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ABSTRACT. In this paper we optimize the preparation time of a tubes machine. Tubes are hard tubes made
by gluing strips of paper that are packed in paper reels, and some of them may be reused between the pro-
duction of one and another tube. We present a mathematical model for the minimization of changing reels
and movements and also implementations for the heuristics Nearest Neighbor, an improvement of a nearest
neighbor (Best Nearest Neighbor), refinements of the Best Nearest Neighbor heuristic and a heuristic of
permutation called Best Configuration using the IDE (integrated development environment) WxDev C++.
The results obtained by simulations improve the one used by the company.

Keywords: Combinatorial optimization, Generalized traveling salesman problem, Tubes machine, Heuris-
tic, Mixed integer programming.

1 INTRODUCTION

In recent decades, studies have been conducted to develop techniques to find satisfactory solu-
tions for many different companies, which have realized the importance of planning an effective
and intelligent design of their time and costs of production.

In this context, industries are trying to find ways to optimize their processes considering math-
ematical models and computational tools, in order to obtain the greatest possible results in their
activities, like the quality of service, the increase in productivity, cost reduction and consequently
increased profits [3]. In these situations, the problem is to decide the order of production, what
product must be manufactured and its quantity and the relationship between costs and benefits
for each product. Thus, the production planning influences significantly the quality of service
and the cost for the whole process.
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The tubes machine problem, which is considered in this paper, can be mathematically interpreted
as a Traveling Salesman Problem. A literature review that supports this approach is described
as follows. Dantzig et al. [6] presented a mathematical formulation to the Traveling Salesman
Problem. Particularly, it is shown that a certain tour of 49 cities, one in each of the 48 states
and Washington, DC, has the shortest road distance. In Laporte [16], some of the main known
algorithms for the Traveling Salesman Problem are surveyed. Lin & Kernighan [19] discuss
a highly effective heuristic procedure for generating optimum and near-optimum solutions to
the symmetric Traveling Salesman Problem, based on a general approach to heuristics that is
believed to have wide applicability in combinatorial optimization problems.

Some new heuristics were developed in Golden et al. [9] to solve the Traveling Salesman
Problem. They compared these techniques on the basis of efficiency and accuracy. Balas &
Christofides [2] describe an algorithm for the asymmetric Traveling Salesman Problem using
a new restricted Lagrangean relaxation based on the assignment problem. In this sense, Adran-
binski & Suslom [1] present some computational experiments using several heuristic algorithms
for solving the Traveling Salesman Problem.

Recently, heuristics and meta-heuristics have been performed to help the Traveling Salesman
Problem resolution, since exact models are not well applied for big data.

The Generalized Traveling Salesman Problem was introduced by Henry-Labordere [11], which
presented an application in relation to the optimal sequencing of computer files. An attempt to
derive a recurrence relation to solve a Generalized Traveling Salesman Problem when a job can
be completed at multiple places is presented by Srivastava et al. [22].

We can find applications of the Generalized Traveling Salesman Problem in programming pro-
cesses of machines in industries, postal routing and layout of networks. Noon & Bean [21] em-
ployed a Lagrangian relaxation to compute a lower bound on the total cost of an optimal so-
lution. Many studies about the Generalized Traveling Salesman Problem and their applications
were done to obtain a reduction of this problem to a Traveling Salesman Problem, since there are
many heuristics already performed for this problem. The first reduction method of a Generalized
Traveling Salesman Problem to a Traveling Salesman Problem was presented by Lien et al. [18].

More recent, Mestria [20] proposes a hybrid heuristic algorithm to solve the Clustered Travel-
ing Salesman Problem (CTSP). Hybrid Heuristic algorithm uses several variable neighborhood
structures combining the intensification (using local search operators) and diversification (con-
structive heuristic and perturbation routine). Experimental results show that the proposed hybrid
heuristic obtains competitive results within reasonable computational time.

Hernandez-Pérez et al. [12] propose a hybrid heuristic approach for a pickup and delivery routing
problem, which is a routing problem for a capacitated vehicle that has to serve a set of customers
that provide or require certain amounts of different products. It is the first heuristic approach
designed for this problem. Carrabs et al. [5] address a variant of the Euclidean traveling sales-
man problem in which the traveler visits a node if it passes through the neighborhood set of
that node. This problem is named the close-enough traveling salesman problem. By reducing
the discretization error, the new scheme allows to compute tighter upper and lower bounds for
the problem.
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According to Laporte et al. [17], a wide variety of combinatorial optimization problems can be
modeled as Generalized Travelling Salesman Problem. These problems include location-routing
problems, material flow system design, post-box collection, stochastic vehicle routing and arc
routing. Considering this issue, this paper describes a case of study with the aim of optimizing
the preparation time of a tubes machine. A Tube machine consists of 3 parts: Yard (Fig. 1), Tank
of glue (Fig. 2) and Superpositioner (Fig. 3).

Figure 1 — Yard. Figure 2 — Tank of glue.

Figure 3 — Superpositioner.

The function of a tube machine is to make hard tubes which are called tubes (Fig. 4) by orderly
superposition of multiple layers of recycled paper wrapped in strips of paper that are packed in
paper reels (Fig. 5), glued on top of each other with a technically determined pressure.

The thickness and stiffness of the tubes depend mainly on the amount of layers and the type of
paper used in its manufacture. Tubes are used as packaging for protection and conservation for
products of other companies. They have a cylindrical shape, as can be seen in some examples
illustrated in Figure 6; for this reason, tubes can be used as support to roll plastic films and
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Figure 4 — Tube. Figure 5 — Paper reels.

Figure 6 — Tubes packaging and Tubes supports.

tapes. The tubes are differentiated by the resistance to pressure, wall thickness, inner diameter
and length, which are determined by customer needs.

The preparation of a tubes machine consumes too much time, since it involves the movement
(removal and installation) of paper reels in the Yard. In order to reduce the preparation time of
tubes machine, the problem is conceived as a Traveling Salesman and later as a Generalized
Traveling Salesman, enabling the minimization of paper reels exchanges between the production
of two arbitrary tubes. Therefore, the tubes to be produced must be efficiently sequenced.

Simulations using IBM ILOG Cplex 12.6 were run and the Best Nearest Neighbor, Bipartition
and Tripartition heuristics were applied. Finally, a heuristic was developed specifically for the
case study, named Best Configuration.

This paper is organized as follows. Section 2 describes the mathematical model for the studied
problem, which is treated as a Generalized Traveling Salesman Problem. Section 3 describes the
algorithms of the heuristics methods and their adaptations to solve the problem. Obtained results
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using real data from a company are presented and discussed in Section 4. Finally, Section 5
describes the final considerations about this paper.

2 MATHEMATICAL MODEL

The mathematical language is one way of describing a real situation abstractly. The importance
of this description is to enable the simulation of situations that, in practice, could be damaging if
executed, considering the costs involved in the process. In addition, not all real problems (actually
most of them) have appreciable solutions, capable not only of being quickly tested but found.

It is difficult to find the solution to the problem discussed in this paper, since 34 paper reels can
be stored in the Yard of the tubes machine, from which place will be unroll to tank of glue. In the
company where this problem arises, about 10 to 20 different tubes, on average, are made in one
week. Therefore, it is difficult for humans to decide which sequence will be most appropriate for
reducing the number of paper reel exchanges, since many tubes have common paper reels that
can be used in other processes.

The strips of paper are unrolled from the Yard to the tank of glue, which has a reservoir in its
lower part, where the glue is deposited, then raised and poured onto strips of paper. Later, the
strips of paper pass through pallets that remove the excess. The Superpositioner receives the
strips of paper and overlaps them, on top of each other with an appropriate pressure, producing a
tube whose length is “infinite”, from which the tubes are cut using a circular saw coupled to the
superpositioner.

The production of a tube must obey, rigorously, the defined sequence of paper reel, in order to
provide ideal physical conditions to the application. In addition, the tubes differ in relation to its
internal diameter, which is defined by the mandrel of superpositioner.

In order to provide a better comprehension of the process, consider the production of 4 tubes,
called A, B, C and D, in which paper reels coded 100, 101, 102 and 103 will make the nu-
cleus of these tubes and the paper reels coded 200 and 220 will make both internal and external
complement. Table 1 illustrates the configuration of the tubes.

Table 1 — Configurations of the paper reels.

Tubes
A B C D
200 200 200 200
100 100 101 101
102 101 102 102
103 103 220 103
220 220 220

Consider the production sequence (D, B, C, A) of these tubes, organized in Table 2.
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Table 2 — A production sequence of the Table 1 tubes.

Tubes
D B C A
200 keep 200 keep 200 keep 200
101  change 100 change 101 change 100
102 change 101 change 102 keep 102
103 keep 103 change 220 change 103
220 keep 220 remove insert 220

Between the production of one and another tube, some paper reels can be reused and others
need to be removed or inserted to the proper functioning of the tube machine. In this study, the
reposition time of the paper reels is not considered. In this described example, 16 movements
(Insertion and Removal) were required, since “change” consists of 2 movements (1 insertion and
1 removal),“insert” and “remove” consist of 1 movement and “keep”, none. If, on the other hand,
a different production sequence is selected, as (B, A, D, C), only 7 movements are required, as
described in Table 3.

Table 3 — Another production sequence of the Table 1 tubes.

Tubes
B A D C
200 keep 200 keep 200 keep 200
100 keep 100 change 101 keep 101
101  change 102 keep 102 keep 102
103 keep 103 keep 103 change 220
220 keep 220 keep 220 remove

One way to model these production sequences is to idealize each tube as a vertex of a complete
graph [10], in which a Hamiltonian cycle of minimum cost is required; the number of movements
between tubes is the cost per use on an edge. Therefore, an artificial vertex O has to be inserted;

it will be the origin and the end of each sequence. Thus, a Traveling Salesman Model can be
formulated for this problem.

The Yard is composed of 4 positions, where the paper reels are installed. They are called internals
(D or externals (E), as illustrated in Figure 8. For example, to change the internal paper reel
number 2, four movements are required: two movements to remove the paper reels numbers 3
and 4, one movement to insert a new paper reel in the internal position and one more movement
to re-insert the external paper reel number 4. Hoto et al. [13] associate only one movement with
this action, but here, four movements are required since the situation is more realistic.

Considering paper reels movements in function of their positions in the yard, in order to promote
changes, external paper reels require two movements, and the internal, four or two (if there is
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Figure 7 — Paper reels position.

no an external paper reel at its side). For technical reasons, a single empty position between
paper reels is allowed in the Yard, if this is advantageous. In fact it is, since this increases the
combinatorial of the problem. In the example given in Table 1, the configurations are those of
Table 4.

Table 4 — Paper reels configurations.

Tubes
A B
200 200 200 200 200 | 200 200 200 200 200
100 @ 100 100 100 | 100 @ 100 100 100
102 100 @ 102 102 | 101 100 @ 101 101
103 102 102 @ 103 | 103 101 101 (%} 103
220 103 103 103 @ |220 103 103 103 o©
220 220 220 220 220 220 220 220

200 200 200 200 [ 200 200 200 200 200
101 1% 101 101 | 101 %] 101 101 101
102 101 %] 102 | 102 101 %] 102 102
220 102 102 @ 103 102 102 @ 103
220 220 220 | 220 103 103 103 @
220 220 220 220

This new approach leads to considering the case of the tube machine from the perspective of a
Generalized Traveling Salesman Problem (GTSP), which is an extension of the classic Traveling
Salesman Problem (TSP), in which the vertices are divided into groups called clusters, and aims
to visit at least one vertex from each cluster, by means of a Hamiltonian cycle of minimal cost.
According to Laporte et al. [17], the aim of the Generalized Travelling Salesman Problem is to
determine a least cost Hamiltonian circuit or cycle through several clusters of vertices.
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The Generalized Traveling Salesman Problem is defined as a valued graph G = (V; E) where
V =1,2,...,nis the set of nodes and

E=Gj):i,jeV,i#]

is the set of edges, and let ¢;; be the travel distance (or cost or time) from node i to node j.
Let Vi, Va, ..., Vi be disjoint subsets of V such that union of these subsets equals to V. These
subsets are called clusters.

The GTSP is to find the route that (i) starts from a node and visits exactly one node from each
cluster and turns back to the starting node (ii) never visits a node more than once and (iii) has the
minimum total route length.

In the formulation of Kara et al. [14], u, is the auxiliary variable defined as the visit number of
cluster p. In addition, we define one more auxiliary variable as:

1, if traveler goes from cluster p to cluster g
Yra =1 o

otherwise

Each cluster C;;i = 1, ..., n is made by possible configurations of the paper reels that compose
a tube, as Table 4 illustrates. The set E is composed by edges that connect the vertex of the graph.
A cost ¢;; is associated with the edges; this cost represents the number of paper reels movements
required to the tube j production immediately after tube i. For this approach, the intraclusters
edges are not considered, since this fact would cause the production of the same tube two or more
times. The goal is to define a production sequence of tubes that has the fewest number of paper
reels movements, prioritizing the successive construction of tubes with the same mandrel, since
the change of a mandrel spends much time in relation to the movement of a paper reel, so the
tubes that have the same mandrel must be made in sequence. A tube is thus defined not only by
the paper reels but by the mandrel used for its production as well. Consider:

x;j: binary decision variable that indicates if the edge formed by the vertices i and j belongs to
the solution, representing the production of tube j after tube i;

cij: cost to travel the edge from vertex i to j, represented by the exchange tube i for j. Note the
cost is symmetric (¢;; = ¢;;) and it is not defined for tubes of the same cluster;

m;j: necessary cost to exchange the mandrel M; for the M;. Note the cost is symmetric (m;; =
m;i )

In the mathematical model, n tubes are considered and the binary decision variable x;;, where
i,j=1,2,...,n;i # j represent the tubes, such as:

1, iftube j is made imediately after tube i
Xi = :
Y 0, otherwise

Consider cost ¢;;, which will be associated with edge (i; j), representing the number of paper
reels movements between tubes i and j production. The costs related to the artificial vertex satisfy
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cko = cok = 0. Parameter m;; is defined as one that is associated with the mandrel exchange
cost:
. 2Bmax + 3, if M; #Mj
iy = 0, otherwise

Bmax 1s the maximum number of paper reels necessary to product a tube.

The mathematical model that represents the proposed problem, considering the paper reels
movements, is based on F/ model [15], as follows.

min 7' = Z xij(cij +mij) (1)
(i,j)eE
subject to:
Y3 xij=1, for p=1,2,...k )
ieVp jeV\Vp
> xyj=1, for p=1,2, ...k 3)
ieV\Vp jevp
iji— inj=0, forall i e V 4)
JEV\L) JEV\L)
Wpq = sziﬁ wpg €{0,1} p,g=1,2, ...k (5)
i€Vp jeVy
up =g+ k = Dwpy + (k = 3wyp <k -2, (6)

P#qp,qg=2,..k

up— Z wep =1, pg=2,..,k (7)
q;9#p

up+ Gk =2wip, <k-1, p=2,..k ()

xij € {0, 1}, forall i,j € E,i # ) 9)

In the objective function (1), the costs related to mandrel exchanges are summed together with
the costs related to the paper reels movements, so that the tubes with the same mandrel can be
produced in sequence. By applying the objective function (1), the cycle (route) of minimal cost
to visit only one vertex from each cluster, with the lowest mandrel exchange, is obtained.
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Constraints (2) and (3) are degree constraints of each cluster, whereas, constraints (4) balance
the inflow and outflow of each node. These constraints were proposed by Noon & Bean (1991).
Constraints (2) and (3) are imposed in order to guarantee that only one edge reaches each cluster
and that only one edge out of each cluster.

Constraints (5) are expressions of the new variables by the previous decision variables. Con-
straints (6) are the subroute elimination constraints. Constraints (7) and (8) form the lower and
upper bounds of the auxiliary variables. The validity of these constraints is shown in the propo-
sitions given below, which are proofed in Kara et al. (2012). Constraints (9) represent the inte-
grality of variable x;;.

Proposition 1: The equalities given in (6) guarantee that w4 equals to 1 if the traveler goes
from cluster p to g, and 0 otherwise.

Proposition 2: Inequalities given in (7), (8) and (9) are valid for the GTSP.

In order to obtain only the number of paper reels movements required to the production between
two tubes i and j, it is sufficient the follow equation:

=7 — Z xijmij =2z — (M — 1)(2Bmax + 3),
(i,j)eE

Since the number of different mandrels is M, there will have (M — 1) mandrel exchanges and
the cost related to each mandrel exchange is (2Bmax + 3).

In the next section, the heuristics are presented, which aims to minimize the number of paper
reels movements between tubes production.

3 HEURISTICS

In order to determine a viable solution to the tubes machine problem without the use of a solver,
heuristics are applied, as described in this section, which are refinements of the Best Nearest
Neighbor. In addition, the Best Configuration heuristic is performed, which permutes the tubes
configurations after a viable solution is found. These heuristics were combined, so that the Bi-
partitioned Best Nearest Neighbor heuristic, Tripartitioned Best Nearest Neighbor heuristic, Best
Nearest Neighbor with the Best Configuration heuristic, Bipartitioned Best Nearest Neighbor
with the Best Configuration heuristic and Tripartitioned Best Nearest Neighbor with the Best
Configuration heuristic were obtained.

The heuristics were implemented using C++ language, considering the empty positions in the
tubes configurations. Moreover, a graphic interface was developed, using the integrated develop-
ment environment (IDE) WxDev C++, which allows the user to view the available options to the
portfolios to be analyzed.

The Nearest Neighbor heuristic (NN) is a Greedy constructive heuristic, originally presented
in [4]. The basic idea is to choose randomly an initial vertex and then select the closest vertex
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that has not been visited, constructing the edge that will belong to the solution. The process
terminates when all vertices are visited.

Unless the graph is complete, this procedure may have difficulties to find a route, even if there
is one, since it may have vertices that are not connected by any edge. Even in complete graphs,
this heuristic can provide a bad solution, since it is forced to choose very distant edges in the
last steps. Another problem of this heuristic method is the fact that the first vertex is chosen
arbitrarily, which can lead to a solution far from optimal.

The heuristic Best Nearest Neighbor (BNN) analyzes all of the possible routes constructed by
NN heuristic. Considering each tube as initial from artificial vertex O, and choose the one with
the lowest cost or the solution that return the lowest objective function value. The BNN heuristic
run a NN considering each vertex i as the begin of the solution route.

Algorithm 1 shows the called Bipartitioned Best Nearest Neighbor Heuristic (BNN-2-part). In
this algorithm, “sol” and “cost” are, respectively, the solution generator tree and the costs matrix;
m and n are, respectively, the number of tubes and the number of configurations in each cluster.
A cluster consists of different configurations of a tube and it is considered as a hiper-node.

Algorithm 1: Bipartitioned Best Nearest Neighbor Heuristic — BNN-2-part.

1. inputs: sol, cost, m, n

2. sum <— oo

3.fori < 1tomdo

4. for j < 1tondo

sum* < BNN(sol*, cost, m, n)

while sum** <— H2part(sol*, sum*, n) < sum* then do
sum* < sum?**

if sum* < sum then do

e

sum <— sum®*
10. sol < sol*

11. return sum

In Algorithm 1, BNN is the classic Best Nearest Neighbor heuristic, applied to all the vertices
i = (p, ¢), considering each cluster p and each configuration c as the beginning of the solution
route. The solution is updated, if necessary, in each iteration of the algorithm. H2part heuristic
removes one edge of the solution route, creating 2 partitions, and it generates a new edge recon-
necting 2 extremes vertices of the solution, without sub-routes. The procedure is performed in
all positions where it is possible to partition the solution. The solution is updated only at the end
of the algorithm with the best route found during the partitioning. Algorithm 2 shows the H2part
heuristic.
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Algorithm 2: H2part Heuristic.

1. inputs: sol, sum, n
2. sum** <« sum
3.fori < 1ton—1do

4. partition the solution removing the edge between i and i + 1 vertices

5. sol* <« best solution among possible reconnections of the created partitions
6. if sum* < sum then do

7. sum < sum¥*

8. Sol#* «— gol*
9. sum <« sum**

10. sol < sol**

11. return sum

Similarly, Algorithm 3 shows the called Tripartitioned Best Nearest Neighbor Heuristic (BNN-
3-part), a refinement to the solution obtained from the BNN heuristic. If there is a improvement,
the solution is then updated.

Algorithm 3: Tripartitioned Best Nearest Neighbor Heuristic — BNN-3-part.

1. inputs: sol, cost, m, n

2. sum <— oo

3.fori < 1tomdo

4. for j < 1tondo

sum* < BNN(sol*, cost, m, n)

while sum** <— H3part(sol*, sum*, n) < sum* then do
sum* < sum**

if sum* < sum then do

e

sum <— sum®*
10. sol < sol*
11. return sum

The BNN-3-part uses the H3part heuristic in the sequence initially determined. This heuristic
removes 2 edges of the solution route, creating 3 partitions, and it generates 2 edges reconnect-
ing the extremes vertices of each partition, without sub-routes. Algorithm 4 shows the H3part
heuristic.

In order to consider the intrinsic characteristics of the studied problem, the Best Configuration
(BC) heuristic is performed. This heuristic analyzes if it is necessary to do exchanges in the
configurations of the tubes, without the obtained sequence is altered.
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Algorithm 4: H3part Heuristic.

1. inputs: sol, sum, n

2. sum** <« sum

3.fori < 1ton —2do

4. forj<«—i+1ton—1do

5. Partition the solution removing the edge between i and i + 1 vertices and the edge
between j and j + 1 vertices

6. solx < best solution among possible reconnections of the created partitions
7. if sum* < sum then do

8. sum <— sum#*

9. Sol** «— gol*

10. sum < sum**
11. sol < sol**
12. return sum

The Best Configuration (BC) heuristic is exclusive to the problem that considers empty posi-
tions. For each vertex i of the solution, the heuristic analyzes if the configuration exchange c of
the cluster optimizes the solution. If so, it updates the solution with the new configuration c’.
Algorithm 5 describes this procedure.

Algorithm S: Best Configuration Heuristic — BC.

1. inputs: sol, sum, m, n
2. sum <«— 00
3.fori < 1tomdo

4. for j < 1tondo
5. create sol* replacing the node of the cluster i of the
solution by other node of the same cluster, but with configuration j
6. if sum* < sum then do
7. sum <— sum*
8. sol <« sol*

9. return sum

The Best Nearest Neighbor with the Best Configuration heuristic (BNNBC) is a refinement of the
BNN heuristic. In each algorithm iteration, the BNN and BC heuristics are respectively applied,
updating the solution if necessary, as described by Algorithm 6.

The Bipartitioned/Tripartitioned Best Nearest Neighbor with the Best Configuration heuristics
(BNNBC-2-part/ BNNBC-3-part) are also a refinement of BNN heuristic. Such as the BNN-2-
part/ BNN-3-part, after run the BNN heuristic for each vertex i = (p, ¢) (in each configuration
¢ of each cluster S), the H2part/H3part heuristics are applied to the found solution while there
is cost reduction. Besides, the BC heuristic is applied in the same solution. The final solution is
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uploaded in each iteration that minimize the cost. These heuristics are described, respectively, in
Algorithm 7 and Algorithm 8.

Algorithm 6: Best Nearest Neighbor with the Best Configuration Heuristic —- BNNBC.

1. inputs: sol,cost,m, n

2. sum <— oo

3.fori < 1tomdo

4. for j < 1tondo

sum* <— BNN (sol*,cost,m, n, i, j)
sum* < BC (sol*,sum*,m, n)

if sum* < sum then do

sum <— sum®*

e

sol < sol*

10. return sum

Algorithm 7: Bipartitioned Best Nearest Neighbor with the Best Configuration Heuristic —
BNNBC-2-part.

1. inputs: sol,cost,m, n
2. sum < 00
3.fori < 1tomdo

4. for j < 1tondo

5. sum* <— BNN (sol*,cost,m, n, i, j)

6. while sum** < 2-part (sol*,sum*,m)< sum* do
7. sum* <« sum**

8. sum* < BC (sol*, sum*, m, n)

9. if sum* < sum then do

10. sum <— sum#*

11. sol < sol*

12. return sum

4 COMPUTATIONAL RESULTS

This section presents the results of the proposed model and all proposed heuristics described
in Section 3. The experiments were run on a PC with Intel R Core TM i7-5500 @2.4 GHz
processor and 16 GB RAM under Ubuntu 16.04 LTS 64 bits system. We solve the model using
the commercial MIP solver IBM ILOG CPLEX 12.6 with default parameters with a time limit
of 3.600 seconds.
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Algorithm 8: Tripartitioned Best Nearest Neighbor with the Best Configuration Heuristic —
BNNBC-3-part.

1. inputs: sol,cost,m, n
2. sum < 00
3.fori < 1tomdo

4. for j < 1tondo

5. sum* <— BNN (sol*,cost,m, n, i, j)

6. while sum** < 3-part (sol*,sum*,m)< sum* do
7. sum* <« sum**

8. sum* < BC (sol*, sum*, m, n)

9. if sum* < sum then do

10. sum < sum¥*

11. sol < sol*

12. return sum

The data used to produce the results presented below are real data provided by the company. The
portfolios consist of tubes of real data relating to the planning horizon of one week. Thus, the
portfolios are constituted by different numbers of tubes, which also have different configurations
for its production. In order to illustrate the Mathematical Model, Section 2 presents data relating
to only one portfolio, which contains 4 tubes (A, B, C and D). The maximum number of reels
per tube of this portfolio is 5, the number of mandrels is 1 and the number of vértices of the
graph (considering one empty position) is 19. In this current section, Table 5 presents general
characteristics about 7 portfolios — or 63 tubes. The “tube” column describes the total number
of tubes contained in each portfolio and the “reels” column presents the maximum number of
reels per tube (no tube has less than 80% of the maximum number of paper reels). Last column
describes the number of mandrels. Thus, the biggest portfolio has 31 paper reels and the smallest
portfolio has 10. We do not present details of these portfolios, as shown in Section 2, due to the
large amount of data.

Table 5 — Portfolios characteristics.

Portfolio | Tubes | Reels | Mandrels
1 10 10 1
2 7 23 5
3 6 27 5
4 8 25 5
5 6 23 5
6 10 31 8
7 16 26 9
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Table 6 presents, for each portfolio, the results obtained from the run heuristics, described in
Section 3. These results provide the number of paper reels movements required to produce the
portfolio. The last column presentes the solution (number of paper reels movements) used by the
company. The best results is in bold and BNNBC-3-part heuristic provides the best performance
for all portfolios.

Table 6 — The number of paper reels movements obtained from the heuristics.

. BNN | BNN | BNNBC | BNNBC
Portfolio | NN | BNN | BNNBC Company
2-part | 3-part 2-part 3-part
1 91 88 84 86 86 84 83 116
2 116 | 104 104 104 104 104 104 122
3 148 | 124 124 124 124 124 124 166
4 170 | 151 151 146 146 146 146 170
5 164 | 164 160 158 154 154 154 178
6 238 | 234 234 232 232 232 231 313
7 311 | 302 292 302 300 292 290 370

The computational results are shown in Table 7. For each portfolio, Table 7 reports, respectively,
the number of vertices of the graph, the objective value obtained by BNNBC-3-part heuristic
(that has presented the best performance), the optimum value (obtained by Mixed Integer Pro-
gramming model), the value obtained by the company and the reduction index (in percentage) of
the company solution in comparison to the optimum solution.

Table 7 — Comparison between BNNBC-3-part heuristic and company performances.

Portfolio | Vertices | BNNBC-3-part | Optimum | Company | Reduction (%)
1 80 83 79 116 319
2 123 104 104 122 14.8
3 155 124 124 166 253
4 133 146 146 170 14.1
5 105 154 154 178 13.5
6 206 231 230 313 26.5
7 248 290 290 370 21.6

BNNBC-3-part heuristic obtained the optimal value for almost all the evaluated instances, ex-
cept for instances A and F, in less than one second of execution time. On the other hand, the
model obtained the optimal solution for all portfolios in less than six minutes. Furthermore, the
proposed model can reduce from 13.5% up to 31.9% the movement cost of the company.

Pesquisa Operacional, Vol. 38(1), 2018



ROBINSON S.V. HOTO, GLAUCIA M. BRESSAN and MARCOS O. RODRIGUES 1 51

5 CONCLUSION

In this paper, the preparation time of a tubes machine was optimized. A mathematical model for
the minimization of changing reels and movements was executed and numerical results, obtained
from heuristics simulations, have improved the company practices.

The company is a manufacturer, which has only human material, without automation of pro-
duction processes. Therefore, the results obtained in this study provided a considerable impact
on the production system of the company, presenting a substantial gain in production processes,
making it more efficient and competitive.

The company was pleased with the obtained results. For best employment and use of these re-
sults, an application was developed to be incorporated into the production of the company, sig-
nificantly reducing the movement cost. Thus, the study of optimization models for the control
and production planning becomes an essential tool for industrial advancement.
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