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ABSTRACT. In this paper, we propose a new methodology for variable selection in Data Envelopment

Analysis (DEA). The methodology is based on an internal measure which evaluates the contribution of

each variable in the calculation of the efficiency scores of DMUs. In order to apply the proposed method, an

algorithm, known as “ADEA”, was developed and implemented in R. Step by step, the algorithm maximizes

the load of the variable (input or output) which contribute least to the calculation of the efficiency scores,

redistributing the weights of the variables without altering the efficiency scores of the DMUs. Once the

weights have been redistributed, if the lower contribution does not reach a previously given critical value,

a variable with minimum contribution will be removed from the model and, as a result, the DEA will be

solved again. The algorithm will stop when all variables reach a given contribution load to the DEA or

until no more variables can be removed. In this way and contrary to what is usual, the algorithm provides a

clear stop rule. In both cases, the efficiencies obtained from the DEA will be considered suitable and rightly

interpreted in terms of the remaining variables, indicating the load themselves; moreover, the algorithm will

provide a sequence of alternative nested models – potential solutions – that could be evaluated according

to external criterion. To illustrate the procedure, we have applied the methodology proposed to obtain a

research ranking of Spanish public universities. In this case, at each step of the algorithm, the critical value

is obtained based on a simulation study.

Keywords: DEA, linear programming, variable selection, measure variable contribution.

1 INTRODUCTION

Data Envelopment Analysis (DEA) is a methodology introduced by Charnes, Cooper and Rodes
in [14], that it is used to compare the efficiencies of a set of homogeneous units (DMUs) that
produces several outputs from the same set of inputs. This methodology has become very popular
in several fields of mathematics and management science, including finance, banking, education,
healthcare, . . . For each DMU, the DEA analysis does not only provide an efficiency score, but it
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also provides a peer set. The peer set can be used to guide those who are involved in the decision
making process, leading to an optimal DMUs performance.

DEA is a non parametric method that builds and estimates the technological frontier as the region
defined by the efficiency units. For each DMU, the DEA considers two sets of weights, one set for
inputs and another for outputs, obtaining the efficiency scores of the DMUs from the optimization
of the ratio between a combination of both sets of variables. The weights are selected in the most
favourable way for the unit that has been evaluated. Thus, the initial set of variables, inputs and
outputs, can lead to different ways of measuring the efficiency, so it is very important that the set
is chosen correctly. Sexton [49], Smith [47] and Dyson [18] get different results regarding the
sensitivity in the calculation of efficiencies dependent on variable selection.

As the selection of the variables to be included in the analysis is usually made by the decision
makers and politicians, the researchers assume, a priori, that the selection is a correct one. This
means that, generally, a very small attention is devoted to the selection of variables as shown
in Cook & Zhu [17]. But taking into account that efficiency is measured using the variables
included in the model, the inclusion in it of inappropriate or irrelevant variables may cause bias
in the results. Thus, the selection of the set of variables becomes an important task.

As will be described below, the usual methods of selection of variables in DEA mainly try to
preserve the efficiency scores of the initial model, so the bias remains hidden for the method.
We propose a new measure that can detect such bias in the selection of variables. To resolve the
procedures involved in the proposed methodology, we have developed a package in R, called
aBenchmarking, which will be available in cran [43]. Currently, an interactive online application
is available at http://knuth.uca.es/DEA.

In order to apply the proposed methodology, we will obtain the efficiencies of the research activ-
ity of Spanish public universities. For this purpose, we will use the same source of data used by
the authors of the “Ranking 2013 de investigación de las universidades públicas españolas” [12],
popularly known as Granada ranking. This is one of the most important rankings of Spanish uni-
versities. The Granada ranking includes two rankings, one of production and one of productivity,
taking into account in the latter case the human resources that each university has to obtain its
scientific production. The ranking of Granada is elaborated since year 2009 with annual period-
icity, see [8, 9, 10, 11, 12]. One of the objectives that we intend to address in future works, as
application of the methodology proposed in this paper, is to compare the productivity results of
the Granada ranking with the efficiencies obtained from a DEA model oriented to output.

The rest of this paper is organized as follows. In the next section we review some articles that
deal with the problem of variable selection in DEA. The Section 3 presents the variable selection
methods based on their intrinsic contribution to the calculation of DMU efficiencies, including
theoretical background, algorithms and one step by step example. Section 4 is devoted to the
determination of the minimum admissible value to be able to consider a variable as relevant in
the model. This is done using a Monte Carlo simulation in which dummy variables have been
included in the model. This section also includes the analysis of the aforementioned data set of
Spanish universities to obtain a research ranking of Spanish public universities. The final section
of the paper is devoted to conclusions and to the presentation of future lines of work.

Pesquisa Operacional, Vol. 38(1), 2018
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2 LITERATURE REVIEW

The usual procedure of dealing with the aforementioned problem is to apply a backward/forward
variable selection method, starting with a full model and dropping variables in an stepwise algo-

rithm. Many of these methods are taken from classical statistics procedures. Jenkins & Anderson
in [31], use the partial correlation coefficient to preserve a subset of variables that retain most
of the original information. Simar & Wilson in [51] use bootstrap methods to include signifi-

cant variables in a forward selection procedure. Ruggiero in [44] proposes a forward selection
method in which, at each step, the entry criterion is based on the correlation of the candidate
entry variables with the efficiencies obtained in the current model. Other authors, such as Wag-

ner & Shimshak [56] propose similar stepwise methods but using as a criterion the minimization
of the change in average efficiency scores. Norman & Stoker in [40] and Sigala et al., in [45],
have proposed forward procedures taking into account the correlation between the variables not

included in the model and the efficiency scores. Ueda & Hoshiai in [54] and Adler & Golany
in [2, 3], developed, independently, a method based on replacing the original variables with the
principal component analysis, removing the effect of the redundancy of information.

A different point of view is proposed in other papers. Pastor et al., in [42], suggest a forward

model based on the marginal impact of a variable (input-output), which is estimated through an
efficiency contribution measure (ECM).

Other method for the selection of variables is the one proposed by Lins & Moreira [35] that starts
from a model with only one input and output, the most correlated. From here on, they include

that variable that causes higher average efficiency in the DEA, regardless of how many DMUs
are efficient. Soares de Mello & others [46] use a convex combination of two indicators, to take
into account both the average efficiency and the number of DMUs. To give equal importance
to the indicators, the coefficients of the combination are the same, unless there are reasons for

not being. A variant of this method is proposed by Senra & others [1], since they begin with
the combination of variables that present greater value in the previous combination, although
those models that have less variables will have a lower efficiency value since it is known that by

increasing the number of variables in DEA increases the average efficiency.

Madhanagopal & Chandrasekaran in [38] first sort the variables by their relevance using a ge-
netic algorithm, and then they apply the method proposed by Pastor. Fanchon in [23] suggests
a methodology to identify the optimal number of variables, evaluating the contribution of these

in the construction of the efficiency frontier. Morita & Avkiran in [37] propose an input/output
selection method that uses diagonal layout experiments to find an optimal combination. Sharma
& Jin in [52] evaluated the importance of each variable using a Kruskal-Wallis test.

Finally, Sirvent et al., in [48], Adler & Yazhemsky in [6] and Nataraja & Johnson in [39], make

a comparative analysis of some of the variable selection techniques proposed in the literature.

Table 1 reviews in tabular form the aforementioned papers in a chronological line.

Pesquisa Operacional, Vol. 38(1), 2018
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Table 1 – Main contributions to the selection of variables in DEA.

Methods based on efficiency Classical statistics methods

1982 Lewin, Morey & Cook

1989 Roll, Golany & Seroussy
Norman & Stoker 1991

Banker 1996
1997 Ueda & Hoshiai

Lins & Moreira 1999
Simar & Wilson 2001 Adler & Golany

Pastor, Ruiz & Sirvent 2002

Fanchon 2003 Jenkins & Anderson

Sigala
Soares de Mello & others

}
2004

Ruggiero 2005

Senra & others

Wagner & Shimshak

}
2007

González-Araya & Valdés Valenzuela 2009
2011 Kao, Lu & Chiu

2012 Bian

2013 Lin & Chiu
Sharma & Yu 2015

Jitthavech

Subramanyam

}
2016

3 METHOD FOR SELECTING VARIABLES BASED ON CONTRIBUTIONS

Our methodology proposes to establish a process of selection of variables that takes into account
the contribution of the variables to the calculation of the efficiencies of the DMUs. This has led us

to propose in this paper a normalized internal measure of the contribution. This measure, called
load in the following, considers no external information to the procedure, how it happens with
the use of regression techniques, principal components, etc.

Following the usual notation in DEA, a set of nD DMUs is considered to be rated. Each DMU

uses different amounts of nI inputs to produce nO different outputs. Let xid the amount of the
i-th input that uses the d-th DMU for i = 1, 2, . . . , nI and d = 1, 2, . . . , nD , and let yod the
amount of the o-th output produced by d-th DMU for o = 1, 2, . . . , nO and d = 1, 2, . . . , nD .

Pesquisa Operacional, Vol. 38(1), 2018
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After some technical considerations, the constant return to scale, DEA-CRS, also known as DEA-

CCR, model input oriented, consider for each DMU the problem:

max
nO∑

o=1

uo yo0

s.t.
nI∑

i=1

vi xi0 = 1

nO∑
o=1

uo yod ≤
nI∑

i=1

vi xid , ∀d = 1, 2, . . . , nD

vi ≥ 0, ∀i = 1, 2, . . . , nI

uo ≥ 0, ∀o = 1, 2, . . . , nO

(P0)

where the unit 0 is the unit taken into account.

The procedure solves nD linear programs, one for each DMU, and takes the score of each DMU
as the optimal value of the program for that unit. Note that this score is the maximum virtual
output amount allowed by the model. This approach does not allow consideration of measures

and conditions inter-units.

In order to allow the handling of such measures and conditions, a model which considers all
DMUs simultaneously can be built. As a first step, replacing in the previous problem the DMU-0
for the DMU-d we have the problem the (Pd ) problem as:

max
nO∑

o=1

uo yod

s.t.
nI∑

i=1

vi xid = 1

nO∑
o=1

uo yoe ≤
nI∑

i=1

vi xie, ∀e = 1, 2, . . . , nD

vi ≥ 0, ∀i = 1, 2, . . . , nI

uo ≥ 0, ∀o = 1, 2, . . . , nO

(Pd )

Pesquisa Operacional, Vol. 38(1), 2018
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In order to solve simultaneously all (Pd ) for all DMUs, the second step is to merge all the (Pd )

problems into one. In order to do that, consider uod the weight of the o-th output in (Pd ) problem,
and vid the weight of the i-th input in (Pd ), and merging all together, we have:

max
nD∑

d=1

nO∑
o=1

uod yod

s.t.
nI∑

i=1

vid xid = 1, ∀d = 1, 2, . . . , nD

nO∑
o=1

uoe yod ≤
nI∑

i=1

vie xid , ∀e = 1, . . . , nD, ∀d = 1, . . . , nD

vid ≥ 0, ∀i = 1, . . . , nI , ∀d = 1, . . . , nD

uod ≥ 0, ∀o = 1, . . . , nO , ∀d = 1, . . . , nD

(P)

This problem, that solves the DEA model for all DMUs at the same time, has nD × (nI + nO)

non-negative variables and nD ×(nD +1) constraints. That means that the dual program is easier
to solve than primal, but if we want to handle constraints involving weights it is preferable to stay
in primal space.

As the weights are included in the objective function of the optimization problem, the variables
with greater weights have a greater influence in the final calculation of the efficiencies of the
DMUs. So, to compare or to measure the importance of an input or an output variables in the
final DMU rating, the use of the weights may be the first choice. However the weights lack some
desirable properties such as being bounded or not subject to variation under changes of scale. To
address that question a new measure is introduced in the following subsection.

3.1 The load of a variable

Definition 1. For any u and v feasible weights for (P) consider:

ᾱ I
i = ᾱ I

i (v) =

nD∑
d=1

vid xid

nI∑
i=1

nD∑
d=1

vid xid

∀i = 1, 2, . . . , nI

ᾱO
o = ᾱO

o (u) =

nD∑
d=1

uod yod

nO∑
o=1

nD∑
d=1

uod yod

∀o = 1, 2, . . . , nO

(1)

ᾱ I
i and ᾱO

o will be called the contribution of the i-th input and the contribution of the o-th output
respectively.

Pesquisa Operacional, Vol. 38(1), 2018
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Notice that for the o-th output ᾱO
o is the ration between the contribution of that output variable

to the objective function of (P), this is the part of the objective function that depends of said
variable, and the total contribution of all outputs. Analogously, for the i-th input, ᾱ I

i is the ratio
between the contribution of the i-th input and all inputs. From another point of view, ᾱO

o is the

ratio between the virtual output provided by the o-th output and the total virtual output.

One desirable property of any measure is to have a bounded range because it is thus possible to
compare the value of the measure with its maximum value. The range of ᾱ-ratios is established
in the next property.

Property 1. For any u and v weights feasible for (P) we have:

nI∑
i=1

ᾱ I
i = 1 and 0 ≤ ᾱ I

i ≤ 1, ∀i = 1, 2, . . . , nI

nO∑
o=1

ᾱO
o = 1 and 0 ≤ ᾱO

o ≤ 1, ∀o = 1, 2, . . . , nO

(2)

The proof follows directly from the definitions of ᾱ-ratios.

If all the ratios for input variables were equal then ᾱ I
i would be 1/nI . Analogously, for the

ratios for output variables ᾱO
o = 1/nO , which means that the ideal values of ratios depend on

the number of inputs and outputs. In the next definition, a standardized version of ᾱ-ratios is
introduced, correcting such a drawback.

Definition 2. For any u and v feasible weights for (P) consider:

α̂ I
i = α̂ I

i (v) = nI ᾱ
I
i =

nI

nD∑
d=1

vid xid

nI∑
i=1

nD∑
d=1

vid xid

∀i = 1, 2, . . . , nI

α̂O
o = α̂O

o (u) = nO ᾱO
o =

nO

nD∑
d=1

uod yod

nO∑
o=1

nD∑
d=1

uod yod

∀o = 1, 2, . . . , nO

(3)

From the previous property follows the next one.

Pesquisa Operacional, Vol. 38(1), 2018
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Property 2. For any u and v feasible weights for (P) we have:

nI∑
i=1

α̂ I
i = nI and 0 ≤ α̂ I

i ≤ nI , ∀i = 1, 2, . . . , nI

nO∑
o=1

α̂O
o = nO and 0 ≤ α̂O

o ≤ nO , ∀o = 1, 2, . . . , nO

(4)

Now, in the ideal case of equal ratios, all ᾱ I
i and ᾱO

o ratios will be 1. In order to understand the
meaning of the ratios, note that these are the quotient between the virtual output that comes from
each output and the average value of all outputs. Thus, for example, α̂O

1 = 0.75, means that the

contribution of output 1 is 75% of the average value for all outputs. The remaining 25% will go
to increase the remaining output ratios.

Usually, (P) has got multiple alternate solutions that, in general, could lead to multiple values of

α̂-ratios. Thus, the next task will be to fix a suitable choice for such ratios.

Following the optimistic approach of DEA methodology, the first potential approach for choosing
suitable α̂-ratios could be to increase all of them. But, as the sum of α̂-ratios are fixed, if we try
to increase one of them, the remaining ratios will decrease.

Thus, another possible way to redistribute all α̂-ratios is to increase the minimum value of the

ratios. The new α̂-ratios after such redistribution of ratios will be called α-load or simply load.
In this way, a low value for the load of a variable means that the contribution of such variable can
not be increased without change the efficiency scores. So, the loads are very optimistic measures.

This approach leads, when possible, to equal value of all loads, which means that the contribution
of each variable is the same. Such choice should be made without changing the main results of
DEA, i.e., without changing the efficiency score of each unit.

The next section of the paper is devoted to computing the values of these loads.

3.2 Computing the loads

In a natural way, to compute the loads we could consider, for a suitable value of ε, the next
problem

max
nD∑

d=1

nO∑
o=1

uod yod + εα̂

s.t.
nI∑

i=1

vid xid = 1, ∀d = 1, 2, . . . , nD

nO∑
o=1

uoe yod ≤
nI∑

i=1

vie xid , ∀e = 1, . . . , nD, ∀d = 1, . . . , nD

(Pα̂)

Pesquisa Operacional, Vol. 38(1), 2018
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α̂ I
i =

nI

nD∑
d=1

vid xid

nI∑
i=1

nD∑
d=1

vid xid

, ∀i = 1, 2, . . . , nI

α̂O
o =

nO

nD∑
d=1

uod yod

nO∑
o=1

nD∑
d=1

uod yod

, ∀o = 1, 2, . . . , nO

0 ≤ α̂ ≤ α̂ I
i , ∀i = 1, 2, . . . , nI

0 ≤ α̂ ≤ α̂O
o , ∀o = 1, 2, . . . , nO

vid ≥ 0, ∀i = 1, . . . , nI , ∀d = 1, . . . , nD

uod ≥ 0, ∀o = 1, . . . , nO , ∀d = 1, . . . , nD

(Pα̂)

But this program to compute simultaneously α̂-ratios and, u and v weights, (Pα̂), is a non-linear
program.

Let us take one step back, and consider again (Pd ). The value of the objective function of that
program is defined as the score of the d-th DMU, considering the following

Definition 3. Let sd , ∀d = 1, . . . , nD the score in DEA of d-th DMU, i.e.:

sd =
nO∑

o=1

uod yod

and under (P) constraints we have:

Property 3. For any u and v feasible weights for (P), one has

nI∑
i=1

nD∑
d=1

vid xid = nD

nO∑
o=1

nD∑
d=1

uod yod =
nD∑

d=1

sd

(5)

Proof. From the (P) feasibility conditions for u and v, we have

nI∑
i=1

vid xid = 1

Pesquisa Operacional, Vol. 38(1), 2018
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Thus, taking the sum over d and rearranging the sum, we have

nD∑
d=1

nI∑
i=1

vid xid =
nI∑

i=1

nD∑
d=1

vid xid = nD

Analogously,
nO∑

o=1

uod yod = sd

Thus,
nO∑

o=1

nD∑
d=1

uod yod =
nD∑

d=1

nO∑
o=1

uod yod =
nD∑

d=1

sd �

The above property and previous hypothesis allow us to use a two step procedure. In the first
step, (P) is solved and scores computed. In the second step, the maximum value α̂-ratios are
computed.

max α

s.t.
nI∑

i=1

vid xid = 1, ∀d = 1, 2, . . . , nD

nO∑
o=1

uoe yod ≤
nI∑

i=1

vie xid , ∀e = 1, . . . , nD, ∀d = 1, . . . , nD

nO∑
o=1

uod yod = sd , ∀d = 1, 2, . . . , nD

0 ≤ α I
i = nI

nD

nD∑
d=1

vid xid , ∀i = 1, 2, . . . , nI

0 ≤ αO
o =

nO

nD∑
d=1

uod yod

nD∑
d=1

sd

, ∀o = 1, 2, . . . , nO

0 ≤ α ≤ α I
i , ∀i = 1, 2, . . . , nI (αI )

0 ≤ α ≤ αO
o , ∀o = 1, 2, . . . , nO (αO )

vid ≥ 0, ∀i = 1, . . . , nI , ∀d = 1, . . . , nD

uod ≥ 0, ∀o = 1, . . . , nO , ∀d = 1, . . . , nD

(Pα)

The solution of (Pα) gives α value that represents α̂-loads in such a way that the minimum of
input ratios and output ratios are maximized. Such values are constrained to preserve the score

Pesquisa Operacional, Vol. 38(1), 2018
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of each DMU. So, any solution of (Pα) is a suitable choice for the α̂-ratios and will be called the

load of a variable as proposed in the following

Definition 4. Given an optimal solution of (Pα), let

α I
i : the load of i-th input variable, for i from 1 to nI .

αO
o : the load of o-th output variable, for o from 1 to nO .

α: the load of the model.

From the optimality condition we can say that the load, α, is well defined, i.e., the value is unique.
The load of a variables in which the minimum is reached is also well established. But in all other

cases the values could change, so they have no useful meaning.

If we consider that only input (or output) variables should be dropped from the model, a similar
linear program can be considered removing the group of restrictions αI (or αO ) from (Pα).

The model in (Pα) is input oriented, but the output oriented DEA can be handled in very similar
way.

3.3 ADEA an stepwise variables selection algorithm

The definition of the loads for input and output variables allows the generation of an alternative
DEA methodology, that we have called ADEA, for the selection of variables in DEA model.

Note that, for a given model, this algorithm provides the same efficiency scores than standard

DEA, but the weights are not the same.

3.3.1 ADEA Algorithms

The usual methods of selection of variables in DEA mainly deal with efficiency scores and tries
to preserve the scores of the initial model. We propose a new algorithm based in the contribution
load of variables. At each step the variable with lower value of its load is dropped from the model.

The algorithm continues until the load of the model reaches a previous given desired load value
or until no more variables can be removed. To do that, in each step of the algorithm, the problem
(Pα) is solved and a variable with minimum load is dropped from the model, until one of the

above mentioned condition is reached, see Table 2.

It may seem natural that successive cutoffs loads in the stages of stepwise algorithm are increas-
ing, but this is not true, as evidenced by the example of Tokyo libraries data set in Section 3.3.2.

If after discarding a variable the resulting load is lower than the previous model, then the variables

that remain in the model have not increased their load and, therefore, the new model is worse.

Pesquisa Operacional, Vol. 38(1), 2018



�

�

“main” — 2018/3/20 — 10:56 — page 42 — #12
�

�

�

�

�

�

42 STEPWISE SELECTION OF VARIABLES IN DEA USING CONTRIBUTION LOADS

Table 2 – ADEA Stepwise Algorithm.

Inputs: x amounts of inputs required by each DMU

y amounts of outputs produced by each DMU
λ ∈ [0, 1] the minimun value of load required

Outputs: Scores for each DMU
A reduced DEA model

Steps: 1. x = x, y = y

2. For x as input and y as output solve (Pd )

3. If α > λ then stop.

Consider x and y as final input and output set.
4. Drop from x or y a variable that reach the minimum.

Go to Step 2.

The previous algorithm can be modified to generate an increasing sequences of loads, see Table 3.
Starting with an small value of the required load, the previous algorithm is applied by increasing

the value in each step.

Table 3 – ADEA Parametric Algorithm.

Inputs: x amounts of inputs required by each DMU

y amounts of outputs produced by each DMU
Outputs: A sequences of models with increasing loads

Steps: 1. x = x, y = y, λ = ε, ε > 0, an small value
2. For x as input, y as output and λ

apply ADEA stepwise algorithm and output the model

3. λ = α + ε

If the number of inputs or outputs is not 1 then go to step 2

3.3.2 Tokyo libraries data set

In order illustrate how both algorithms work, consider, as an example, the Tokyo libraries case

(involving a set of 23 libraries in Tokyo), which has been used frequently in DEA literature,
see [16, 56, 52, 15]. The Tokyo data set, has 4 input and 2 output variables. The inputs are: Area,
Books, Staff and Populations and outputs are: Registration and Borrowing.

Table 4 shows the loads of the variables after solving (Pα). The load of the model is 0.41 which is

reached at variable Area. This means that the contribution of the variable Area to the efficiency
scores is 41% instead of 100%. If we thinks that 41% is not enough, then we can apply the ADEA
stepwise algorithm.

Table 5 shows the results of each step of the algorithm. To solve the tie in step 3, the variable

that leads to a better model in the next step are selected. If 90% is considered a suitable value for
the model load, the variables Area and Registrations should be dropped from the initial
model.
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Table 4 – Loads of variables Tokyo libraries data set.

Inputs Outputs
Area Books Staff Populations Registration Borrowing

Load 0.41 1.37 0.98 1.24 0.64 1.36

Table 5 – Steps of ADEA stepwise algorithm.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.41 1.37 0.98 1.24 0.64 1.36

2 1.26 0.77 0.97 0.61 1.39
3 1.20 0.90 0.90 1

4 1.24 0.76 1
5 1 1

Notice that the load of the model at step 3 is 0.9, but in step 4, the load goes down to 0.76.
This means that the model in step 4 is worse than the model in step 3, because it has lower load
and less variables. To avoid that, we can apply the ADEA parametric algorithm that generate a
sequence of models with increasing values of loads. Table 6 shows each step of the algorithm.

Table 6 – Steps of ADEA parametric algorithm.

Inputs Outputs

Steps Area Books Staff Populations Registration Borrowing

1 0.41 1.37 0.98 1.24 0.64 1.36

2 1.26 0.77 0.97 0.61 1.39
3 1.20 0.90 0.90 1

4 1 1

Previously 0.7 has been selected as minimum desired value for the load of the model. But how
can we compute such value? In the next section we use a Monte Carlo method to simulate the
value of the load after include a dummy variable in the model. These simulated values of the
loads allow to us to established such minimum desired value.

But what would have happened if the procedure had been applied with another initial set of vari-
ables? To answer this question the procedure has been applied to each model resulting from
deleting one variable in the initial model. Tables from 7 to 12 show that, with only one excep-
tion, in all models all variables have been deleted in the same sequence. The model without
Borrowing, in Table 12, shows differences with the other models, but these differences are
expected because the output with more relevance has been eliminated of the model, reason why
this model is essentially different to the others. This example suggests that the procedure has
some robustness and is not very sensitive to the initial choice of the set of variables.
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Table 7 – Steps of ADEA stepwise algorithm for Tokyo libraries without Area.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 1.26 0.77 0.97 0.61 1.39
2 1.20 0.90 0.90 1

3 1.24 0.76 1
4 1 1

Table 8 – Steps of ADEA stepwise algorithm for Tokyo libraries without Books.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.39 1.51 1.10 0.71 1.29

2 1.26 0.74 0.70 1.30
3 1.10 0.90 1

4 1 1

Table 9 – Steps of ADEA stepwise algorithm for Tokyo libraries without Staff.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.34 1.56 1.10 0.63 1.37

2 1.21 0.79 0.59 1.41
3 1.24 0.76 1

4 1 1

Table 10 – Steps of ADEA stepwise algorithm for Tokyo libraries without Populations.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.19 1.65 1.16 0.68 1.32
2 1.17 0.83 0.65 1.35

3 1.28 0.72 1
4 1 1

Table 11 – Steps of ADEA stepwise algorithm for Tokyo libraries without Registration.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.37 1.53 0.92 1.17 1

2 1.2 0.90 0.90 1
3 1.24 0.76 1

4 1 1

Pesquisa Operacional, Vol. 38(1), 2018



�

�

“main” — 2018/3/20 — 10:56 — page 45 — #15
�

�

�

�

�

�

F. FERNANDEZ-PALACIN, M. A. LOPEZ-SANCHEZ and M. MUÑOZ-MÁRQUEZ 45

Table 12 – Steps of ADEA stepwise algorithm for Tokyo libraries without Borrowing.

Inputs Outputs

Step Area Books Staff Populations Registration Borrowing

1 0.47 0.73 1.4 1.4 1

2 0.89 1.22 0.89 1
3 0.73 1.27 1

4 1 1

4 SELECTING A CRITICAL VALUE FOR LOADS. APPLICATION TO THE
ANALYSIS OF RESEARCH EFFICIENCY IN SPANISH UNIVERSITIES

The proposed methodology works dropping variables until some previously given value is
reached by the loads. But until now, nothing is said about how such value can be selected. In
this section an ad hoc Monte Carlo simulation is made in order to give a suitable value of such
parameter. To do this, we will apply a DEA to obtain the research efficiency of the Spanish
public universities in 2013. The data set, which has been called Spanish University data set,
has been obtained from official sources and includes one input

RP : The average number, considering the courses 2103, 2014 and 2015, of permanent research
professors from [22].

And seven outputs that measure the research production:

JCR : Number of articles published in journals indexed in the JCR. Number of published articles
indexed in “Main Collection of Web of Science (WoS)” in 2013 from [55].

RAR : Each permanent professor in Spanish universities can submit every six years his research
activity to be evaluate by the a national agency. This is the ratio between the number
of positive evaluations and all the six years periods that they could submit to evaluation.
Data comes from, CNEAI 2009 report [4], the report of the National Commission for the
Evaluation of Research Activity.

RDP : Number of projects awarded in State Research and Development Programs, by the Min-
istry of Economy and Competitiveness in 2013) from [29, 30].

Phd : Number of doctoral thesis from database of doctoral thesis TESEO (Ministry of Educa-
tion, Culture and Sport) between 2007 and 2011 from [53].

STSR : Number of fellowships awarded for researcher training, Ministry of Education, Culture
and Sport in 2013 from [25, 26].

DE : Number of Doctorate programs with Mention towards Excellence, Ministry of Education
Culture and Sport in 2011 from [19, 20].

P : Number of patents registered between 2009 and 2013, Database of the Spanish Patent and
Trademark Office (OEPM) from [41].
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An output orientation is used to handle this model. The data have been obtained from the same
official sources as the Granada ranking for 2013.

About output variable RAR we must say that it is a ratio and that there are many published works,
as example [28, 21] disregarding the use of ratios in DEA. Also it must be said that there are
many other works that use variables of type ratio as in [5, 37, 24]. In this case, the use of this
variable is due to an attempt to reproduce as accurately as possible the original study with which
to compare the results of the analysis.

4.1 Monte Carlo Simulation of Loads

Generally speaking, if we add a dummy, randomly generated, variable to a model and compute
the load. Such load shows how much higher can be the load of a variable without meaning in the
model, and a suitable quantile can be taken as lower limit for the load of the variables remaining
in the model. But which distribution we can select to such dummy variable?

As a first try, we can consider the normal distribution. If we make a Shapiro-Wilk normality test
to the variables in the initial Spanish universities model gets p-values from 10−7 till 10−4 except
for one variable. A logarithmic transformation seems needed. After making that transformation
all the new p-values of Shapiro-Wilk test are higher than 0.18. So a log-normal distribution is a
good selection for the distribution of the dummy variable.

Table 13 – n-th step of load simulation.

Inputs: μm = 1, μM = 40

σm = 1, σM = 5
Outputs: l0.9, l0.95

Steps: 1. u1 = U(μm , μM ), u2 = U(μm ,μM )

2. μmin = min{u1, u2}, μmax = max{u1, u2}
3. s1 = U(σm , σM ), s2 = U(σm , σM )

4. σmin = min{s1, s2}, σmax = max{s1, s2}
5. i = 1

6. μi ∼ U(μmin, μmax), σi ∼ U(σmin, σmax)

7. Yi ∼ expN (μi , σi )

8. Let li the load of the model after adding Y as output
9. i = i + 1

If i < 1000 go to to step 6.
10. Let l0.9 the 0.9 quantile of l

Let l0.95 the 0.95 quantile of l

Table 13 shows how in each simulation two uniformly generated random values are taken from
interval [1, 40]. Let μmin the lower and μmax the higher. In i-th step, from each of the one
thousand, an uniformly random generated value μi are taken from [μmin, μmax]. Analogously,
let σmin and σmax the lower and the higher values from two randomly generated values in [1, 5].
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And let σi an uniformly random generated value taken from [σmin, σmax]. The dummy variable
is generated as Y ∼ exp(N (μi , σi )), added to the model and the load of it is calculated. The
0.9 and 0.95 quantiles of load are stored in a database. Taking into account that the loads are
invariant by scale changes, the initial intervals chosen run through the values of the parameters
that cross the sample values of the variables in the model.

Each simulation is repeated one thousand times, so 1 million of variables are generated and
1 million models are solved. The average value of 0.9 and 0.95 quantiles are 0.52 and 0.53.
According to these, we must drop all variables in the model with load lower than 0.53. Table 14
shows that in first step the load of JCR and STSR are under 0.53.

Table 14 – Stepwise ADEA for Spanish Universities data set.

Outputs

Step Model JCR RAR RDP Phd STRS DE P

1 IM 0.36 1.16 0.55 1.62 0.36 1.26 1.69

2 M1 0.35 1.04 0.60 1.52 1.10 1.39
3 M2 0.87 0.71 1.42 0.91 1.08

But if the STFR variable is removed from the model, a new simulation must be ran. The criterion
for undoing draws is the same as previously applied. The new value for 0.9 and 0.95 quantiles
are 0.55 and 0.57. And again the load of JCR in step 2 is under this values.

A new simulation was made dropping STSR and JCR variables. And now the 0.9 and 0.95
quantiles are 0.54 and 0.62. But in this case the load of model in step 3, 0.71, is higher than 0.62,
so no new simulation is needed.

Summarizing, 0.62 is an upper bound in 95% of cases when introducing a dummy variable in the
model, thus 0.62 can be considered, with 95% of confidence, as a minimum value of the load of
the variables in the model. Taking into account that the values obtained in the three simulations
are around 0.6 and taking into account the meaning of the loads, we recommend this value as a
general value for its use in the application of this methodology.

4.2 Variable selection

The application of the step-by-step algorithm, shown in Table 14, gives three models: the initial
model that we will call IM, the resulting model of eliminating the STSR variable that we will
call M1, and the resulting final model of eliminating the variables STSR and JCR that we will
call M2.

From a functional point of view, the elimination of the STRS and JCR variables implies ob-
taining a simpler model that helps to better understand the research productivity of universities.
Although all the variables considered explain, to a greater or lesser extent, the research done,
contributing a percentage of the total of this research, the variables are more or less related
among them. In particular, JCR is closely related to the number of six-years of research, regis-
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Table 15 – Efficiencies for some models DEA’s Spanish University.

University IM M1 M2 University IM M1 M2

A Coruña 2.46 2.46 2.46 León 2.13 2.13 2.13

Alcalá 2.20 2.20 2.20 Lleida 1.59 1.59 1.59

Alicante 1.50 1.50 1.50 Málaga 1.58 1.71 1.71
Almerı́a 2.55 2.55 2.55 Mig. Hernán. 1.11 1.11 1.13

Aut. Barcelona 1.12 1.12 1.12 Murcia 2.40 2.40 2.40
Aut. Madrid 1.36 1.36 1.36 Oviedo 3.05 3.05 3.05

Barcelona 1.32 1.32 1.42 Pab. Olavide 1.00 1.00 1.00
Burgos 1.23 1.23 1.23 Paı́s Vasco 1.57 1.57 1.57

Cádiz 1.38 1.38 1.38 Pol. Cartag. 1.28 1.28 1.28
Cantabria 1.51 1.51 1.53 Pol. Catalun. 1.00 1.00 1.00

Carlos III 1.32 1.32 1.32 Pol. Madrid 1.77 1.77 1.77
Cast. Mancha 2.20 2.20 2.20 Pol. Valencia 1.49 1.58 1.58

Comp. Madrid 2.14 2.14 2.14 Pomp. Fabra 1.00 1.00 1.00
Córdoba 1.92 1.96 1.96 Púb. Navarra 1.68 1.68 1.68

Extremadura 2.70 2.70 2.70 Rey J. Carlos 2.43 2.43 2.43

Girona 1.73 1.73 1.73 Rov. Virgili 1.00 1.00 1.00
Granada 1.60 1.79 1.79 Salamanca 1.82 1.82 1.82

Huelva 1.25 1.25 1.25 Santiago 1.45 1.58 1.58
Illes Balears 1.43 1.43 1.43 Sevilla 1.61 1.69 1.69

Jaén 2.09 2.09 2.22 UNED 1.91 1.91 1.91
Jaume I 1.55 1.55 1.55 Valencia 2.63 2.66 2.66

La Laguna 3.47 3.47 3.47 Valladolid 2.36 2.54 2.54
La Rioja 1.14 1.14 1.14 Vigo 1.54 1.54 1.54

Las Palmas 3.85 3.85 3.85 Zaragoza 1.96 1.96 1.96

tered in RAR, since to obtain a six-years five articles are needed in JCR journals; for its part,
the number of fellowships awarded for researcher training, collected in STSR, depends heavily
on the number of research projects, registered inRDP. We can conclude, then, that the final model
hardly changes the efficiencies of the model that contains all the variables, but it is simpler and
contains less redundant information.

In order to validate that the eliminated variables are indeed non-significant, the efficiencies as-
sociated with each of the three models have been collected in Table 15. As can be seen in it the
differences are very small and the Pearson correlation coefficient between the complete model
and the other two models are rI M,M1 = 0.9993 y rI M,M2 = 0.9969, while the Spearman co-
efficients, which quantify the changes in the order, are rI M,M1 = 0.9983 y rI M,M2 = 0.9918.
Therefore, the elimination of the variables JCR and STSR has a very low impact on the calcula-
tion of efficiencies and is fully justified.
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5 CONCLUSIONS AND FUTURE RESEARCH

We propose in this paper a new methodology for selecting variables in DEA models based on a
measure of the contribution of the variables to the efficiency scores of the DMUs. A Monte Carlo
simulation has been used to determine a suitable value for the minimum value that the load of
the variables in the model must have. In this way a useful tool for decision makers is provided to
test the role of a variable in a DEA model.

A cross-validation of the results obtained with the proposed methodology was carried out through
the correlation coefficients between the different models obtained.

We have illustrated our procedure through one classical example in DEA: the Tokyo libraries
data set, and using a new data set related to Spanish universities. In both cases, step by step
results are provided.

At http://knuth.uca.es/shiny/DEA/ an online interactive application is available.
Some data example are ready to load to play with the software. Also, the user can upload its
own data set and apply the algorithms proposed in this paper. It is our purpose to prepare a
package for R for publication in R public repositories as free software.

As we have discussed above, we will try to compare technologies based on productivity rankings
with DEA model, to compare Spanish public universities according to its research results.

The validation of the algorithms proposed through an extensive simulation and its development
for other DEA models are some of the future lines of work.

REFERENCES
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sidades públicas españolas. Psicothema, 23(4): 527–536.
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sidades públicas españolas. Psicothema, 24(4): 505–515.
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149–158.

[12] BUELA-CASAL G, QUEVEDO-BLASCO R & GUILLÉN-RIQUELME A. 2015. Ranking 2013 de

investigación de las universidades públicas españolas. Psicothema, 27(4): 317–326.
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