenkins methods, neural networks, etc. Making use
of the results by Hyndman et al. (2008) and Hyndman & Khandakar (2008), we applied expo-

nential smoothing and Box-Jenkins methods, chosen for their simplicity and because they tend to
be consistently more effective than more sophisticated methods (e.g., Gardner, 2006; Hyndman
& Khandakar, 2008).

2.1 Forecasting the ICU Daily Demand

We used the statistical software R R© (R Development Core Team, 2015) to make all the predic-
tions. We made predictions with the following methods: Holt-Winters additive and multiplica-

tive, damped additive and multiplicative trend, and SARIMA. To make the predictions, we split
the data into two parts, corresponding to about 70% and 30% of the data, respectively: the first
part was used for adjusting and second part for validation of predictions. We used the models
learned from the first part to make the prediction of the remaining data. This prediction was then

compared to the original validation data, and the best model with respect to classical performance
criteria was selected. The original time series is depicted in Figure 2.

The performance measures for the selected models are presented in Table 1. Each column on
the right-hand side corresponds to a classical measure. In the table RMSE stands for root mean

squared error, MAE corresponds to mean absolute error, MPE represents mean percentage er-
ror, and MAPE is the mean absolute percentage error.

From the data in Table 1 one can see that the best prediction method among the selected ones
is the damped multiplicative trend method, which is an exponential smoothing method. This is

consistent with the results presented by Gardner & McKenzie (2010), who argue that the damped
trend method stands out for its precision, making it hard for other methods to present a better
performance.

Figure 3 depicts the last 30% of the original series versus the predicted values for the damped
multiplicative trend method.

Pesquisa Operacional, Vol. 37(2), 2017
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Figure 2 – Daily ICU requests for 2010 and 2011.

Table 1 – Model Comparison for the ICU Time Series.

Model
Performance Measure

RMSE MAE MPE MAPE

Multiplicative Holt-Winters 12.37 10.06 –0.16 22.36

Additive Holt-Winters 11.73 9.64 –0.14 21.56

Damped Multiplicative Trend 10.44 8.57 0.03 16.64

SARIMA 10.46 8.60 0.01 16.98

Figure 3 – ICU data Validation by Damped Multiplicative Trend.

Pesquisa Operacional, Vol. 37(2), 2017
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Based on the preceding results, the damped multiplicative trend method will be employed for

prediction in the queuing model presented in Section 3. The predicted daily request rate will feed
the queuing model to produce an optimal expansion plan for the ICU beds regulated by CER.

While the error measures presented in Table 1 indicate that the forecast is not perfect, the pre-
diction error is, in part, accounted for in the queuing model used in Section 3 for the planning

step, which considers that the daily demands are, in fact, stochastic. Indeed, the predicted de-
mands are employed only as the average values of a stochastic process that describes the actual
demand. Hence, the queuing model accounts for demand fluctuations. Moreover, the expansion

is naturally incremental, and adjustments can be made along the way to compensate for eventual
prediction errors.

3 QUEUEING MODEL SELECTION

Queueing theory is an operations research framework that is used to model the mismatch be-

tween demand and service in systems where customers wait for service in lines (e.g., Hillier &
Lieberman, 2010; Kleinrock, 1975). A very popular approach in queueing theory is to model the
system as a stochastic birth-and-death process (Brémaud, 1999), with the time between arrivals

modeled as an independent and identically distributed (i.i.d) random variable with exponential
distribution, and the service time also modeled as an i.i.d. exponentially distributed variable.
Such a model is referred to in queueing theory as an M/M/s model, where the two first acronyms

are referred to the input and service distributions (M for Markovian or memoryless, an exclu-
sive attribute of exponential distributions) and s refers to the number of service units, which in
our case are the available ICU beds. This model is generally applied because it does result in

simple analytic solutions that simplify the analysis of the studied system (Blumenfeld, 2010;
Kleinrock, 1975).

The times between successive ICU requests were collected, and split into daily data. Indeed, as
suggested in the studies of Milne & Whitty (1995) and Pearson et al. (2012), we verified that the

daily inter-arrival times do follow exponential distributions (e.g., Ross, 2009; Wasserman, 2004).
Naturally, the parameters of the distributions vary over time, but at any given day an exponential
distribution can be effectively fitted into the inter-arrival times. To illustrate the results, Figure 4

shows the empirical cumulative distribution of inter-arrival times for October 1, 2010, versus the
fitted empirical distribution. The times are presented in hours, and the probabilities are presented
in the y-axis. The p-value for the fitted distribution is 0.8184, which evidences a good fit.

With regards to the service times, i.e. the LOS of individual patients at an ICU unit, they were

also split into daily periods, each period comprising the subset of patients whose service started
on a given day. We also found that the LOS for patients who start their ICU stay at the same day
follow exponential distributions. To illustrate this result, Figure 5 depicts the empirical versus the

fitted cumulative distributions for January 1, 2012. For that day, the p−value equals to 0.08911.
The times are given in hours, and the probabilities are presented in the y-axis.

Pesquisa Operacional, Vol. 37(2), 2017
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Figure 4 – Times between successive ICU requests for selected day.

Figure 5 – Service time for individual ICU patients for selected day.

3.1 Closed Form Equations and Performance Function

Once an M/M/s queuing model can be used to model the studied problem, one can make use
of the closed form solutions available for such model (e.g., Blumenfeld, 2010; Hillier & Lieber-
man, 2010). The parameters of such a model are the demand (input) rate

0 < λ < ∞,

and the service rate for a single server 0 < μ < ∞. In our case study, μ represents the average
number of patients released from a single ICU bed per time period. For the system to be stable,

the following expression must hold:
λ < sμ.

That means that the total service rate, considering all the available servers, must exceed the
demand rate. Otherwise, the system is unstable and the queue diverges to infinite. For a stable

Pesquisa Operacional, Vol. 37(2), 2017
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M/M/s queue, the long-term probability that n clients are in the system is given by (e.g. Hillier

& Lieberman, 2010):

πn(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λ
μ

)n
n! π0, 0 ≤ n ≤ s(
λ
μ

)n
s!sn−s

π0, n > s

, n ∈ N, (1)

with

π0(s) =
(

s−1∑
n=0

(
λ
μ

)n
n! +

(
λ
μ

)s
s! · 1

1 − λ
sμ

)−1

. (2)

In possession of the long-term probability distribution just described, one can evaluate any long-

term performance criterion as a function of the number of ICU beds (s) made available (e.g.,
Brémaud, 1999), thus determining the optimal number of ICU beds for the prescribed criterion.

Considering that the waiting time, here defined as the time spent in the queue prior to being
serviced, seems to be the most critical variable in the model, we propose a maximum waiting

time approach in which the decision maker selects the maximum waiting time allowed tmax.
Given that the system is stochastic, for any finite number of ICU beds, there will be a probability
that a patient selected at random waits more than a prescribed waiting time ωq , t < ∞, for a bed

to become available. When s servers are made available, that probability is given by:

Ps (ωq > t) = (
1 − Ps(ωq = 0)

)
e−(sμ−λ)t ,

Ps (ωq = 0) = ∑s−1
n=0 πn(s).

(3)

The optimal number of ICU beds s∗ is chosen in such a way that:

s∗ = min{s ∈ N : Ps (ωq > tmax) ≤ pmax}, (4)

where 0 < pmax < 1 is a prescribed probability chosen by the decision maker. For example,

if the decision maker wants that at most 1% of the patients wait more than 1 hour, they should
select tmax = 1h and pmax = 0.01.

The proposed performance criterion, which does not focus on the average waiting time, but

in a maximum allowed waiting time, is also a novel contribution of the this paper. While the
average waiting time is a valid criterion, it says little about the actual waiting time distribution
and may force a significant portion of the patients to wait much longer. Focusing on the max-
imum allowed waiting time, on the other hand, we guarantee that a prescribed portion of the

patients will wait less than a prescribed threshold. And one can improve the performance by
tightening the threshold or decreasing the probability of violating it.

4 NUMERICAL SIMULATIONS

This section is comprised of an analysis of the request and service data of the Rio de Janeiro’s
CER for the years of 2010 and 2011. The analysis is divided in four experiments, devised to

Pesquisa Operacional, Vol. 37(2), 2017
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shed light into the daily problem of ICU planning and operation in Rio de Janeiro. Considering
the results in Section 2.1, the average daily request is forecast by means of a Multiplicative
Damped Trend time series method. We obtain the optimal number of ICU beds s∗ for each
experiment with the method proposed in Section 3, using the average demand forecast for the
last week of the planning period as the input data. We have chosen this period because the time
series has a 7-day seasonality, which is expected in view of the variation of the demand with the
day of the week.

4.1 Scenario One

This scenario considers the totality of adult ICU requests formalized to CER as the input data,
which also contains the requests for patients that improved their health condition while waiting in
line, until doctors diagnosed they no longer needed intensive care (ICU beds) and released them
from the queue. This data is kept because the doctors did not know a priori that the beds would
not be needed. Moreover, if the system was more efficient, some of these patients would probably
pay a brief visit to an ICU bed before being released. In the first experiment, we divided the se-
ries in 70% of adjusting data and 30% of validation data, as in Section 2.1. The forecast demand
for the validation period is λ = 2.065 patients per hour, and the average release time for ICU
patients, i.e. the LOS, is 11.255 days, which results in a service (release) rate μ = 0.003702
patients per hour per ICU bed, according to data from the Brazilian Ministry of Health (DATA-
SUS, 2013). With the input and output rates defined, we made use of the results in Section 3 to
produce the results depicted in Figure 6.

Figure 6 – Maximum Waiting Time For Selected Percentages of Patients: 30% Forecast.

Figure 6 plots the number of ICU beds s versus the maximum waiting time tmax, for prescribed
values of pmax in the model of Section 3. Each line in the Figure represents a value pmax of

Pesquisa Operacional, Vol. 37(2), 2017
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interest, ranging from pmax = 0.05 to pmax = 0.01. For the sake of simplicity, the legends

in Figure 6 show the minimum percentage of patients that wait less than tmax. Thus, the values
p in the legend are defined as p = 100 · (1 − pmax)%. Note that, for a single value p, the
number of beds increase as the waiting time decreases, which is expected. Observe also that,

as the percentage of patients waiting less than a prescribed threshold increases, more ICU beds
are needed to keep the maximum waiting time below that same threshold. That is also expected
since increasing the capacity we keep less patients in line, which decreases the time in the queue.

The plot in Figure 6 is general in that it permits the decision maker to dimension the ICU

capacity for any combination of maximum waiting time tmax and probability pmax of exceed-
ing this value. An attentive look at Figure 6 reveals that one needs 559 beds for the system to
be stable; 592 beds for the waiting time be limited to 6 hours for at least 95% of the patients,

and 634 beds for a maximum waiting time of 1 minute, for at least 99.9% of the patients. The
6-hour waiting time cut-off assumes that prognosis will not be worsened if pre-ICU guidelines
are appropriately adopted.

The second experiment considers a planning period of one year. For such a period, the forecast

average daily demand is λ = 2.198204 patients per hour, and the service (release) rate μ =
0.003702 patients per hour per ICU bed is the same of the first experiment. Figure 7 depicts
the results.

Figure 7 – Maximum Waiting Time For Selected Percentages of Patients: One Year Planning.

From Figure 7, one can see that the system needs 595 beds to attain stability. Moreover, 628
beds ensure a waiting time shorter than 6 hours for at least 95% of the patients, whereas 672

beds ensure a maximum waiting time of 1 minute for at least 99.9% of the patients. The latter
alternative is certainly more costly. On the other hand, some patients may benefit from an initial

Pesquisa Operacional, Vol. 37(2), 2017
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medical attention at the Emergency Room and present clinical improvement, no longer requiring

intensive care. A compromise should be reached by the decision maker between investment and
maximum waiting time.

4.2 Scenario Two: Reducing Service Time

Official data states that the average release time for CER patients is considerably higher than

the average release time for the whole set of hospitals in the state of Rio de Janeiro (DATA-
SUS, 2013). In possession of the data, we can estimate the gain in performance for CER if the
hospitals it regulates attain the same performance. To make this estimation, we keep the same

demand levels of the experiments in Scenario One, but with a change in the output (service) rate.

For the third experiment, the demand rate forecast for the 30% validation period is kept as
λ = 2.065 patients per hour. In addition, the output rate is changed to the average rate for
Rio de Janeiro in 2012, μ = 0.006442 releases per hour per bed. Figure 8 depicts the results.

Figure 8 – Maximum Waiting Time For Selected Percentages of Patients: 30% Forecast.

From the results in Figure 8, one can see that we need 321 ICU beds for stability, 345 to ensure

a maximum waiting time of 6 hours for at least 95% of patients, and 379 ICU beds to ensure a
waiting time of less than 1 minute for at least 99.9% of the patients. Note the substantial decrease
with respect to the results in Figure 6, where 559 beds were need to attain stability. This result

illustrates the expressive gains for CER ICU’s flow organization if they could pursue a policy for
shortening their patients LOS.

In the last experiment, we address a one year planning period, for which the forecast average
daily demand is λ = 2.198204 patients per hour, as in the second experiment of Scenario 1. The

Pesquisa Operacional, Vol. 37(2), 2017
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service rate, however, is changed to μ = 0.006442, as in the previous experiment. The results

are depicted in Figure 9.

Figure 9 – Maximum Waiting Time For Selected Percentages of Patients: One Year Planning.

Note in Figure 9 that stability is attained with 342 beds, while for the current CER service levels
one would need 595 ICU beds for stability, as illustrated in Figure 7. The gain in performance

is, therefore, substantial. Figure 9 also yields that 366 beds ensure a maximum waiting time of
6 hours for at least 95% of patients, while 401 beds ensure a waiting time of less than one minute
for at least 99.9% of patients.

4.3 Comparing Scenarios

This section is concerned with comparing the optimal number of ICU beds found for each ex-
periment in Sections 4.1 and 4.2 with the number recommended by the Brazilian government
through decree GM/MS #1.101/2002. This decree establishes that the total number of ICU beds

per thousand habitants should be in the interval [0.1, 0.3]. We also compare the referred results
with the current number of CER adult ICU beds: 268.

Considering that CER regulated hospitals serve a population of approximate 2.35 million indi-
viduals (IBGE, 2013), the total number of ICU beds, including adult and pediatric beds, should

be between 235 and 705. Furthermore, official Brazilian data states that the percentage of adult
ICU beds in the country corresponds to about 50%, with the same percentage corresponding to
the state of Rio de Janeiro. Hence, considering that the percentage of ICU beds is kept to its

historical level of 50%, a number of ICU beds in the interval [118, 353] is enough to ensure that
CER is complying with decree GM/MS #1.101/2002.
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Figure 10 shows the number of ICU beds for selected performance criteria for each experiment

in Sections 4.1 and 4.2. Table 2 summarizes these experiments.

Number of ICU Beds Versus Performance

Figure 10 – Number of ICU Beds Versus Performance.

The horizontal lines represent the minimum and maximum number of ICU beds for CER ac-

cording to decree GM/MS #1.101, as well as the current number of CER adult ICU beds. The
experiments reveal that the maximum number of ICU beds according to the Brazilian norm
is not enough for stability in Experiments 1 and 2, which means that such a number of ICU

beds would cause ever increasing queues, thus compromising the performance. We recall that
these experiments address the dimensioning of the total capacity for the latter 30% of the period
2010-2011 and for the year of 2012, if the average LOS is kept constant.

Table 2 – Performed Experiments.

Experiment Description
Arrival Rate Service Rate

(patients/hour) (patients/hour)

1 current demand, current service rate 2.065000 0.003702

2 1-year planning, current service rate 2.198000 0.003702

3 current demand, improved service rate 2.065000 0.006442

4 1-year planning, improved service rate 2.198000 0.006442

Experiments 3 and 4 address the system performance if the LOS is shortened to the average for

the state of Rio de Janeiro, (which include both public and private ICU), 6.5 days, which is about
57.5% of the average LOS for CER regulated hospitals. If such a reduction was accomplished
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for the latter 30% of the period 2010-2011 and was kept in the year of 2012, the maximum

number of ICU beds according to the current norm would be enough to keep the system stable
in both experiments. Furthermore, it would keep the maximum waiting time below the 6-hour
threshold for over 95% of the patients in the latter third of the period 2010-2011. But for 2012 it

would result in a maximum waiting time exceeding 16 hour for over 95% of the patients.

Figure 10 clearly suggests that the Brazilian norm may be inadequate for the current demand
profile for ICU beds, even for reduced LOS levels. It also suggests that, by decreasing the length
of stay, CER could expand in a more incremental manner, thus saving valuable resources for

future investments. It is worth pointing out, however, that the average LOS of public hospitals,
such as those regulated by CER, is typically much higher than that for private hospitals. In that
sense, attaining an average LOS compatible with the global average can be an unrealistic goal.

Hence, a more thorough analysis is needed to access what the attainable goals are in terms of the
average LOS.

The current number of CER adult ICU beds is not enough for stability in any experiment. This
result is in line with the current situation of long queues and large waiting times for CER’s ICU

beds, and strongly suggests that an expansion plan should be pursued, possibly also addressing
the issue of shortening the average LOS. As demonstrated in Experiments 3 and 4, shortening the
LOS increases the efficiency of the system, requiring less ICU beds to serve the same population.

5 CONCLUDING REMARKS

This paper proposes a hybrid time series and queuing theory approach to address the problem
of planning and operating a set of ICU beds that are regulated by a single center. The proposed
model accounts for both the stochastic variation due to daily fluctuations in the demand for ICU

beds and the temporal variation in the average daily demand. The latter one is due to population
dynamics and other factors which are difficult to be determined and evaluated.

The time series approach makes the quantification of the temporal variation in the daily demand
possible, while the queuing model enables the decision maker to design a more robust service

system, which accounts for the variability in the demand in a short span of time. The proposed
approach is applied successfully applied to the problem of operating and planning the expansion
of the adult ICU beds run by the Rio State Central Regulation (CER). The results also suggest

that the decree GM/MS #1.101/2002, which indicates the number of ICU beds as a function of
the total population, may be inadequate for the current levels and characteristics of the demand.
They also shed light into the operation of CER and indicate some issues that should be dealt with

to reduce the waiting time for ICU beds.
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