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ABSTRACT. In this paper, we study the stochastic knapsackproblem with expectation constraint. We solve

the relaxed version of this problem using a stochastic gradient algorithm in order to provide upper bounds for

a branch-and-bound framework. Two approaches to estimate the needed gradients are studied, one based on

Integration by Parts and one using Finite Differences. The Finite Differences method is a robust and simple

approach with efficient results despite the fact that estimated gradients are biased, meanwhile Integration

by Parts is based upon more theoretical analysis and permits to enlarge the field of applications. Numerical

results on a dataset from the literature as well as a set of randomly generated instances are given.

Keywords: Stochastic knoasack problem, transportation problem, probabilistic constraint, Branch and

Bound, Integration by parts.

1 INTRODUCTION

The deterministic knapsack problem is a well known and well studied NP-hard combinatorial
optimization problem. It consists in filling a knapsack with items out of a given set such that the
weight capacity of the knapsack is respected and the total reward maximized. Several variants

of the knapsack problem have been considered for many practical problems amongst all network
design problems. In telecommunication network design, the knapsack problem is often used as
a subproblem for modelling the capacity of the edges (see Kellerer et al., 2004). It is now gener-

ally admitted that the uncertainty is an inherent property in many practical problems. The main
reason relies on the fact that the use of average parameters could lead to severe service quality
deterioration whereas the use of extreme values could result into costly conservative solutions.

In telecommunication networks, the main sources of uncertainty are the traffic demands and the
costs. Additional sources could be network and equipments failures. There are two main ap-
proaches to deal with uncertainty, namely robust optimization (Ben-Tal & Nemirowski, 2008) or

stochastic optimization (Birge & Louveaux, 1997). Demand uncertainty in telecommunication

*Corresponding author.
Laboratoire de Recherche en Informatique (LRI), Université Paris Sud – XI, Bât. 650, 91405 Orsay Cedex, France.
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network design problems leads to several stochastic models amongst all the stochastic knapsack

problem. The latter was used either with chance constraints (Kosuch & Lisser, 2010) or within
a two-stage stochastic knapsack problems either for the single formulation of for the multiple
knapsack one (Tönissen et al., 2016, 2017). The stochastic knapsack problem with random item

sizes has met a large interest in the literature in the last decade. There are at least two ways to
deal with a possible overload. When the overload is not considered, Bhalgat & Khanna (2011)
proposed to remove the last inserted item. In Chen & Ross (2014), the authors proposed that

the knapsack returns zero when it overflows. In the case where the overflow is accepted, the
knapsack constraint is replaced by a probabilistic constraint (see Goal & Indyk, 1999; Kosuch &
Lisser, 2010).

In stochastic optimization there are three major approaches to deal with stochasticity: Probabilis-

tic constraint, two- or multi-stage settings as well as on-line or dynamic modeling. In the first
case, all decisions are made before the random parameters are revealed. The objective function
and/or the constraints are thus formulated using expectations and probability measures. In the

second case, recourse actions occur when random parameters are known. These recourse actions
are formulated as a penalty that has to be paid in the case of violated constraint or are used to
correct the decisions made in previous stages. In the last approach, on-line problems are solved
dynamically. More precisely, the algorithm implemented to solve the problem is provided with

further information during its execution and reacts dependently on this new information as well
as previous decisions. The solution of an on-line problem is a decision policy while in the first
two cases the current decisions are computed.

In this paper we focus on a particular variant of the single-stage stochastic knapsack problem

with random weights: the expectation constrained knapsack problem. The paper is organized as
follows: In section 2 the mathematical formulation of the problem is presented and discussed. In
section 3 we present the stochastic gradient algorithm used to solve the corresponding relaxed

problem. Two further methods to estimate the needed gradients are presented. On the opposite
to the Approximation by Convolution method studied in Kosuch & Lisser (2010) which gives an
approximation of the gradient, the method of Integration by Parts used in this article replaces the

expected function by another one with exactly the same expectation. In section 4 the convergence
of the stochastic gradient algorithm is analyzed from a theoretical as well as numerical points of
view and test results concerning the solution of the relaxed problem are presented. In section 6

we use these methods to solve the combinatorial problem described in Cohn & Barnhart (1998)
using a branch-and-bound framework presented in Kosuch & Lisser (2010). Numerical results
on a set of randomly generated data are given and analyzed.

2 MATHEMATICAL FORMULATIONS

We consider a stochastic knapsack problem of the following form: Given a set of n items, we
want to choose these items without knowing the exact value of their weights. Therefore, we
handle the weights as random variables and assume that weight χi of item i is independently

normally distributed with mean μi > 0 and standard deviation σi . Furthermore, each item has a

Pesquisa Operacional, Vol. 37(3), 2017
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fixed reward per weight unit ri > 0. The choice of a reward per weight unit can be motivated by

the fact that the value of an item often depends on its weight which we do not know in advance1.
We denote by χ , μ, σ and r the corresponding n-dimensional vectors. The aim is to maximize the
expected total gainE[∑n

i=1 ri χi xi ]. Our knapsack problem has a fixed weight capacity c > 0 but

due to the stochastic nature of the weights, we need to define correctly what respecting capacity
means. In this paper, we solve the following expectation constrained knapsack problem:

Chance Constrained Knapsack Problem (EC K P)

max
x∈{0,1}n

E

[
n∑

i=1

ri χi xi

]
(1)

s.t. E [HR+(c − g(x, χ))] ≥ p (2)

where E [·] denotes the expectation, g(x, χ) := ∑n
i=1 χi xi is the total weight of the chosen

items, HR+(·) denotes the indicator function of the positive real interval where · = 1 if · ∈ R+
and 0 otherwise, and p ∈ (0.5, 1) is the prescribed probability.

The choice of p is a decision parameter that restricts the percentage of cases where the capac-

ity is exceeded. p is not connected with the amount of overweight. The constraint (2) can be
equivalently reformulated as the following chance constraint:

P{g(x, χ) ≤ c} ≥ p (3)

Without loss of generality, we assume that E [HR+(c − χi )] ≥ p for all i ∈ {1, . . . , n}: any item
that does not satisfy this constraint could be excluded from the beginning. It follows, that the

optimal solution vector x∗ has at least one non-zero component.

We call J the objective function of the above maximization problem defined by J (x) =
E[∑n

i=1 ri χi xi ]. We denote j (x, χ) = ∑n
i=1 riχi xi .

Furthermore, we refer to the function on the left hand side of the constraint as � and to the
function inside the expectation of � as θ , i.e. �(x) = E[θ(x, χ)] = E[HR+(c − g(x, χ))].
Throughout this paper, we assume that the weights are normally distributed. Normally distributed

items have the nice property that their linear combination is still normally distributed. This prop-
erty ensures easier calculations but is not a foremost condition. In some extent, in the case of
normal distributions, it is even possible to compute directly the gradient of the expectation func-

tion. Assuming normal distribution is, in a large part, just a practical frame in order to produce
numerical results and theoretical formulations. Whenever we use normal distribution properties,
we will explain how to overpass this special consideration.

Normally distributed random variables can have negative realizations, and assuming normally

distributed weights might thus seem contradictory to the fact that item weights are always strictly

1All the methods used and results presented in this article are still valid in the case where the rewards are deterministic
or random but independent of the weights. We do not use the fact that the rewards (per item) are normally distributed,
therefore any other distribution could be considered.

Pesquisa Operacional, Vol. 37(3), 2017
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positive. However, in most real life applications the standard deviation is several times smaller

than mean values of the unknown parameters. In this case, the probability of negative weights
becomes negligible.

3 PROBLEM SOLVING METHOD

Due to its combinatorial nature, EC K P can be solved using a branch-and-bound framework as
presented in Kosuch & Lisser (2010). To obtain upper bounds, the authors propose to solve

the corresponding continuous optimization problem. A stochastic gradient algorithm can be
used to solve this problem. This method needs to evaluate the gradient of the expected value
function, which is an indicator function HR+(·). In Kosuch & Lisser (2010), this computation

has been done using Approximation by Convolution. In this paper, we study two different ap-
proaches: the first one is a non-biased estimator based on Integration by Parts (called hereafter
IP-method). The second approach is a Finite Differences estimator (FD-method) presented in

Andrieu et al. (2007). Like the Approximation by Convolution method, FD-method provides a
biased estimator of the gradient.

Instead of replacing {0, 1}n by [0, 1]n when relaxing EC K P, the theoretical analysis will compel
us to consider a complementary set of a neighborhood of 0[0,1]n . Considering that an empty

knapsack is not an optimal solution, it follows that the optimal solution vector of the continuous
problem contains at least one component xκ with xκ ≥ 1/n. We are thus allowed to replace
[0, 1]n by {x ∈ [0, 1]n | ||x||∞ ≥ 1/n} =: Xcont . Accordingly, we obtain the following feasible
set of the relaxed EC K P:

X ad
cont = {x ∈ Xcont : �(x) ≥ p}

3.1 The stochastic gradient type algorithm

To solve the relaxed version of EC K P, we use a stochastic gradient type algorithm. Applying
the gradient method is promising as the objective function is concave and, in addition, constraint
(2) defines a convex feasible set due to the assumption that the weights are independently nor-

mally distributed.

We propose to solve EC K P with a Stochastic Arrow-Hurwicz algorithm (Culioli & Cohen,
1995) (hereafter called S AH -algorithm; see Algorithm 3.1) that uses Lagrangian multipliers to
deal with the probability constraint.

L(x, λ) = E[l(x, λ, χ)] denotes the Lagrangian function associated with EC K P.

L(x, λ) = E

[
n∑

i=1

ri χi xi

]
− λ (p − E [HR+(c − g(x, χ))])

It follows that
(rk + λk−1τ k) = ∇x l(xk , λk, χk)

and
(p − θ(xk+1, χk )) = l′λ(xk+1, λk, χk )

Pesquisa Operacional, Vol. 37(3), 2017
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Algorithm 3.1 Stochastic Arrow-Hurwicz Algorithm.

1. Choose x0 ∈ X ad
cont and λ0 ∈ [0, ∞) as well as two σ -sequences (εk )k∈N∗ and (ρk)k∈N∗ . Set

k = 1.

2. Given xk−1 and λk−1, draw χk following its normal distribution, compute rk =
∇x j (xk−1, χk), τ k = ∇xθ(xk−1 , χk) and update x and λ as follows:

xk = xk−1 + εk(rk + λk−1τ k)

λk = λk−1 + ρk(p − θ(xk , χk ))

3. For all h = 1, . . . , n: If xk
h > 1 set xk

h = 1 and if xk
h < 0 set xk

h = 0.
4. If xk

h < 1/n for all h = 1, . . . , n, set xk
h = 1/n for one h ∈ {1, . . . , n}.

5. If λk < 0 set λk = 0.

6. If k = kmax: STOP. Else: Set k = k + 1. Go to step 0.

where rk , λk and τ k are defined in Algorithm 3.1. Note that in the deterministic form of the

Arrow-Hurwicz algorithm we can use the gradients of the Lagrangian itself. But this function is
here an expectation function and its gradient is thus difficult to compute. By drawing indepen-
dent samples of the random variables at each iteration of the algorithm, the expectation of the

gradient is approximated (see Culioli & Cohen, 1995). At each iteration of the algorithm, we
need to calculate the gradient of θ at (xk , χk). However, θ is mainly an indicator function and
therefore not useful to differentiate. In the following subsection, we present two ways to bypass

this disadvantage: either by approximation using Finite Differences or by reformulation of the
constraint function � using Integration by Parts.

3.1.1 Computation of the gradient of θ

The first method consists in approximating the hth component of the gradient of θ by the corre-
sponding difference ratio

θ(x + δνh, χ) − θ(x − δνh, χ)

2δ

where δ > 0 and νh ∈ {0, 1}n such that νh
h = 1 and νh

i = 0 for i 	= h. This leads to the following

approximation of the hth component of the gradient of θ :

(∇x (θδ)(x, χ))h = HR+(c − g(x + δνh , χ)) −HR+(c − g(x − δνh, χ))

2δ

The second method (IP-method) involves Integration by Parts to reformulate E[θ(x, χ)] and to
obtain a function in expectation E[θ̃ (x, χ)] s.t. E[θ̃ (x, χ)] = E[θ(x, χ)] = �(x). θ̃ is the

function obtained by Integration by parts, it is differentiable and the idea is to use the gradient of
θ̃ in S AH -algorithm.

Andrieu et al. (Andrieu et al., 2007) presented how to compute the gradient of an indicator func-
tion in expectation using Integration by Parts (see Theorem 5.5 in Andrieu, 2004). We state and

Pesquisa Operacional, Vol. 37(3), 2017
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proof their theorem for the case of EC K P. The variables and functions used in this proposition

are defined in section 2:

Proposition 1. Let YR+(·) be a primitive of HR+(·). Let x ∈ X ad
cont and let κ = κ(x) ∈

{1, . . . , n} be defined such that xκ = ||x||∞ ≥ 1/n. Then, using Integration by Parts, we get

�(x) = E [YR+(c − g(x, χ))Mκ (x, χ)]

where

Mκ(x, χ) = −(χκ − μκ)

σ 2
κ

1

xκ

It follows

∇x�(x) = E [−HR+(c − g(x, χ))Mκ (x, χ)χ + YR+(c − g(x, χ))∇x Mκ(x, χ)]

Proof. Let ϕ denote the density function of the random vector χ = (χ1, . . . , χn) and define

u′
χκ

(x, χ) := −HR+(c − g(x, χ))xκ and

v(x, χ) := −ϕ(χ)

xκ

It follows

�(x) =
∞∫

−∞
HR+(c − g(x, χ))ϕ(χ) dχ =

∞∫
−∞

u′
χκ

(x, χ)v(x, χ) dχ

Integration by Parts over χκ leads to

�(x) = [
u(x, χ)v(x, χ)

]∞
−∞ −

∞∫
−∞

u(x, χ)v′
χκ

(x, χ) dχ

= −
∞∫

−∞
u(x, χ)v′

χκ
(x, χ) dχ = −

∞∫
−∞

YR+(c − g(x, χ))v′
χκ

(x, χ) dχ

In our case the random variables are independently distributed. With ϕi being the density func-
tion of χi we get

ϕ′
χκ

(χ) =
∏
i 	=κ

ϕi (χi ) · (ϕκ )′χκ
(χκ ) =

∏
i 	=κ

ϕi (χi ) ·
(

−(χκ − μκ)

σ 2
κ

ϕκ (χκ )

)

= −(χκ − μκ)

σ 2
κ

ϕ(χ)

Pesquisa Operacional, Vol. 37(3), 2017
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It follows

v′
χκ

(x, χ) = ∂

∂χκ

(
−ϕ(χ)

xκ

)
= (χκ − μκ)

xκσ 2
κ

ϕ(χ)

and therefore

�(x) = −
∞∫

−∞
YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

ϕ(χ) dχ

= E

[
−YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

]
�

If ∇x�(x) = E

[
∇x

(
−YR+(c − g(x, χ))

(χκ −μκ)

xκ σ 2
κ

) ]
we get the result. Thus, it remains to proof

the following claim:

Claim 3.1.

∇x�(x) = E

[
∇x

(
−YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

) ]

Proof of the claim. This is a classical result under the assumption of uniform bounding of

the gradient function inside the integral. In our case, we can easily show that this bounding is
obtained according to the assumption that xκ ≥ 1/n. First of all let us observe that we can
choose YR+(x) = HR+(x) · x = [x]+. Therefore, the κ-th component of

∇x

(
−YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

)
can be reformulated as follows:(

∇x

(
−YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

))
κ

=HR+(c − g(x, χ))
(χκ − μκ)

xκσ 2
κ

χκ + [c − g(x, χ)]+ (χκ − μκ)

x2
κσ 2

κ

=HR+(c − g(x, χ))(χκ − μκ)

(
χκ

xκσ 2
κ

+ (c − g(x, χ))

x2
κσ 2

κ

)
For (χκ − μκ) > 0 and as [(c − g(x, χ)) ≥ 0 ⇔ HR+(c − g(x, χ)) = 1] it follows

0 ≤ (∇x

(
−YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

)
)κ

≤ (χκ − μκ)

(
n · χκ

σ 2
κ

+ n2 · (c − g(x, χ))

σ 2
κ

)
If (χκ − μκ) < 0, the bounds are inversed.

For the other components of the gradient, we just have HR+(c − g(x, χ))
(χκ −μκ)

xκ σ 2
κ

χh and the

same limitations holds for the κ-th component. Note that �̃ is differentiable except in 0. �

Pesquisa Operacional, Vol. 37(3), 2017
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4 CONVERGENCE OF THE STOCHASTIC ARROW-HURWICZ ALGORITHM

4.1 Theoretical convergence

Culioli & Cohen (1995) showed how to obtain the convergence of S AH -algorithm in the case
where the objective function J is convex despite the fact that j is not (for a global survey see
Carpentier, 2010). More precisely, they adapt the classical S AH -algorithm in the case where the

constraint is given in expectation by considering a subgradient both in dual variables x and λ

instead of only in λ. The drawback is to check technical assumptions on both gradients that have
to be linearly bounded. The way we transform the expected function in the constraint permits to

check correctly all the assumptions with some limitations explained below.

Theorem 1 (Culioli, Cohen (1995)). Suppose the following assumptions to be satisfied:

h1: θ(·, χ) is differentiable with gradient uniformly bounded with respect to χ .

h2: The associated Lagrangian admits a saddle point x̃ and J is strictly convex.

h3: ∀χ ∈ Rn , θ(·, χ) is locally Lipschitz continuous.

h4: There exists c1, c2 > 0 such that

∀χ ∈ Rn, ∀ x, y ∈ Xcont , ||θ(x, χ) − θ(y, χ)|| ≤ c1||x − y|| + c2.

h5: �(x) is Lipschitz continuous and concave.

h6: There exists α, β > 0 such that
∀χ ∈ Rn, ∀ x ∈ Xcont ||∇x j (x, χ)|| ≤ α||x − x̃ || + β.

h7: εk/ρk is monotone non-increasing.

h8: There exists γ, δ > 0 such that
∀ x ∈ Xcont E[θ(x, χ) − �(x)]2 < γ ||x − x̃||2 + δ.

Then, the sequence (xk , λk) is bounded and xk converges weakly towards x̃.

We are now going to check all the assumptions on our sample set and situation, we focus on the

IP-method:

h1 As presented in subsection 3.1.1, it is possible to replace θ(x, χ) by a differentiable function
θ̃ (x, χ) such that E[θ̃ (x, χ)] = E[θ(x, χ)] (IP-method).

Using the IP-method we obtain the following gradient:

∇x θ̃ (x, χ) = HR+(c − g(x, χ))
(χκ −μκ)

xκ σ 2
κ

χ

+[c − g(x, χ)]+ (χκ−μκ)

x2
κ σ 2

κ
νκ

The fact thatHR+(c − g(x, χ)) = 1 only for c − g(x, χ) ≥ 0 limits χ to a compact domain and
h1 is checked.

Pesquisa Operacional, Vol. 37(3), 2017



�

�

“main” — 2018/2/5 — 13:02 — page 605 — #9
�

�

�

�

�

�

STEFANIE KOSUCH, MARC LETOURNEL and ABDEL LISSER 605

h2 We suppose that the Lagrangian function admits a saddle point. Nonetheless, we observe

that strict convexity of J is a sufficient condition to get the stability of the Lagrangian function.
In our case, the function J is linear.

h3 For all χ ∈ R
n , θ̃ (·, χ) is locally Lipschitz continuous according to the expression of

∇x θ̃ (x, χ) in all points x ∈ Xcont since xκ ≥ 1
n .

h4 Choose c2 = 1. It follows ∀χ ∈ Rn , ∀ x, y ∈ Xcont ||θ(x, χ) − θ(y, χ)|| ≤ c2.

h5 As we assume the item weights to be normally distributed, �(x) = P{g(x, χ) ≤ c} is

Lipschitz continuous: Let F be the cumulative distribution function of the standard normal dis-
tribution. Then we have

�(x) = F

⎛⎝c − ∑n
i=1 μi xi√∑n

i=1 σ 2
i x2

i

⎞⎠
It is easy to see that � is continuous on Xcont . In addition, we have 0 ≤ �(x) ≤ 1 for all x ∈ Rn

and as Xcont is a compact set, it follows that � is Lipschitz continuous on Xcont .

We don’t really need normal distribution to establish this assumption, as we replaced θ by θ̃ ,
we get that :

∀χ, ∀(x, y) ∈ Xcont ||̃θ(x, χ) − θ̃ (y, χ)|| ≤ τ ||x − y||
where τ bounds ||∇x θ̃ || given in h1 on Xcont . Then, we integrate the inequality, and we get the
bounding on �.

The question of concavity of � is more complex and depends on the sample values of the objects.

There are two different questions to solve: is the constraint concave on the hypercube, and if not,
is the constraint concave on a partial subset of the hypercube? The answer to the first question
is definitely no. For further details concerning chance constraints, we refer to Prekopa (1995).

The second question depends on initial parameters: in a first approach we begin to observe that
in the case of a mono dimensional vector x , � is concave for x < x̃ where x̃ depends on the
initial conditions.

In case of a higher dimensional problem, the situation becomes more complex. Despite there

exists a domain for x near to 0 where � is concave (see Fig. 1 for the value of � observed for a
two dimensional vector), the boundaries of this domain still depend on the characteristics of the
sample set.

A practical check combined with a theoretical analysis of the concavity is then possible.

We begin to compute the eigenvalues of the Hessian matrix H (̃x) at a point x̃ close to 0 of
the set Xcont and we find them all negative. According to the fact that the determinant of the
Hessian matrix is a continuous function of x , it follows that there exists a topologically con-

nected component C ⊆ Xcont of x̃ such that det H (x) 	= 0 for all x ∈ C and x̃ ∈ C. We consider
the boundary C − C of this set and we set p = min{�(x) : x ∈ C − C}.

Pesquisa Operacional, Vol. 37(3), 2017
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Figure 1 – Constraint function � in 2-dimensional case.

To conclude on the above observations, we formulate the following proposition:

Proposition 2. Let χ1, . . . , χn be a fixed set of independently normally distributed random vari-
ables and let c be a fixed capacity such that for the vector x with all components near to 0, the
Hessian matrix has all eigenvalues strictly negative. Then, there exists p = p(χ1, . . . , χn, c)

such that �(x) is concave on the set {x ∈ Xcont |�(x) ≥ p}.
In other words, we establish that for a given instance there exists p such that the corresponding
Lagrangian relaxation is concave on the feasible set.

h6 j is linear in each component of x . h6 is thus satisfied.

h7 Condition h7 is satisfied for all sequences of type const
k with const > 0.

h8 We have

θ(x, χ) ≤ 1 and �(x) = P{g(x, χ) ≤ c} ≥ 0

⇒ θ(x, χ) − �(x) ≤ 1 ⇒ E[θ(x, χ) − �(x)]2 ≤ 1

It follows that condition h8 is satisfied for all δ > 1.

4.2 Implementation of the SAH algorithm

4.2.1 Convergence of the Stochastic Arrow-Hurwicz Algorithm involving FD-method

A stopping criterion with S AH algorithm cannot be expressed with an observation of a decreas-
ing speed of variation for the objective value. The classical approach is to set a maximum number
of iterations. We fixed the number of iterations to 500 for FD-method according to several tests

Pesquisa Operacional, Vol. 37(3), 2017
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where only slight variations can be observed after around 300 iterations (for numerical results

see subsection 5 and Table 2).

Table 1 – Numerical results for the continuous ECK P .

Arrow-Hurwicz & Arrow-Hurwicz &
SOCP

FD-method IP-method

n Optimum
CPU-time

Gap Optimum
CPU-time

Gap Optimum
CPU-time

(msec) (msec) (msec)

C./B. 4695.525 3 0.02% 4667.790 30 0.75% 4696.413 4
15 4954.314 5 0.01% 4910.434 30 0.89% 4954.804 4

20 6712.219 8 0.03% 6653.941 40 0.89% 6713.987 6
30 10308.293 14 0.02% 10174.878 53 1.31% 10310.45 18
50 16992.444 28 0.01% 16743.260 92 1.47% 16993.514 65

75 25565.525 52 0.01% 25155.023 138 1.63% 25569.379 213
100 33902.119 85 0% 33208.278 181 2.05% 33903.672 503
150 50677.120 174 0% 49609.044 271 2.10% 50678.312 1802

250 85186.119 438 0% 83785.657 431 1.64% ** **
500 170226.568 1638 167342.988 868 ** **
1000 334984.436 1720 ** **
5000 1676670.246 8640 ** **

20000 6731686.102 36031 ** **

*Exceeding of the available memory space.

4.2.2 Enhancements in problem formulation when using the Stochastic Arrow-Hurwicz
Algorithm involving IP-method

Some improvements in our implementations worth being notified: During our first numerical
tests, we remarked that S AH -algorithm involving the IP-method was inefficient and even did

not converge in some cases (see Fig. 2). Then we analyzed and modified the implementation of
the IP-method. The first enhancement deals with the formulation of EC K P. The expectation
constraint states

E [HR+(c − g(x, χ))] ≥ p ⇔ p − E [HR+(c − g(x, χ))] ≤ 0

We thus get the Lagrangian

L(x, λ) = E

[
n∑

i=1

ri χi xi

]
− λ (p − E [HR+(c − g(x, χ))])

Using the IP-method, we rewrite this Lagrangian as follows:

L(x, λ) = E

[
n∑

i=1

riχi xi

]
− λ

(
p + E[YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

]
)

(4)
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Let us denote l̃ the function inside the expectation of the Lagrangian (4), i.e.

l̃(x, λ, χ) =
n∑

i=1

ri χi xi − λ

(
p + YR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

)

It follows(∇x l̃(x, λ, χ)
)

h = rhχh + λ

(
HR+(c − g(x, χ))

(χκ − μκ)

xκσ 2
κ

(
χh + (c − g(x, χ))

xκ
νκ

h

))

Remark that the term that multiplies λ is zero whenever the capacity constraint is not satisfied.
In these cases all the components of the current xk are incremented (as all the components of
(r1χ1, . . . , rnχn)T are positive) although at least one component should be decremented in order

to better fit the capacity.

The constraint in expectation can be equivalently reformulated as

E [HR+(g(x, χ) − c)] ≤ 1 − p ⇔ E [HR+(g(x, χ) − c)] − (1 − p) ≤ 0

In this case the hth component of the gradient of l̃ is

(∇x l̃(x, λ, χ)
)

h = rhχh − λ

(
HR+(g(x, χ) − c)

(χκ − μκ)

xκσ 2
κ

(
χh − (g(x, χ) − c)

xκ

νκ
h

))

Here the term that multiplies λ is zero whenever the capacity constraint is satisfied. In this

case the components of xk are incremented by the components of the positive vector (r1χk
1 , . . . ,

rnχk
n )T (multiplied by the corresponding factor σ k). When the capacity constraint is not satisfied

the term with coefficient λ is subtracted from this vector in order to correct xk . This term is pos-

itive whenever (χk
κ − μκ) > 0 and the Lagrange multiplier λ is thus playing its assigned role of

a penalty factor in case the constraint is violated.

Figure 2 – Initial divergence for the Stochastic Arrow-Hurwicz algorithm solving the continuous ECK P :

FD-method (bold curve) versus initial IP-method.
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A second improvement can be obtained by a specific choice of the component to integrate by

parts: The hth component of the gradient of the Lagrangian function obtained by the IP-method
after reformulation:(∇x l̃(x, λ, χ)

)
h = rhχh − λ

(
HR+(g(x, χ) − c)

(χκ − μκ)

xκσ 2
κ

(
χh − (g(x, χ) − c)

xκ

νκ
h

))
In case of an overload, we expect this gradient to be negative for some indexes h in order to

decrease the total weight of the knapsack. However, for h 	= κ and HR+(g(x, χ) − c) = 1, the
term that multiplies λ is positive if and only if (χκ − μκ) > 0, which is not always the case.
When this event does not occur, the gradient is strictly positive and all components of x with

index different from κ are incremented despite the overload. Due to this observation we propose
the following improved choice of the index κ: Instead of just choosing κ in the kth iteration such
that xk

κ = ||xk ||∞ (see Proposition 1), we choose κ as follows:

κ = arg max
i=1,...,n

{
xk

i |xk
i ≥ 1/n and (χk

i − μi ) > 0
}

However, if {xk
i |xk

i ≥ 1/n and (χk
i − μi ) > 0} = ∅, we choose κ as before, i.e. such that

xk
κ = ||xk ||∞ ≥ 1/n.

With this modification we were able to significantly improve the convergence of S AH -algorithm

involving the IP-method (see Fig. 3) and could reduce the maximum number of iterations to 1000
with effective results.

Figure 3 – Results after modifications on IP method: FD-method (gray curve) versus IP-method (bold

curve).

5 NUMERICAL RESULTS

All numerical tests have been carried out on an Intel PC with 2GB RAM. S AH -algorithm al-
gorithms as well as the branch-and-bound framework have been implemented in C language.

The random numbers needed for the computations of the stochastic gradient algorithm were
generated in advance using the gsl C-library and stored in a file.

We tested S AH -algorithm on the instance used in Cohn & Barnhart (1998) called hereafter C./B.
as well as on 50 randomly generated instances for each dimension. The data given in the tables
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2 and 3 are average values over these instances. As noticed at the end of section 2, the choice

of normally distributed weights implies that theoretically weights can take negative values. The
test instances were generated in such a way that the variance/mean ratio is below 1/4 (see Cohn
& Barnhart, 1998 or Kosuch & Lisser, 2010 for details). This implies a very low probability for

the realization of negative weights: Although a high number of scenarios were generated (either
500 or 1000 for each run of S AH -algorithm), we got no negative weight realization.

In Table 2, the numerical results of S AH -algorithm involving FD- or IP-method are compared
with those using a Second Order Cone Programming-solver (SOCP): As mentioned, EC K P

can be equivalently reformulated as a chance constrained knapsack problem that, in turn, can be
reformulated as a deterministic equivalent S OC P-problem (for details see Boyd et al., 1998 or
Kosuch & Lisser, 2010). To solve the S OC P-problem we used the S OC P-solver by MOSEK

in C-programming language that applies an interior point method (MOSEK, 2009). The gaps
given in tables 2 and 3 are the relative gaps between the MOSEK solution and the approximate
solution obtained when using the stochastic gradient algorithm.

Table 2 – Numerical results for the continuous ECK P .

Arrow-Hurwicz & Arrow-Hurwicz &
MOSEK

FD-method IP-method

n
CPU

Gap
CPU

Gap
CPU

(msec) (msec) (msec)

C./B. 1 0.03% 2 0.03% 25

15 1 0.02% 2 0.02% 22
20 1 0.02% 3 0.02% 22
30 1 0.02% 4 0.02% 22

50 3 0.01% 6 0.02% 24
75 4 0.02% 9 0.02% 26

100 5 0.01% 12 0.01% 28

150 8 0.01% 17 0.01% 31
250 13 0.01% 28 0.01% 37
500 25 0.01% 56 0.01% 52
1000 51 0.01% 111 0.01% 89

First of all, we remark that the optimal solution values of S AH -algorithm involving FD-method
are comparable to those produced by the IP-method. Some fluctuations occur and can be inter-

preted in terms of choice of implementation, like the choice of the two σ -sequences for S AH -
algorithm. Choosing the right parametrization for these sequences has an important influence on
the convergence of the algorithm and the best found solution.

In terms of running time, both methods outperform S OC P-algorithm for small and medium size

instances. For higher dimensional problems, this is still true for FD-method. However, S AH -
algorithm involving the IP-method needs approximately twice the time than when using FD-
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method. This is of course due to the total number of iterations that we fixed at 500 when using

FD-method, while we need 1000 iterations with the IP-method in order to obtain equally good
solutions. For higher dimensional instances Mosek interior point method needs therefore less
CPU-time than the IP-method.

6 SOLVING THE (COMBINATORIAL) ECKP – NUMERICAL RESULTS

The combinatorial problem has been solved using a branch-and-bound algorithm as described
in Cohn & Barnhart (1998) and Kosuch & Lisser (2010). The algorithm has been tested on the
instances previously used for the tests of S AH -algorithm.

We stored the random numbers needed for the test runs of S AH in a batch file. As the total
number of runs during the branch-and-bound algorithm is unknown and the number of random
numbers needed for all those runs is generally very high, we only stored random numbers for
a limited number of runs. Before running S AH , we chose randomly one of the instances of

random numbers. Remark that, as the runs of S AH are independent, one stored instance of
random numbers would theoretically be sufficient.

The results given in Table 3 indicate that the branch-and-bound algorithm that uses S OC P-
program to obtain upper bounds, considers more nodes than when using S AH -algorithm. This

is not due to a better choice of the upper bounds in the latter method as in both algorithms
the upper bounds are supposed to be the same (i.e. the optima of the corresponding relaxed
problems). However, as the best solution found by the approximate S AH -algorithm might be

slightly smaller than the solution value of the relaxed problem, more branches are pruned than
with the primal-dual S OC P-algorithm. Note that this could theoretically also cause the pruning
of a subtree that contains the optimal solution.

Table 3 – Numerical results for the (combinatorial) ECK P .

Arrow-Hurwicz & FD-method Arrow-Hurwicz & IP-method SOCP

n Optimum
Number of CPU-time

Gap Optimum
Number of CPU-time

Gap Optimum
Number of CPU-time

nodes B-and-B nodes B-and-B nodes B-and-B

C./B. 4595 122 0.09 0% 4595 122 0.21 0% 4595 122 0.406

15 4840 31 0.02 0% 4840 34 0.06 0% 4840 34 0.082
20 6634 69 0.07 0% 6634 63 0.13 0% 6634 66 0.236
30 10272 271 0.35 0% 10272 436 1.22 0% 10272 350 1.801

50 16975 3341 6.43 0% 16975 7051 31.34 0% 16975 7406 70.914
75 25548 6187 18.43 0% 25548 23911 161.47 0% 25548 62175 1535.520
100 33895 12093 45.87 – 33894 98479 1049.18 – * * *
150 50672 37076 244.11 – * * * * * * *

250 85189 65890 623.53 – * * * * * * *
500 * * * * * * * * * * *

*CPU-time exceeds 1h.

Similarly, S AH -algorithm involving the IP-method considers an average number of nodes
greater than when using FD-method. This implies that the solutions of the relaxed subprob-
lems produced by FD-method are not as good as those obtained when using IP-method. As both

methods perform equally on the relaxed overall problems (see subsection 5), we conclude that
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FD-method is less robust: Instead of choosing particular σ -sequences for each instance or even

each subproblem that has to be solved during the branch-and-bound algorithm, we fixed one
parametrization for each dimension. However, the subproblems solved during the branch-and-
bound algorithm are mostly lower dimensional problems. Moreover, S AH -algorithm using the

fixed σ -sequences is less performant on these subproblems. This seems to be especially the case
when using FD-method.

If we only allow an average computing time of 1h, S OC P-algorithm can only be used up to a
dimension of 50. On the contrary, when using FD-method and allowing 500 iterations in S AH -

algorithm, we are able to solve problems up to a dimension of 250 within an average CPU-time
of 1h.

7 CONCLUSION

In this paper, we study and analyse two methods for computing the gradient of the Stochastic

Knapsack Problem, where the expectation constraint is considered. More than just considering
efficiency of compared methods, it is interesting to analyze what can be concluded when using
such methods. In one case, FD-method is very simple, robust, efficient and fast, but presents

some disadvantages, such as computing an approximated value of the gradient of the constraint.
On the other case, IP-method introduces no approximation in the computation, but is more com-
plex to handle correctly. Nonetheless, this second method opens more opportunities to inves-

tigate. First of all, handling an approaching value of the gradient seems not to be a source of
disorder here but remains a first order approximation. Secondly, we keep in mind that when us-
ing integration by parts, we always have to choose one part to integrate, and one part to derivate

in a product, but the way we choose these parts is not fixed. This allows for instance to check
conditions of boundaries of �̃. In the future, we will examine ways of choosing the different parts
of the Integration by Parts, and also will extend our approach to other stochastic combinatorial

problems.
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